

Date of Issue : 2009-05-18 Page : 1/77

SAR TEST REPORT

Equipment Under Test : GSM/WCDMA PDA phone with Bluetooth & WLAN

Model No. : BIP-6000

Applicant : Bluebird Soft, Inc.

Address of Applicant : 558-5, Sinsa-dong, Kangnam-gu, Seoul, Korea

FCC ID SS4P1770

Device Category : Portable Device

Exposure Category : General Population/Uncontrolled Exposure

Date of Receipt : 2009-03-13

Date of Test(s) : 2009-04-14, 2009-05-13

Date of Issue : 2009-05-18

Max. SAR : 0.136 W/kg (11b)

Standards:

FCC OET Bulletin 65 supplement C IEEE 1528, 2003 ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by : Leo Kim 2009-05-18

Approved by : Charles Kim C. K. kim 2009-05-18

15

Date of Issue : 2009-05-18
Page : 2 / 77

Contents

1. (Genera	l Information	
	1.1	Testing Laboratory	3
	1.2	Details of Applicant.	3
	1.3	Version of Report.	3
	1.4	Description of EUT(s).	3
	1.5	Test Environment.	4
	1.6	Operation description.	4
	1.7	Evaluation procedures.	5
	1.8	The SAR Measurement System.	6
	1.9	System Components	8
	1.10	SAR System Verification.	9
	1.11	Tissue Simulant Fluid for the Frequency Band.	11
	1.12	Test Standards and Limits.	12
2. I	nstrun	nents List	14

3. Summary of Results.....

APPENDIX

- A. Photographs of EUT & EUT's Test Setup
- B. DASY4 SAR Report
- C. Uncertainty Analysis
- D. Calibration certificate

Date of Issue : 2009-05-18 Page : 3 / 77

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371

Homepage : <u>www.electrolab.kr.sgs.com</u>

1.2 Details of Manufacturer

Manufacturer : Bluebird Soft, Inc.

Address : 558-5, Sinsa-dong, Kangnam-gu, Seoul, Korea

Contact Person : In-Gu Kim
Phone No. : 82-2-541-4002
Fax No. : 82-2-548-0870

1.3 Version of Report

Version Number	Date	Revision
00	2009-04-23	Initial issue
01	2009-05-18	Revision 1

1.4 Description of EUT(s)

EUT Type	: GSM/WCDMA PDA phone with Bluetooth & WLAN	
Model	: BIP-6000	
Serial Number	: N/A	
Mode of Operation	: WLAN(11b/g)	
Duty Cycle	: 100%	
Body worn Accessory	: None	
Tx Frequency Range	: 2412 ~ 2462 MHz	
Conducted Max Power(dBm)	: 17.68 (11b), 18.14 (11g)	
Battery Type	: DC 3.7 V(Lithum-ion Battery)	

Date of Issue : 2009-05-18 Page : 4 / 77

1.5 Test Environment

Ambient temperature	: 21 ~ 22 ° C
Tissue Simulating Liquid	: 21 ~ 22 ° C
Relative Humidity	: 40 ~ 60 %

1.6 Operation Configuration

The device in GSM and WCDMA mode was controlled by using a Communication tester(CMU 200). Communication between the device and the tester was established by air link. For WLAN, the client provided a special driver and test program which can control the frequency and power of the module. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. Based on the RF Power and antenna separation distance, stand-alone BT SAR and simultaneous SAR evaluation are not required.

Date of Issue : 2009-05-18 Page : 5 / 77

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a

Date of Issue : 2009-05-18 Page : 6 / 77

position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- •A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- •A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Date of Issue : 2009-05-18 Page : 7 / 77

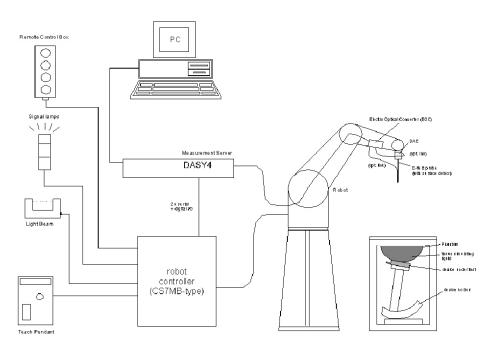


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Date of Issue: 2009-05-18 8 / 77 Page:

1.9 System Components

ET3DV6 E-Field Probe

Symmetrical design with triangular core Built-in shielding Construction

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. glycol).

Calibration : In air from 10 MHz to 2.5 GHz In brain simulating tissue

 $(accuracy \pm 8\%)$

: 10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Frequency

: ± 0.2 dB in brain tissue (rotation around probe axis) **Directivity**

±0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range

: $5 \mu W/g$ to >100 mW/g; Linearity: $\pm 0.2 dB$

Srfce. Detect

: ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Dimensions Overall length: 330 mm

> Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Compliance tests of mobile **Application**

phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

Date of Issue : 2009-05-18 Page : 9/77

SAM Phantom

Construction: The SAM Phantom is constructed of a

fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points in the robot

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 2450 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range 20~23 °C, the relative humidity was in the range 40~60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Date of Issue : 2009-05-18 Page : 10 / 77

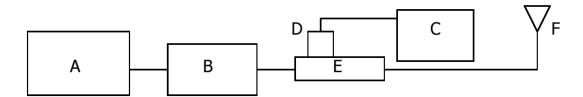


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (Input Power : 250 mW)	Measured SAR 1 g (Input Power : 250 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D2450V2 S/N: 734	2450 MHz Brain	13.3 W/kg	12.8 W/kg	-3.76	2009-04-14	22.4
D2450V2 S/N: 734	2450 MHz Brain	13.3 W/kg	13.3 W/kg	0.0	2009-05-13	22.3

Table 1. Results system validation

Date of Issue : 2009-05-18 Page : 11 / 77

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

	Tissue		Dielectric Parameters			
f (MHz)	type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp($^{\circ}$ C)	
		Measured, 2009-04-14	40.1	1.847	22.4	
	Head	Recommended Limits	39.2	1.800	22.0	
		Deviation(%)	2.30	2.61	-	
	Body	Measured, 2009-04-14	51.5	1.917	22.4	
2450		Recommended Limits	52.7	1.950	22.0	
		Deviation(%)	-2.28	-1.69	-	
		Measured, 2009-05-13	38.3	1.886	22.3	
	Head	Recommended Limits	39.2	1.800	22.0	
		Deviation(%)	-2.30	4.78	-	

Date of Issue : 2009-05-18 Page : 12 / 77

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: $99^{+}\%$ Pure Sodium Chloride Sugar: $98^{+}\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^{+}$ resistivity HEC: Hydroxyethyl Cellulose DGBE: $99^{+}\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the

Date of Issue : 2009-05-18 Page : 13 / 77

frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

Date of Issue : 2009-05-18 Page : 14/77

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 30, 2010
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1783	November 14, 2009
Schmid& Partner Engineering AG	835 MHz System Validation Dipole	D835V2	490	August 27, 2009
Schmid& Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d033	August 28, 2009
Schmid& Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	734	August 20, 2009
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	September 24, 2009
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	April 1, 2010
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	October 1, 2009
Agilent	Power Sensor	Е9300Н	MY41495308	October 14, 2009
Agilent	Signal Generator	E4421B	MY41495314 MY43350132	October 6, 2009 October 1, 2009
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	April 1, 2010
Agilent	Dual Directional Coupler	777D 778D	50128 50454	October 1, 2009
Microlab	LP Filter	LA-15N LA-30N	N/A	October 1, 2009
R&S	Mobile Test Unit	CMU 200	107279	April 1, 2010

Date of Issue : 2009-05-18 Page : 15 / 77

3. Summary of Results

A. Conducted Power

1. Conducted Power Table.

- WLAN

Mode	Average Power(dBm)			
Mode	Low	Mid	High	
11b	16.92	16.85	17.68	
11g	17.41	17.73	18.14	

- 2. Worst-case result was reported.
- 3. The EUT Position is based on normal operating condition.

B. SAR Evaluation Consideration

KDB 648474 Simultaneous SAR evaluation

Mode (f)	P (dBm)	P (mW)	Stand-alone SAR
802.11 b/g (2450)	18.14	65.16	Yes
Bluetooth (2441)	-1.01	0.79	No

Mode pair	D _{xy} (cm)	The sum of all 1g SAR	Simultaneous Tx SAR	Notes
UMTS & 802.11 b/g	10.2	1.25 + 0.136 = 1.386	No	dxy > 5 cm, the sum of all 1g SAR < 1.6 W/kg
UMTS & Bluetooth	5.5	1.25 + BT < 1.6	No	dxy > 5 cm, the sum of all 1g SAR < 1.6 W/kg
802.11 b/g & Bluetooth	4.4	0.136 + BT << 1.6	No	$\begin{array}{ccc} P_X & P_{REF} \ and \ d_{xi} < 2.5 \ cm, \ with \\ & each \\ P_i & P_{REF} \ or \ SAR_i < 1.2 \ W/kg \\ the \ sum \ of \ all \ 1g \ SAR < 1.6 \ W/kg \end{array}$

^{*} Please see Page 22 for finding all distances.

Date of Issue : 2009-05-18 Page : 16 / 77

Ambient Temperature (°C)	22.4		
Liquid Temperature (°C)	22.4		
Date	2009-04-14		

WLAN Body SAR

Test Mode	EUT	Traffic Channel		Power	1 g SAR	1 g SAR Limits
	Position	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	(W/kg)
11b	Face Up	2437	6	-0.150	0.133	
11g	Face Up	2437	6	-0.195	0.087	
	Face Down	2437	6	-0.153	0.098	1.6
11b	Face Up	2412	1	0.087	0.136	
	Face Up	2462	11	-0.033	0.107	

Date of Issue : 2009-05-18 Page : 17 / 77

Ambient Temperature (°C)	22.3		
Liquid Temperature (°C)	22.3		
Date	2009-05-13		

WLAN Head SAR

Head Posotion	Test Mode	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
			Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
Left Ear	11b	Cheek	2437	6	-0.113	0.010	
		Tilt	2437	6	-0.098	0.00774	
	11g	Cheek	2437	6	-0.100	0.00795	
		Tilt	2437	6	0.073	0.00644	
Right Ear	11b	Cheek	2437	6	0.033	0.012	1.6
		Tilt	2437	6	-0.089	0.0054	1.0
		Cheek	2412	1	-0.161	0.016	
		Cheek	2462	11	-0.034	0.00877	
	11g	Cheek	2437	6	-0.123	0.010	
		Tilt	2437	6	-0.060	0.00455	

Note: The SAR measured at the middle channel for this configuration at least 3dB lower (0.8 W/kg) than SAR limit, thus testing at low and high channel is optional.

Date of Issue : 2009-05-18 Page : 18 / 77

Appendix

List

Appendix A	Photographs	- EUT - Test Setup
Appendix B	DASY4 Report (Plots of the SAR Measurements)	- 2450 MHzValidation Test- WLAN
Appendix C	Uncertainty Analysis	
Appendix D	Calibration Certificate	- PROBE - DAE - DIPOLE

Appendix A

EUT Photographs

Report File No.: F690501/RF-SAR001835-A1

Date of Issue : 2009-05-18 Page : 19 / 77

Front View of EUT

Rear View of EUT

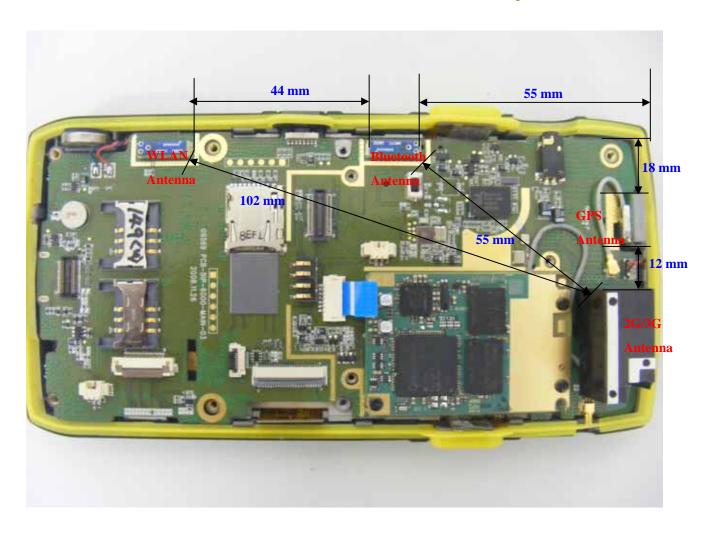
Date of Issue : 2009-05-18 Page : 20 / 77

Right Side View of EUT

Left Side View of EUT

Date of Issue : 2009-05-18 Page : 21 / 77

Top View of EUT


Bottom View of EUT

Date of Issue : 2009-05-18 Page : 22 / 77

Antenna Separation Distance of EUT

Test Setup Photographs

Report File No.: F690501/RF-SAR001835-A1

Date of Issue : 2009-05-18 Page : 23 / 77

Body Face Up

Body Face Down

Date of Issue : 2009-05-18 Page : 24 / 77

Right Ear Cheek

Right Ear Tilt

Date of Issue : 2009-05-18 Page : 25 / 77

Left Ear Cheek

Left Ear Tilt

Date of Issue : 2009-05-18
Page : 26 / 77

Appendix B

Test Plot - DASY4 Report

Date of Issue : 2009-05-18 Page : 27 / 77

2450 MHz Validation Test

Date/Time: 2009-04-14 10:01:31

Test Laboratory: SGS Testing Korea File Name: Validation 2450 MHz.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 734

Program Name: Validation 2450 MHz

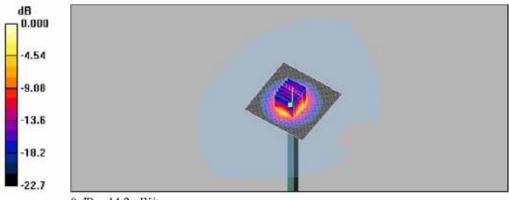
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 40.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

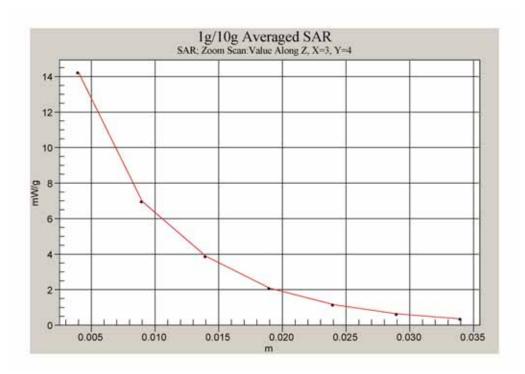
- Probe: ET3DV6 SN1782; ConvF(4.65, 4.65, 4.65); Calibrated: 2008-04-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.2 mW/g

Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.2 V/m; Power Drift = -0.107 dB

Peak SAR (extrapolated) = 30.2 W/kg


SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.81 mW/gMaximum value of SAR (measured) = 14.2 mW/g

0 dB = 14.2 mW/g

Date of Issue : 2009-05-18 Page : 28 / 77

Date of Issue : 2009-05-18 Page : 29 / 77

2450 MHz Validation Test -1

Date/Time: 2009-05-13 11:56:31

Test Laboratory: SGS Testing Korea File Name: Validation 2450 MHz-1.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 734

Program Name: Validation 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

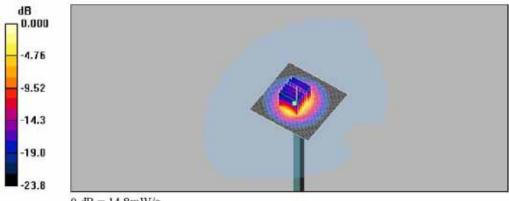
Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

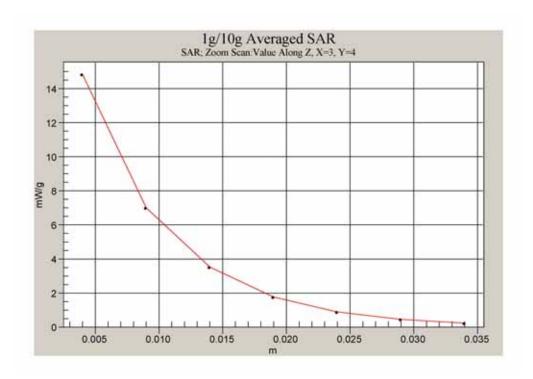
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Validation 2450 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 15.7 mW/g

Validation 2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.3 V/m; Power Drift = -0.102 dB

Peak SAR (extrapolated) = 30.3 W/kg


SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.02 mW/g Maximum value of SAR (measured) = 14.8 mW/g

0 dB = 14.8 mW/g

Date of Issue : 2009-05-18 Page : 30 / 77

Date of Issue : 2009-05-18 Page : 31/77

WLAN Body SAR Test

Date/Time: 2009-04-14 12:05:59

Test Laboratory: SGS Testing Korea

File Name: WLAN.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN_Body

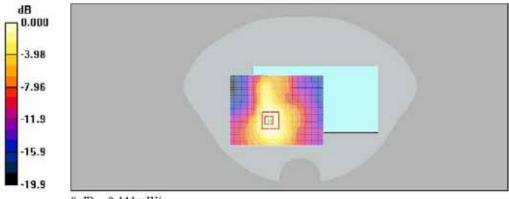
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.06, 4.06, 4.06); Calibrated: 2008-04-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_11b_Face Up_Mid/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.143 mW/g

WLAN_11b_Face Up_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.77 V/m; Power Drift = -0.150 dB

Peak SAR (extrapolated) = 0.278 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.074 mW/gMaximum value of SAR (measured) = 0.141 mW/g

0 dB = 0.141 mW/g

Date of Issue : 2009-05-18 Page : 32 / 77

Date/Time: 2009-04-14 1:10:40

Test Laboratory: SGS Testing Korea

File Name: WLAN.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN Body

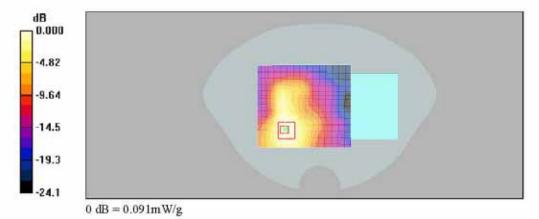
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.06, 4.06, 4.06); Calibrated: 2008-04-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_11g_Face Up_Mid/Area Scan (71x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.100 mW/g

WLAN_11g_Face Up_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.02 V/m; Power Drift = -0.195 dB

Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.087 mW/g; SAR(10 g) = 0.047 mW/gMaximum value of SAR (measured) = 0.091 mW/g

Date of Issue : 2009-05-18 Page : 33 / 77

Date/Time: 2009-04-14 3:24:35

Test Laboratory: SGS Testing Korea

File Name: WLAN.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN Body

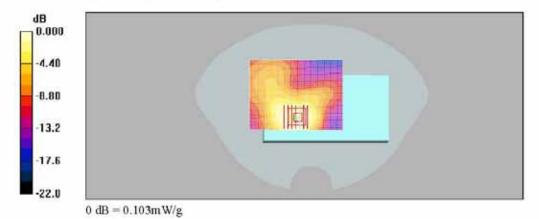
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.9$ mho/m; $\epsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.06, 4.06, 4.06); Calibrated: 2008-04-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN_11b_Face Down_15 mm_Mid/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.105 mW/g

WLAN_11b_Face Down_15 mm_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.72 V/m; Power Drift = -0.153 dB

Peak SAR (extrapolated) = 0.212 W/kg

SAR(1 g) = 0.098 mW/g; SAR(10 g) = 0.053 mW/g Maximum value of SAR (measured) = 0.103 mW/g

Date of Issue: 2009-05-18 Page: 34 / 77

Date/Time: 2009-04-14 3:46:03

Test Laboratory: SGS Testing Korea

File Name: WLAN.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN Body

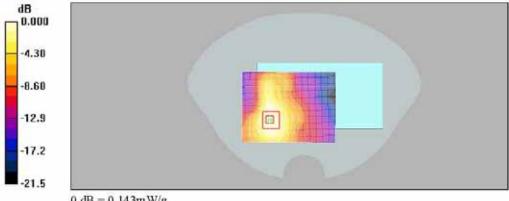
Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2412 MHz; $\sigma = 1.87$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

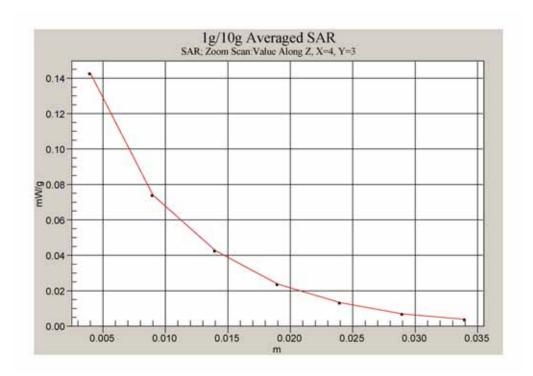
- Probe: ET3DV6 SN1782; ConvF(4.06, 4.06, 4.06); Calibrated: 2008-04-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


WLAN 11b Face Up Low/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.148 mW/g

WLAN_11b_Face Up_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.49 V/m; Power Drift = 0.087 dB

Peak SAR (extrapolated) = 0.298 W/kg


SAR(1 g) = 0.136 mW/g; SAR(10 g) = 0.075 mW/gMaximum value of SAR (measured) = 0.143 mW/g

0 dB = 0.143 mW/g

Date of Issue : 2009-05-18 Page : 35 / 77

Date of Issue : 2009-05-18 Page : 36 / 77

Date/Time: 2009-04-14 4:05:47

Test Laboratory: SGS Testing Korea

File Name: WLAN.da4

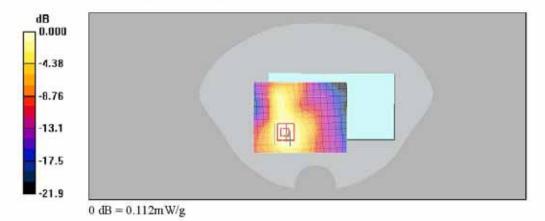
DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN_Body

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2462 MHz; $\sigma = 1.93$ mho/m; $\varepsilon_r = 51.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.06, 4.06, 4.06); Calibrated: 2008-04-22
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WLAN_11b_Face Up_High/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.110 mW/g

WLAN_11b_Face Up_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.32 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.107 mW/g; SAR(10 g) = 0.058 mW/gMaximum value of SAR (measured) = 0.112 mW/g

Date of Issue : 2009-05-18 Page : 37 / 77

Date/Time: 2009-05-13 2:16:32

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN LE

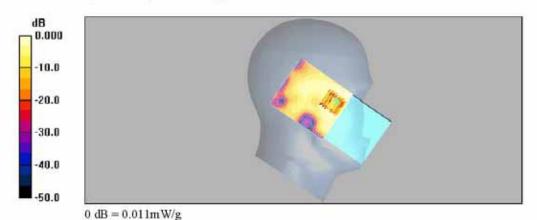
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


LE_11b_Mid_Cheek/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.011 mW/g

LE_11b_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.29 V/m; Power Drift = -0.113 dB

Peak SAR (extrapolated) = 0.018 W/kg

SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.0056 mW/gMaximum value of SAR (measured) = 0.011 mW/g

Date of Issue : 2009-05-18 Page : 38 / 77

Date/Time: 2009-05-13 2:38:52

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN LE

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

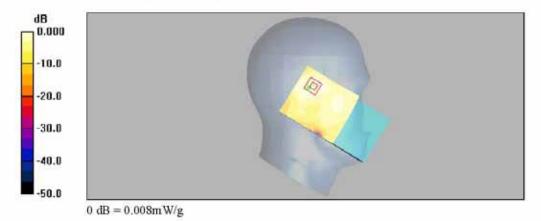
Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

LE_11b_Mid_Tilt/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.009 mW/g


LE 11b Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.87 V/m; Power Drift = -0.098 dB

Peak SAR (extrapolated) = 0.015 W/kg

SAR(1 g) = 0.00774 mW/g; SAR(10 g) = 0.00398 mW/g

Maximum value of SAR (measured) = 0.008 mW/g

Date of Issue : 2009-05-18 Page : 39 / 77

Date/Time: 2009-05-13 2:59:32

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN LE

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

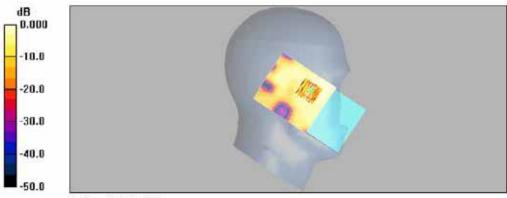
Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

LE_11g_Mid_Cheek/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.009 mW/g


LE_11g_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.18 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.017 W/kg

SAR(1 g) = 0.00795 mW/g; SAR(10 g) = 0.00424 mW/g

Maximum value of SAR (measured) = 0.009 mW/g

0 dB = 0.009 mW/g

Date of Issue : 2009-05-18 Page : 40 / 77

Date/Time: 2009-05-13 3:20:38

Test Laboratory: SGS Testing Korea

File Name: WLAN LE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN LE

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

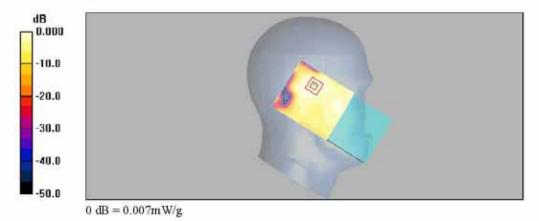
Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

LE_11g_Mid_Tilt/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.008 mW/g


LE 11g Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.64 V/m; Power Drift = 0.073 dB

Peak SAR (extrapolated) = 0.012 W/kg

SAR(1 g) = 0.00644 mW/g; SAR(10 g) = 0.00338 mW/g

Maximum value of SAR (measured) = 0.007 mW/g

Date of Issue: 2009-05-18 Page: 41 / 77

Date/Time: 2009-05-13 4:07:16

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN RE

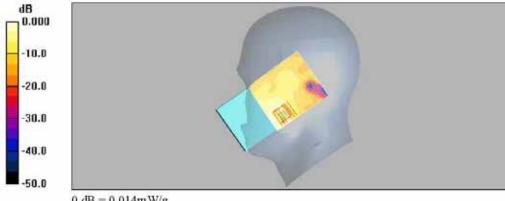
Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


RE 11b Mid Cheek/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.013 mW/g

RE 11b Mid Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.728 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.023 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00625 mW/gMaximum value of SAR (measured) = 0.014 mW/g

0 dB = 0.014 mW/g

Date of Issue : 2009-05-18 Page : 42 / 77

Date/Time: 2009-05-13 4:43:27

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN_RE

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

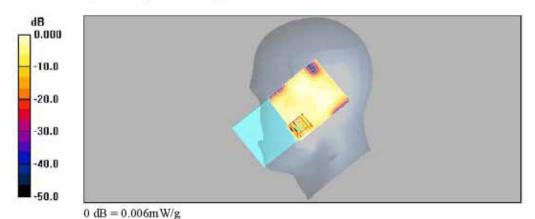
Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE_11b_Mid_Tilt/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.007 mW/g


RE 11b Mid Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.33 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 0.011 W/kg

SAR(1 g) = 0.0054 mW/g; SAR(10 g) = 0.00281 mW/g

Maximum value of SAR (measured) = 0.006 mW/g

Date of Issue : 2009-05-18 Page : 43 / 77

Date/Time: 2009-05-13 6:14:19

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN_RE

Communication System: WLAN; Frequency: 2412 MHz; Duty Cycle: 1:1

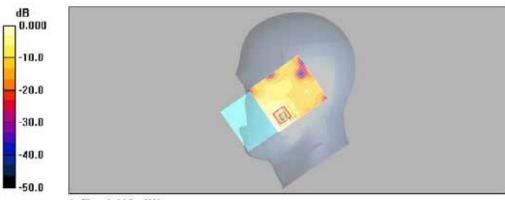
Medium parameters used: f = 2412 MHz; $\sigma = 1.76$ mho/m; $\varepsilon_r = 38.7$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE_11b_Low_Cheek/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.016 mW/g


RE_11b_Low_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.744 V/m; Power Drift = -0.161 dB

Peak SAR (extrapolated) = 0.035 W/kg

SAR(1 g) = 0.016 mW/g; SAR(10 g) = 0.00839 mW/g

Maximum value of SAR (measured) = 0.018 mW/g

0 dB = 0.018 mW/g

Date of Issue : 2009-05-18 Page : 44 / 77

Date/Time: 2009-05-13 7:20:23

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN RE

Communication System: WLAN; Frequency: 2462 MHz; Duty Cycle: 1:1

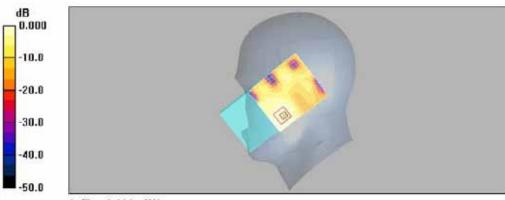
Medium parameters used: f = 2462 MHz; $\sigma = 1.91$ mho/m; $\varepsilon_r = 38.5$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE_11b_High_Cheek/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.010 mW/g


RE_11b_High_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.725 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.020 W/kg

SAR(1 g) = 0.00877 mW/g; SAR(10 g) = 0.00463 mW/g

Maximum value of SAR (measured) = 0.010 mW/g

0 dB = 0.010 mW/g

Date of Issue : 2009-05-18 Page : 45 / 77

Date/Time: 2009-05-13 5:13:02

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN RE

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

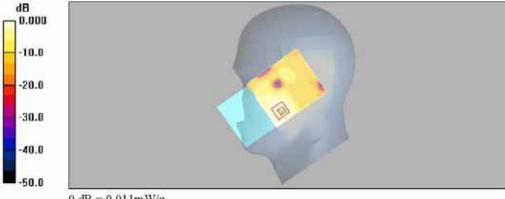
Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_{\star} = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE_11g_Mid_Cheek/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.011 mW/g


RE_11g_Mid_Cheek/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 0.575 V/m; Power Drift = -0.123 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00512 mW/g

Maximum value of SAR (measured) = 0.011 mW/g

0 dB = 0.011 mW/g

Date of Issue : 2009-05-18 Page : 46 / 77

Date/Time: 2009-05-13 5:50:27

Test Laboratory: SGS Testing Korea

File Name: WLAN RE.da4

DUT: BIP-6000; Type: Bar; Serial: N/A

Program Name: WLAN RE

Communication System: WLAN; Frequency: 2437 MHz; Duty Cycle: 1:1

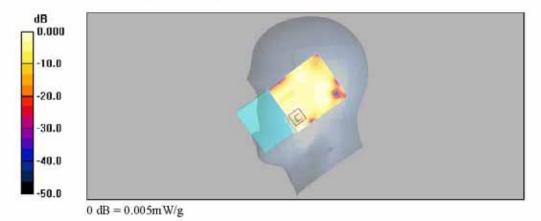
Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 38.3$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2008-09-24
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE_11g_Mid_Tilt/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.006 mW/g


RE_11g_Mid_Tilt/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.24 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 0.011 W/kg

SAR(1 g) = 0.00455 mW/g; SAR(10 g) = 0.00235 mW/g

Maximum value of SAR (measured) = 0.005 mW/g

Date of Issue : 2009-05-18 Page : 47 / 77

Appendix C

Uncertainty Analysis

Uncertainty of SAR equipments for measurement

Items	Uncertainty value %	Probability Distribution	Divisor	ci 1 1g	Standard unc (1g)	vi or Veff
Measurement System						
Probe calibration	4.8	normal	1	1	4.8%	∞
Axial isotropy	4.7	rectangular	√ 3	$(1-c_p)^{1/2}$	1.9%	∞
Hemispherical isotropy	9.6	rectangular	√ 3	$(c_p)^{1/2}$	3.9%	∞
Boundary effects	1.0	rectangular	√ 3	1	0.6%	∞
Linearity	4.7	rectangular	√ 3	1	2.7%	∞
System Detection limits	1.0	rectangular	√ 3	1	0.6%	∞
Readout Electronics	1.0	normal	1	1	1.0%	∞
Response time	0.8	rectangular	√ 3	1	0.5%	∞
Integration time	2.6	rectangular	√ 3	1	1.5%	∞
RF Ambient Conditions	3.0	rectangular	√ 3	1	1.7%	∞
Mech. constrains of robot	0.4	rectangular	√ 3	1	0.2%	∞
Probe positioning	2.9	rectangular	√ 3	1	1.7%	∞
Extrap. and integration	1.0	rectangular	√ 3	1	0.6%	∞

Uncertainty of measurements

Test Sample Related						
Device positioning	2.9	normal	1	1	2.9%	145
Device holder uncertainty	3.6	normal	1	1	3.6%	5
Power drift	5.0	rectangular	√ 3	1	2.9%	∞
Phantom and Setup			·			
Phantom uncertainty	4.0	rectangular	√ 3	1	2.3%	∞
Liquid conductivity(target)	5.0	rectangular	√ 3	0.64	1.8%	∞
Liquid conductivity(meas.)	2.5	normal	1	0.64	1.6%	∞
Liquid permittivity(target)	5.0	rectangular	√ 3	0.6	1.7%	∞
Liquid permittivity(meas.)	2.5	normal	1	0.6	1.5%	∞

Uncertainty of SAR system

Combined Standard Uncertainty		10.3%	
Expanded Standard Uncertainty(k=2)		20.6%	

Appendix D

Calibration Certificate

- PROBE
- DAE
- 2450 MHz DIPOLE

Report File No.: F690501/RF-SAR001835-A1

Date of Issue : 2009-05-18
Page : 48 / 77

Date of Issue : 2009-05-18 Page : 49 / 77

- PROBE Calibration Certificate (2008)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

SGS (Dymstec)

Accreditation No.: SCS 108

Certificate No: ET3-1782_Apr08

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1782

Calibration procedure(s) QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3
Calibration procedure for dosimetric E-field probes

Calibration date: April 22, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Sep-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08

Name Function Signate
Calibrated by: Katja Pokovic Technical Manager

Approved by: Niels Kuster Quality Manager

Issued: April 22, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1782_Apr08

Page 1 of 9

Date of Issue:

2009-05-18

Page:

50 / 77

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

Servizio svizzero di taratu Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

 iEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Date of Issue:

2009-05-18

Page:

51 / 77

ET3DV6 SN:1782

April 22, 2008

Probe ET3DV6

SN:1782

Manufactured:

April 15, 2003

Last calibrated:

April 23, 2007

Recalibrated:

April 22, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1782_Apr08

Page 3 of 9

Date of Issue:

2009-05-18

Page:

52 / 77

ET3DV6 SN:1782

April 22, 2008

DASY - Parameters of Probe: ET3DV6 SN:1782

Sensitivity is	n Free Space ^A
----------------	---------------------------

Diode Compression^B

NormX	2.02 ± 10.1%	$\mu V/(V/m)^2$	DCP X	89 mV
NormY	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV
NormZ	1.79 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.2	5.7
SAR _{be} [%]	With Correction Algorithm	0.7	8.0

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	13.1	7.9
SAR _{be} [%]	With Correction Algorithm	0.9	0.5

Sensor Offset

Probe Tip to Sensor Center

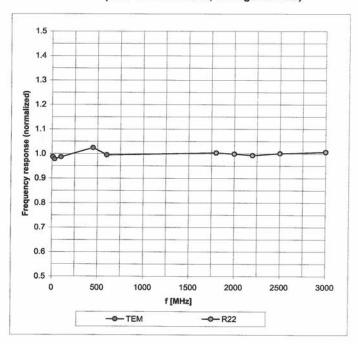
2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1782_Apr08

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.


Date of Issue : 2009-05-18 Page : 53 / 77

ET3DV6 SN:1782

April 22, 2008

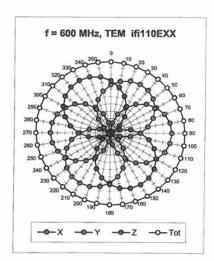
Frequency Response of E-Field

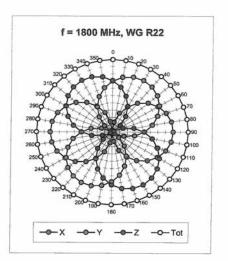
(TEM-Cell:ifi110 EXX, Waveguide: R22)

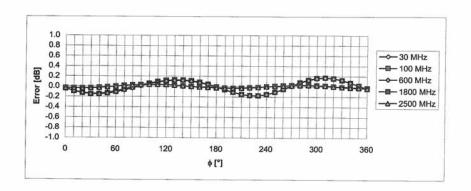
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1782_Apr08

Page 5 of 9




Date of Issue : 2009-05-18 Page : 54 / 77


ET3DV6 SN:1782

April 22, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

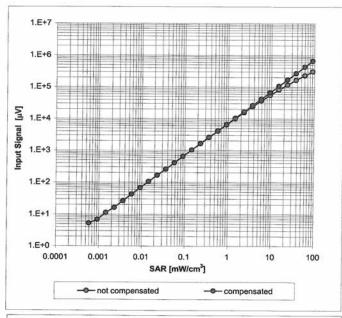
Certificate No: ET3-1782_Apr08

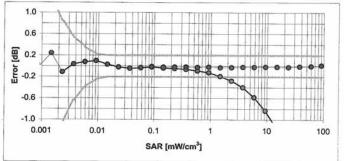
Page 6 of 9

Date of Issue:

2009-05-18

Page:


55 / 77


ET3DV6 SN:1782

April 22, 2008

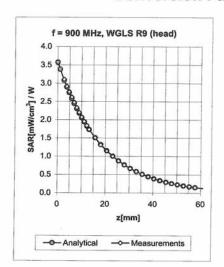
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1782_Apr08

Page 7 of 9


Date of Issue: 2009-05-18


Page: 56/77

ET3DV6 SN:1782

April 22, 2008

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	\pm 50 / \pm 100	Head	43.5 ± 5%	0.87 ± 5%	0.36	1.84	7.22 ± 13.3% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.97	1.57	6.50 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.40	5.35 ± 11.0% (k=2)
2000	\pm 50 / \pm 100	Head	40.0 ± 5%	1.40 ± 5%	0.75	1.80	5.10 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.95	1.39	4.65 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.30	1.85	7.61 ± 13.3% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.95	1.65	5.90 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.72	1.97	5.16 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.95	1.51	4.63 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.78	1.67	4.06 ± 11.0% (k=2)

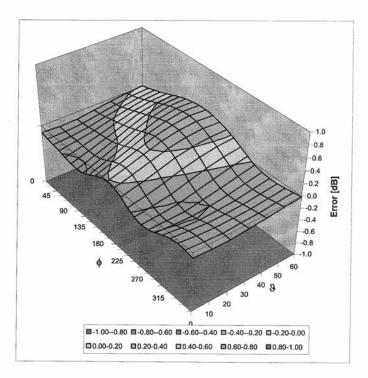
 $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1782_Apr08

Date of Issue:

2009-05-18

Page:


57 / 77

ET3DV6 SN:1782

April 22, 2008

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1782_Apr08

Page 9 of 9

Date of Issue: 2009-05-18 Page: 58 / 77

- PROBE Calibration Certificate (2009)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS KES (Dymstec)

Certificate No: ET3-1782_Arp09

Accreditation No.: SCS 108

Object	ET3DV6 - SN:17	782	
Calibration procedure(s)		QA CAL-12.v5 and QA CAL-23.v3 edure for dosimetric E-field probet	
Calibration date:	April 30, 2009		
condition of the calibrated item	In Tolerance		
Il calibrations have been condu alibration Equipment used (M&		ory facility: environment temperature (22 ± 3)*C	3 and humidity < 70%.
albration Equipment used (M&	TE critical for calibration)	\$15040444484500000	
alibration Equipment used (M& imary Standards ower meter E4419B	TE critical for calibration) ID # GB41293874	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10
ibration Equipment used (M& mary Standards wer meter E4419B wer sensor E4412A	TE critical for calibration) ID # GB41293874 MY41495277	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10 Apr-10
Albration Equipment used (M& mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A	ID # GB41293874 MY41495277 MY41498087	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10 Apr-10 Apr-10
ibration Equipment used (M& mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	Scheduled Calibration Apr-10 Apr-10 Mar-10
sibration Equipment used (M& imary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A rerence 3 dB Attenuator rerence 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10
Mary Standards wer meter E44198 wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 3 dB Attenuator ference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5086 (20b) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 20 dB Attenuator ference 30 dB Attenuator ference Probe ES30V2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10
sibration Equipment used (M& imary Standards war meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 20 dB Attenuator ference 30 dB Attenuator ference Probe ES30V2 E4	ID # GB41293874 MY41495277 MY41495277 MY41408087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. E83-3013_Jan09)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10
ibration Equipment used (M& mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 30 dB Attenuator ference 30 dB Attenuator ference Probe ES3DV2 E4	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 960	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-680_Sep08)	Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09
mary Standards wer meter E4419B wer sensor E4412A wer sensor E4412A ference 3 dB Attenuator ference 3 dB Attenuator ference 20 dB Attenuator ference Probe ES30V2 E4 condary Standards generator HP 8848C	TE critical for calibration) ID # GB41293874 MY41495277 MY41408087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 960	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01027) 2-Jan-09 (No. ES	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Jan-10 Sep-00 Scheduled Check In house check: Oct-06
imary Standards over meter E4419B over sensor E4412A over sensor E4412A reference 3 dB Attenuator reference 20 dB Attenuator reference 20 dB Attenuator reference Probe ES30V2 AE4 occordany Standards Figenerator HP 8848C	ID # GB41293874 MY41495277 MY41495277 MY41495087 SN: S5036 (20b) SN: S5036 (20b) SN: S5129 (30b) SN: 3013 SN: 960 ID # US3642401700	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01027) 2-Jan-09 (No. E53-3013_Jan09) 9-Sep-08 (No. DAE4-680_Sep08) Check Date (in house)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Sep-09 Scheduled Check
	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5058 (3cb) SN: S5129 (30b) SN: 35129 US3842U01700 US383290555	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. E63-3013 Jan09) 9-Sep-08 (No. DAE4-660 Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09

Certificate No: ET3-1782_Apr09

Page 1 of 9

Date of Issue:

2009-05-18

Page:

59 / 77

Calibration Laboratory of Schmid & Partner Engineering AG

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

usstrasse 43, 8004 Zurich, Switzerland

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

DCP

TSL NORMx,y,z ConvF

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1782 Apr09

Page 2 of 9

Date of Issue:

2009-05-18

Page:

60 / 77

ET3DV6 SN:1782

April 30, 2009

Probe ET3DV6

SN:1782

Manufactured:

April 15, 2003

Last calibrated: Recalibrated:

April 22, 2008

April 30, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1782_Apr09

Page 3 of 9

Date of Issue: Page:

2009-05-18 61 / 77

ET3DV6 SN:1782

April 30, 2009

DASY - Parameters of Probe: ET3DV6 SN:1782

Sensitivity in Fre	Diode Compression ^B			
NormX	2.03 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV
NormY	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV
NormZ	1.92 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	90 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL		835 MHz	Typical SAR gradient: 5 %	per mm	
	Sensor Cent	er to Phanto	m Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	Correction Algorithm	10.6	6.3
	SAR _{be} [%]	With Co	orrection Algorithm	0.9	0.5

TSL	1750 MHz	Typical SAR gradient: 1	10 % per mm
-----	----------	-------------------------	-------------

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.5	7.5
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

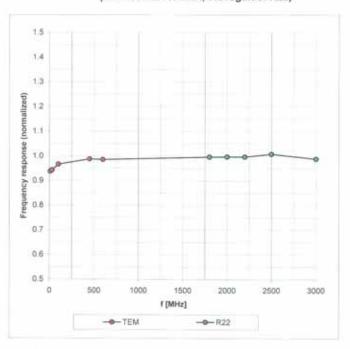
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1782_Apr09

Page 4 of 9

 $^{^{\}pm}$ The uncertainties of NormX.Y.Z do not affect the E²-field uncertainty inside TSL (see Page II).

Numerical linearization parameter: uncertainty not required.


Date of Issue : 2009-05-18 Page : 62 / 77

ET3DV6 SN:1782

April 30, 2009

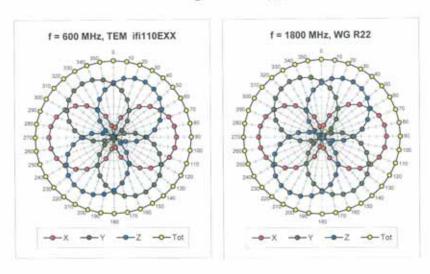
Frequency Response of E-Field

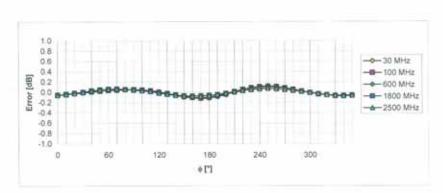
(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No. ET3-1782_Apr09

Page 5 of 9




Date of Issue : 2009-05-18 Page : 63 / 77

ET3DV6 SN:1782

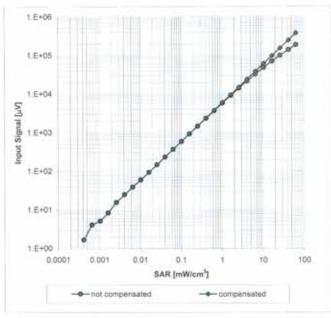
April 30, 2009

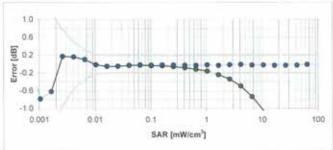
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Gertificate No: ET3-1782_Apr09

Page 6 of 9


Date of Issue : 2009-05-18 Page : 64 / 77


ET3DV6 SN:1782

April 30, 2009

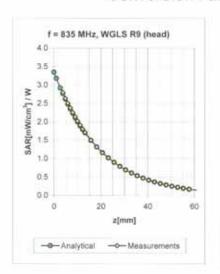
Dynamic Range f(SAR_{head})

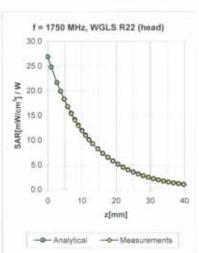
(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1782 Apr09

Page 7 of 9




Date of Issue : 2009-05-18 Page : 65 / 77

ET3DV6 SN:1782

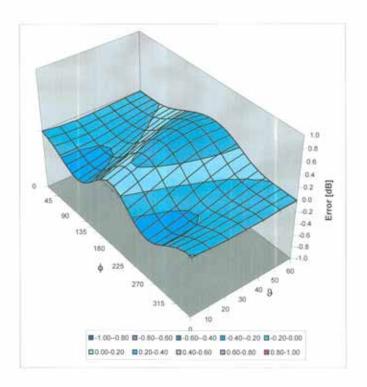
April 30, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	±50/±100	Head	43.5 ± 5%	$0.87 \pm 5\%$	0.29	1.94	6.66 ± 13.3% (k=2)
835	± 50 / ± 100	Head	$41.5\pm5\%$	$0.90 \pm 5\%$	0.51	2.09	6.18 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	1.37 ± 5%	0.50	2.68	5.19 ± 11.0% (k=2)
1900	±50/±100	Head	$40.0\pm5\%$	$1.40\pm5\%$	0.64	2.29	5.00 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.80	1.71	4.45 ±11.0% (k=2)
450	±50/±100	Body	56.7 ± 5%	0.94 ± 5%	0.21	1.99	7.22 ± 13.3% (k=2)
835	±50/±100	Body	55.2 ± 5%	0.97 ± 5%	0.40	2.42	5.07 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.63	3.09	4.71 ± 11.0% (k=2)
1900	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.84	2.44	4.45 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95 ± 5%	0.70	1.40	3.95 ± 11.0% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No. ET3-1782_Apr09


Date of Issue : 2009-05-18 Page : 66 / 77

ET3DV6 SN:1782

April 30, 2009

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No. ET3-1782_Apr09

Page 9 of 9

Date of Issue : 2009-05-18 Page : 67 / 77

-DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Client

SGS (Dymstec)

Certificate No: DAE3-567_Sep08

Accreditation No.: SCS 108

Object	DAE3 - SD 000 D	03 AA - SN: 567	
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	lure for the data acquisition e	lectronics (DAE)
Calibration date:	September 24, 20	08	
Condition of the calibrated item	In Tolerance		
	critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Tuke Process Calibrator Type 702	ID# SN: 6295803	04-Oct-07 (No: 6467)	Scheduled Calibration Oct-08 Oct-08
Primary Standards Fluke Process Calibrator Type 702 Keitnley Multimeter Type 2001	ID # SN: 6295803 SN: 0810278	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465)	Oct-08 Oct-08
Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards	ID# SN: 6295803	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (in house)	Oct-68
Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ID # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (In house) 06-Jun-08 (In house check)	Oct-08 Oct-08 Scheduled Check In house check: Jun-09
Primary Standards Fluke Process Calibrator Type 702 Keitniay Multimeter Type 2001 Secondary Standards	ID# SN: 6295803 SN: 0810278	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (in house)	Oct-08 Oct-08 Scheduled Check In house check: Jun-09 Signature
Primary Standards Fluke Process Calibrator Type 702 Keithiley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ID # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1004 Name	04-Oct-07 (No: 6467) 03-Oct-07 (No: 6465) Check Date (in house) 06-Jun-08 (in house check)	Oct-08 Oct-08 Scheduled Check In house check: Jun-09

Date of Issue : 2009-05-18 Page : 68 / 77

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étaionnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information, Supply currents in various operating modes.

Date of Issue: 2009-05-18 69 / 77 Page:

DC Voltage Measurement

AD - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.676 ± 0.1% (k=2)	404,415 ± 0.1% (k=2)	404.505 ± 0.1% (k=2)
Low Range	3.95084 ± 0.7% (k=2)	3.95932 ± 0.7% (k=2)	3.95189 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	85°±1°

Certificate No: DAE3-567_Sep08

Page 3 of 5

Date of Issue: 2009-05-18 70 / 77 Page:

Appendix

1.

High Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.4	0.00
Channel X + Input	20000	20004.42	0.02
Channel X - Input	20000	-19999.98	0.00
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20003.82	0,02
Channel Y - Input	20000	-20001.54	0.01
Channel Z + Input	200000	200000.2	0.00
Channel Z + Input	20000	20001.02	0.01
Channel Z - Input	20000	-20001.77	0.01

Low Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	200,08	0.04
Channel X - Input	200	-200.46	0.23
Channel Y + Input	2000	2000.1	0.00
Channel Y + Input	200	199.44	+0.28
Channel Y - Input	200	-200.67	0.33
Channel Z + Input	2000	1999.9	0.00
Channel Z + Input	200	198,93	-0.53
Channel Z + Input	200	-201.01	0.50

Common mode sensitivity
 DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	4.45	3.07
	- 200	-1.97	-3.12
Channel Y	200	0.63	0.75
	- 200	-1.46	-2.02
Channel Z	200	5.71	5.24
	- 200	-6.82	-7.33

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.58	0.47
Channel Y	200	0.86		2.06
Channel Z	200	-2.64	0.26	20

2009-05-18 Date of Issue:

71 / 77 Page:

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16354	16104
Channel Y	16145	17163
Channel Z	15912	15586

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

nput rowsz	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.07	-1.16	0.99	0.42
Channel Y	-0.59	-1.54	0.25	0.31
Channel Z	-0.69	-1.63	0.02	0.32

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2001	201.2
Channel Y	0.2001	200.7
Channel Z	0.2001	199.3

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0,0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Date of Issue : 2009-05-18 Page : 72 / 77

- 2450 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-734 Aug07

Accreditation No.: SCS 108

ALIBRATION C	CERTIFICATE		
Object	D2450V2 - SN: 7	34	1800
calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	August 20, 2007		
Condition of the calibrated item	In Tolerance		
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV3	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047-2 (10r) SN 3025	Cal Date (Calibrated by, Certificate No.) 03-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 07-Aug-07 (METAS, No 217-00718) 07-Aug-07 (METAS, No 217-00718) 19-Oct-06 (SPEAG, No. ES3-3025_Oct08)	Scheduled Calibration Oct-07 Oct-07 Aug-08 Aug-08 Oct-07
JAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
econdary Standards Power sensor HP 8481A RF generator Agilent E4421B	ID # MY41092317 MY41000675 US37390585 S4206	Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07 In house check: Nov-07
letwork Analyzer HP 8753E	and the second		In house check: Oct-07
	Name	Function	Signature
letwork Analyzer HP 8753E Calibrated by:	Name Mike Meili	6. 2	

Certificate No: D2450V2-734_Aug07 Page 1 of 6

Date of Issue:

2009-05-18

Page:

73 / 77

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-734_Aug07

Date of Issue:

2009-05-18

Page:

74 / 77

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.16 mW / g
SAR normalized	normalized to 1W	24.6 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-734_Aug07

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Date of Issue:

2009-05-18

Page:

75 / 77

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52,3 Ω + 4,7]Ω	
Return Loss	- 25.9 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns
Electrical policy (ellip all colors)	11.100 110

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2003	

Certificate No: D2450V2-734_Aug07 Page 4 of 6

Date of Issue:

2009-05-18

Page:

76 / 77

DASY4 Validation Report for Head TSL

Date/Time: 20.08.2007 13:22:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN734

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

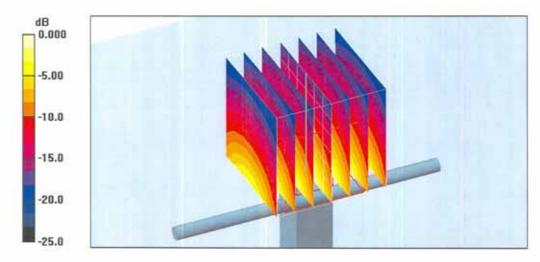
Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:


- Probe: ES3DV2 SN3025 (HF); ConvF(4.5, 4.5, 4.5); Calibrated: 19.10.2006
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

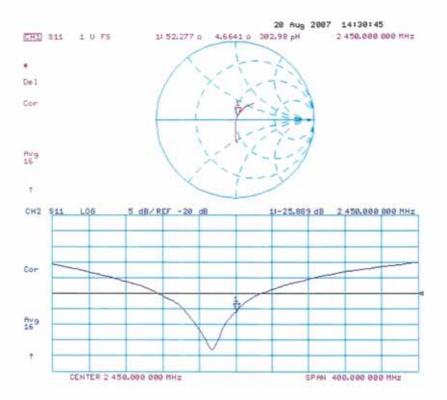
Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.5 V/m; Power Drift = 0.037 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.16 mW/gMaximum value of SAR (measured) = 14.6 mW/g

0 dB = 14.6 mW/g


Date of Issue:

2009-05-18

Page:

77 / 77

Impedance Measurement Plot for Head TSL

