

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 Page : 1/117

SAR TEST REPORT

GSM/WCDMA PDA P	hone with	Bluetooth	and WLAN	1
-----------------	-----------	-----------	----------	---

Equipment Under Test Model No. Applicant Address of Applicant FCC ID Device Category Exposure Category Date of Receipt Date of Test(s) Date of Issue Max. SAR

:	GSM/WCDMA PDA Phone with Bluetooth and WLAN						
0	BM-170						
:	Bluebird Soft, Inc.						
	1242, Gaepo-dong, Kangnam-gu, Seoul, Korea						
:	SS4MAA						
	Portable Device						
•	General Population/Uncontrolled Exposure						
•	2010-03-26						
•	2010-04-06 ~ 2010-04-09						
:	2010-06-10						
	0.420 W/kg (GSM850), 0.351 W/kg (PCS1900)						
	0.282 W/kg (WCDMA V), 0.858 W/kg (WCDMA II)						

Standards:

FCC OET Bulletin 65 supplement C **IEEE 1528, 2003** ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above. **Remarks:**

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by	:	Fred Jeong	26 20	2010-06-10
Approved by	:	Charles Kim	C.K.14	2010-06-10

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 2 / 117

Contents

1. Genera	l Information	
1.1	Testing Laboratory	3
1.2	Details of Applicant	3
1.3	Version of Report	3
1.4	Description of EUT(s)	3
1.5	Test Environment	4
1.6	Operation description	4
1.7	Evaluation procedures	5
1.8	The SAR Measurement System	6
1.9	System Components	8
1.10	SAR System Verification	9
1.11	Liquid Depth	11
1.12	Tissue Simulant Fluid for the Frequency Band	12
1.13	Test Standards and Limits	13
2. Instrun	nents List	15
3. Summa	ry of Results	16

APPENDIX

A. Photographs of EUT & EUT's Test Setup

- B. DASY4 SAR Report
- C. Uncertainty Analysis
- D. Calibration certificate

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 3 / 117

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040Telephone: +82 +31 428 5700FAX: +82 +31 427 2371Homepage: www.kr.sgs.com/ee

1.2 Details of Manufacturer

Manufacturer	: Bluebird Soft, Inc.
Address	: 1242, Gaepo-dong, Kangnam-gu, Seoul, Korea
Contact Person	: In-Gu Kim
Phone No.	: 82-70-7730-8252

1.3 Version of Report

Version Number	Date	Revision
00	2010-04-13	Initial issue
01	2010-06-10	Revision 01

1.4 Description of EUT(s)

ЕИТ Туре	: GSM/WCDMA PDA Phone with Bluetooth and WLAN	
Model	: BM-170	
Serial Number	: N/A	
Mode of Operation	: GSM850, PCS1900, WCDMA V, WCDMA II	
Duty Cycle	: 8.3(GSM), 4.15(GPRS), 1(WCDMA)	
Body worn Accessory	: None	
Tx Frequency Range	: 824.2 MHz ~ 848.8 MHz (GSM850), 1850.2 MHz ~ 1909.8 MHz (PCS1900) 826.4 MHz ~ 846.6 MHz (WCDMA V) 1852.4 MHz ~ 1907.6 MHz (WCDMA II)	
Conducted Max Power	: 31.74 dBm(GSM850), 28.18 dBm(PCS1900) 21.72 dBm(WCDMA V), 22.42 dBm(WCDMA II)	
Battery Type	: DC 3.7 V(Li-ion Battery)	

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 4 / 117

1.5 Test Environment

Ambient temperature	: 21 ° C ~ 23 ° C
Tissue Simulating Liquid	: 21 ° C ~ 23 ° C
Relative Humidity	: 40 % ~ 60 %

1.6 Operation Configuration

The device in GSM and WCDMA mode was controlled by using a Communication tester (CMU 200). Communication between the device and the tester was established by air link. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement. Based on the RF Power and antenna separation distance, stand-alone BT SAR and simultaneous SAR evaluation are not required.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 5 / 117

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan.

2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)

3. The generation of a high-resolution mesh within the measured volume

4. The interpolation of all measured values from the measurement grid to the high-resolution grid

5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface

6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 mm to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1 % for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 6 / 117

relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1 g and 10 g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30 g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1 g cube is placed numerically into the volume and its averaged SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

•A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

•A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

•A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 7 / 117

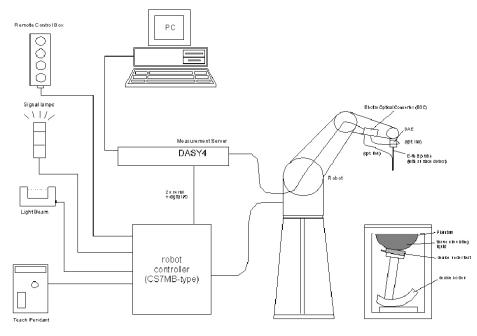


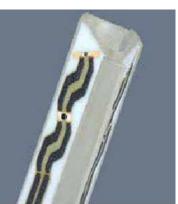
Fig a. The microwave circuit arrangement used for SAR system verification

• The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

• The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

• A probe alignment unit which improves the (absolute) accuracy of the probe positioning.

- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.


1.9 System Components

ET3DV6 E-Field Probe

Symmetrical design with triangular core Built-in shielding Construction : against static charges PEEK enclosure material (resistant to organic solvents, e.g. glycol). Calibration : In air from 10 MHz to 2.5 GHz In brain simulating tissue $(accuracy \pm 8 \%)$: 10 MHz to >6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) Frequency : ± 0.2 dB in brain tissue (rotation around probe axis) Directivity ± 0.4 dB in brain tissue (rotation normal to probe axis) Dynamic : $5 \mu W/g$ to >100 mW/g; Linearity: ±0.2 dB Range Srfce. Detect : ± 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces Dimensions Overall length: 330 mm : Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm Distance from probe tip to dipole centers: 2.7 mm General dosimetry up to 3 GHz Compliance tests of mobile Application phone

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

ET3DV6 E-Field Probe

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 8/117 Page :

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 9 / 117

SAM Phantom

Construction:

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90 % of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot

 $2.0 \text{ mm} \pm 0.1 \text{ mm}$ Approx. 25 liters

SAM Phantom

Shell Thickness: Filling Volume:

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10 % from the target SAR values. These tests were done at 835 MHz and 1900 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range 20 °C ~ 23 °C, the relative humidity was in the range 40 % ~ 60 % and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 10 / 117

Fig b. The microwave circuit arrangement used for SAR system verification

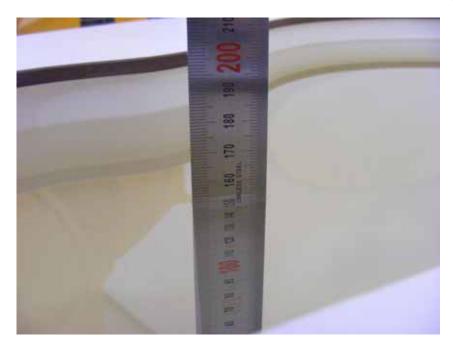
- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

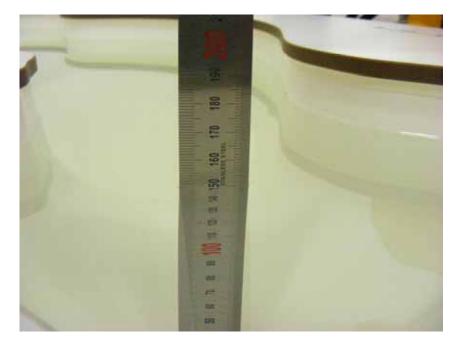
System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (Input Power : 250 mW)	Measured SAR 1 g (Input Power : 250 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D835V2 S/N: 490	835 MHz Brain	2.41 W/kg	2.52	4.56	2010-04-06	22.0
D1900V2 S/N: 5d033	1900 MHz Brain	10.0 W/kg	9.84	-1.60	2010-04-07	22.0

Table 1. Results system validation


1.11 Liquid Depth

 Report File No. :
 F690501/RF-SAR001864-A1


 Date of Issue :
 2010-06-10

 Page :
 11 / 117

835 MHz Liquid

1900 MHz Liquid

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 12 / 117

1.12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz - 3 GHz) by using a procedure detailed in Section V.

	Tissue		Dielectric Parameters				
f (MHz)	type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()		
		Measured, 2010-04-06	41.3	0.88	22.0		
	Head	Recommended Limits	41.5	0.90	$21.0 \sim 23.0$		
835		Deviation(%)	-0.48	-2.22	-		
855	Body	Measured, 2010-04-06	54.7	0.99	22.0		
		Recommended Limits	55.2	0.97	$21.0 \sim 23.0$		
		Deviation(%)	-0.91	2.06	-		
		Measured, 2010-04-07	39.7	1.45	22.0		
	Head	Recommended Limits	40.0	1.40	21.0~23.0		
1900		Deviation(%)	-0.75	3.57	-		
1900)0	Measured, 2010-04-07	51.2	1.51	22.0		
	Body	Recommended Limits	53.3	1.52	21.0 ~ 23.0		
		Deviation(%)	-3.94	-0.66	-		

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 13 / 117

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4:	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 ⁺% Pure Sodium Chloride

Water: De-ionized, 16 $M\Omega^+$ resistivity

Sugar: 98 ⁺% Pure Sucrose

HEC: Hydroxyethyl Cellulose

DGBE: 99 ⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 14 / 117

frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational		
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g		
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g		
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g		

Table .4 RF exposure limits

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 15 / 117

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 28, 2011
Schmid& Partner Engineering AG	835 MHz System Validation Dipole	D835V2	490	August 24, 2010
Schmid& Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d033	August 25, 2010
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	December 09, 2010
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	March 31, 2011
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	September 28, 2010
Agilent	Power Sensor	E9300H	MY41495307 MY41495308	September 29, 2010 September 29, 2010
Agilent	Signal Generator	E4421B	MY43350132	September 29, 2010
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	March 31, 2011
Agilent	Dual Directional Coupler	777D 778D	50128 50454	September 28, 2010
Microlab	LP Filter	LA-15N LA-30N	N/A	September 28, 2010
R&S	Mobile Test Unit	CMU 200	107279	March 31, 2011

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 16 / 117

3. Summary of Results

FCC 3G Measurement Procedures

Power measurements were performed using a base station simulator under digital average power.

The handset was placed into a simulated call using a base station simulator in shielded chamber. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

Output power verification

Maximum output power is verified on the Low, Middle and High channels according to the section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC set to all "1s".

Head SAR Measurements

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configuration is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that results in highest SAR for that RF channel in 12.2 RMC.

Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

Handsets with HSDPA

Body SAR is not required for handsets with HSDPA capabilities when the maximum average output of each RF channel with HSDPA active is less than 1/4 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is 75 % of the SAR limit.

Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that results in the highest SAR in 12.2 kbps RMC for that RF channel.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 17 / 117

RF Conducted Power

			Conducted Power(dBm)					
	Channel	Frequency(MHz)	GSM		GP	RS		
			USIVI	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	
CGN 050	128	824.2	31.17	31.17	29.60			
GSM 850 Band	190	836.6	31.58	31.52	29.91			
Duild	251	848.8	31.74	31.71	30.08			
DCG 1000	512	1850.2	28.04	27.96	26.37			
PCS 1900 Band	661	1880.0	28.11	28.04	26.45			
Band	810	1909.8	28.18	28.10	26.53			

				Conducted Power(dBm)				
	Channel	Frequency(MHz)		ED	GE			
			1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot		
CCN 4 050	128	824.2	26.18	26.10				
GSM 850 Band	190	836.6	26.52	26.42				
Duild	251	848.8	26.70	26.61				
DCG 1000	512	1850.2	24.57	24.50				
PCS 1900 Band	661	1880.0	24.65	24.57				
Balld	810	1909.8	24.73	24.63				

Band	Mode	Channe	l Free	quency(MHz)	C	onducted	Power(dBm)
	RMC	4132		826.4		21.70	
WCDMA V (HSDPA Inactive)	RMC	4183		836.6		2	1.60
(IISDIA Inactive)	RMC	4233		846.6		2	1.72
		4132		826.4		2	1.65
	Sub-test 1	4183		836.6		2	1.44
		4233		846.6		2	1.50
		4132		826.4		19	9.41
	Sub-test 2	4183		836.6		1	9.30
		4233		846.6		19	9.43
		4132		826.4		19.23	
	Sub-test 3	4183		836.6		19.20	
WCDMA V		4233		846.6		19.40	
(HSDPA Active)		4132		826.4		17.71	
	Sub-test 4	4183		836.6		17.56	
		4233		846.6		1′	7.96
		с	d	ACK,	NACK,	CQI	AGV
	Sub-test 1	2	15		8		-
	Sub-test 2	12	15		8		-
	Sub-test 3	15	8		8		-
	Sub-test 4	15	4		8		-

Band	Mode	Channe	l Fre	quency(MHz)	C	onducted	Power(dBm)	
	RMC	9262		1852.4		22.42		
WCDMA II (HSDPA Inactive)	RMC	9400		1880.0		2	2.22	
(IISDIA Inactive)	RMC	9538		1907.6		2	1.29	
		9262		1852.4		2	2.28	
	Sub-test 1	9400		1880.0		2	2.02	
		9538		1907.6		2	1.19	
		9262		1852.4		2	1.10	
	Sub-test 2	9400		1880.0		1	9.98	
		9538		1907.6 19		9.19		
		9262		1852.4		19.68		
	Sub-test 3	9400		1880.0		19.63		
WCDMA II (HSDPA Active)		9538		1907.6		18.83		
(HSDFA Active)		9262	9262 1		18.61		8.61	
	Sub-test 4	9400		1880.0		1	8.48	
		9538		1907.6		17.80		
		с	d	ACK,	NACK,	CQI	AGV	
Γ	Sub-test 1	2	15		8		-	
	Sub-test 2	12	15		8		-	
Γ	Sub-test 3	15	8		8		-	
	Sub-test 4	15	4		8		-	

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 19 / 117

SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas

These procedures were followed according to FCC "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", May 2008. The procedures are applicable to phones with built-in unlicensed transmitters, such as 802.11 a/b/g and Bluetooth devices.

<Output Power Thresholds for Unlicensed Transmitters>

	2.45	5.15 - 5.35	5.47 - 5.85	GHz	
P _{Ref}	12	6	5	mW	
Device output power should be rounded to the nearest mW to compare with values specified in this table.					

<SAR Evaluation Requirements for Cellphones with Multiple Transmitters>

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	$ \begin{array}{l} \label{eq:when there is no simultaneous transmission - \\ \circ \ \ output \leq 60/f: SAR not required \\ \circ \ \ output \geq 60/f: stand-alone SAR required \\ \hline \ When there is simultaneous transmission - \\ \hline \ Stand-alone SAR not required when \\ \circ \ \ output \leq 2 \cdot P_{bef} \ and antenna \ \ is \geq 5.0 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ \ and antenna \ \ is \geq 2.5 \ cm from other antennas \\ \circ \ \ output \leq P_{Ref} \ \ antenna \ \ sequence \ \ output \ \ sequence \ \ output \ \ sequence \ sequence \ sequence \ \ sequence \ sequence$	 when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure conditions. Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply
Jaw, Mouth and Nose	 Flat phantom SAR required when measurement is required in tight regions of SAM and it is not feasible or the results can be questionable due to probe tilt, calibration, positioning and orientation issues position rectangular and clam-shell phones according to flat phantom procedures and conduct SAR measurements for these specific locations 	When simultaneous transmission SAR testing is required, contact the FCC Laboratory for interim guidance.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 20 / 117

- <KDB 648474 Simultaneous SAR evaluation>
- * Bluetooth Max. RF output power : -3.80 dBm = 0.417 mW
- * Bluetooth Antenna separation distance : 10.4 cm from WWAN Antenna
- * WLAN Max. RF output power : 14.48 dBm = 28.05 mW
- * WLAN Antenna separation distance : 5.5 cm from WWAN Antenna
- * GSM and WCDMA antenna using same antenna and can not transmit simultaneously.
- (Please see page 33 for finding the distance of antennas)

Mode (f)	P (dBm)	P (mW)	Stand-alone SAR
UMTS (GSM)	31.74	1492.79	Yes
UMTS (WCDMA)	22.42	174.58	Yes
802.11 b/g (2462)	14.48	28.05	Yes
Bluetooth (2402)	-3.80	0.417	No

(Measured time-averaging power value with power meter)

Mode pair	D _{xy} (cm)	The sum of all 1g SAR	Simultaneous Tx SAR	Notes
UMTS & 802.11 b/g	5.5	0.858 + 0.046 = 0.904	No	dxy > 5 cm, the sum of all 1g SAR < 1.6 W/kg
UMTS & Bluetooth	10.4	0.858 + BT < 1.6	No	dxy>5 cm, the sum of all 1g SAR < 1.6 W/kg
802.11 b/g & Bluetooth	5.5	0.046 + BT << 1.6	No	$\begin{array}{ll} P_{x} & P_{REF} \mbox{ and } d_{xi} < 2.5 \mbox{ cm, with} \\ & each \\ P_{i} & P_{REF} \mbox{ or SARi} < 1.2 \mbox{ W/kg} \\ & the \mbox{ sum of all } 1g \mbox{ SAR} < 1.6 \mbox{ W/kg} \end{array}$

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 21 / 117

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2010-04-06

GSM850 Head SAR

Head	EUT	Traffic Channel Frequency (MHz)		Power	1 g SAR	1 g SAR Limita
neau	Position			Drift(dB)	(W/kg)	Limits (W/kg)
Left	Cheek	836.6	190	-0.066	0.408	
Leit	Tilt	836.6	190	0.045	0.297	1.6
Right	Cheek	836.6	190	-0.029	0.420	1.0
Kigiit	Tilt	836.6	190	0.008	0.269	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 22 / 117

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-04-06		

GSM850 Body SAR

Tost Mode	EUT	Sla4	Traffic ChannelFrequency (MHz)Channel		Power	1 g SAR	1 g SAR		
Test Mode	Position	Slot			Frequency		Frequency		Drift(dB)
GPRS	Front	2 Tx	836.6	190	-0.113	0.317			
UFK5	Back	2 Tx	836.6	190	0.022	0.377			
GSM	Back with Headset	-	836.6	190	0.089	0.209	1.6		
EGPRS	Back	2 Tx	836.6	190	-0.038	0.173			

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

- 4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 5. The distance from EUT to flat phantom for testing Body SAR is 15 mm.
- 6. This model supports GPRS (Class 10) and EDGE. The power in GPRS mode is higher than in EDGE mode and the worst-case (GPRS 2 Tx) results are reported.

(Please refer to the conduction power table Page 17)

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 23 / 117

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-04-07		

PCS1900 Head SAR

Head	EUT	Traffic Channel		Power	1 g SAR	1 g SAR
пеац	Position	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
Left	Cheek	1880.0	661	0.039	0.279	
Len	Tilt	1880.0	661	0.035	0.351	1.6
Right	Cheek	1880.0	661	-0.057	0.208	1.0
Kight	Tilt	1880.0	661	-0.010	0.246	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 24 / 117

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-04-07		

PCS1900 Body SAR

Tost Mode	EUT	Sla4	Traffic ChannelFrequency (MHz)Channel		Power	1 g SAR	1 g SAR								
Test Mode	Position	Slot			Channel										Channel Drift(dB)
GPRS	Front	2 Tx	1880.0	661	-0.077	0.092									
UFK5	Back	2 Tx	1880.0	661	-0.003	0.172									
GSM	Back with Headset	-	1880.0	661	-0.090	0.200	1.6								
EGPRS	Back	2 Tx	1880.0	661	-0.063	0.064									

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

- 4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 5. The distance from EUT to flat phantom for testing Body SAR is 15 mm.
- 6. This model supports GPRS (Class 10) and EDGE. The power in GPRS mode is higher than in EDGE mode and the worst-case (GPRS 2 Tx) results are reported.

(Please refer to the conduction power table Page 17)

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 25 / 117

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-04-06		

WCDMA V Head SAR

Head	EUT Traffic Channel		Channel	Power	1 g SAR	1 g SAR Limits
neau	Position	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	(W/kg)
Left	Cheek	836.6	4183	-0.130	0.282	
Leit	Tilt	836.6	4183	0.167	0.205	1.6
Dight	Cheek	836.6	4183	0.100	0.274	1.0
Right	Tilt	836.6	4183	-0.169	0.180	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 26 / 117

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-04-06		

WCDMA V Body SAR

	EUT	Traffic (Channel	Power	1 g SAR	1 g SAR
Test Mode	Position	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
RMC	Front with Headset	836.6	4183	0.042	0.163	
KIVIC	Back with Headset	836.6	4183	-0.099	0.133	1.6
HSDPA	Front	836.6	4183	0.199	0.158	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

- 4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 5. The distance from EUT to flat phantom for testing Body SAR is 15 mm.
- 6. WCDMA mode was tested under RMC 12.2 kbps and HSDPA Inactive because the power in RMC is higher than in HSDPA Active.

(Please refer to the conduction power table Page 18)

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 27 / 117

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2010-04-07

WCDMA II Head SAR

Head	EUT	Traffic	Channel	Power	1 g SAR	1 g SAR Limits
Head	Position	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	(W/kg)
	Cheek	1880.0	9400	0.144	0.681	
Left	Tilt	1852.4	9262	0.058	0.717	
Len	Tilt	1880.0	9400	0.116	0.858	1.6
	Tilt	1907.6	9538	-0.180	0.802	1.0
Right	Cheek	1880.0	9400	-0.095	0.653	
Kight	Tilt	1880.0	9400	0.048	0.600	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 28 / 117

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-04-07		

WCDMA II Body SAR

Test Mode	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
		Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
RMC	Front with Headset	1880.0	9400	-0.047	0.141	1.6
	Back with Headset	1880.0	9400	0.095	0.477	
HSDPA	Front	1880.0	9400	0.011	0.454	

<Note>

1. The test data reported are the worst-case SAR value with the position set in a typical configuration.

2. All modes of operation were investigated, and worst-case results are reported.

3. Battery is fully charged for all readings and the standard batteries are the only options.

- 4. Justification for reduced test configuration : Per FCC/OET Bulletin 65 Supplement C [July 2001], if the SAR measured at the middle channel for each test configuration (left, right, cheek, tilt) is at least 3.0 dB lower than the SAR limit, testing at the high and low channel is optional for such test configurations.
- 5. The distance from EUT to flat phantom for testing Body SAR is 15 mm.
- 6. WCDMA mode was tested under RMC 12.2 kbps and HSDPA Inactive because the power in RMC is higher than in HSDPA Active.

(Please refer to the conduction power table Page 18)

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 29 / 117

Appendix

List

Appendix A	Photographs	- EUT - Test Setup
Appendix B	DASY4 Report (Plots of the SAR Measurements)	 - 835, 1900 MHz Validation Test - GSM850 Test - PCS1900 Test - WCDMA V Test - WCDMA II Test
Appendix C	Uncertainty Analysis	
Appendix D	Calibration Certificate	- PROBE - DAE - DIPOLE

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 30 / 117

Appendix A

EUT Photographs

Front View of EUT

Rear View of EUT

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 31 / 117

Right Side View of EUT

Left Side View of EUT

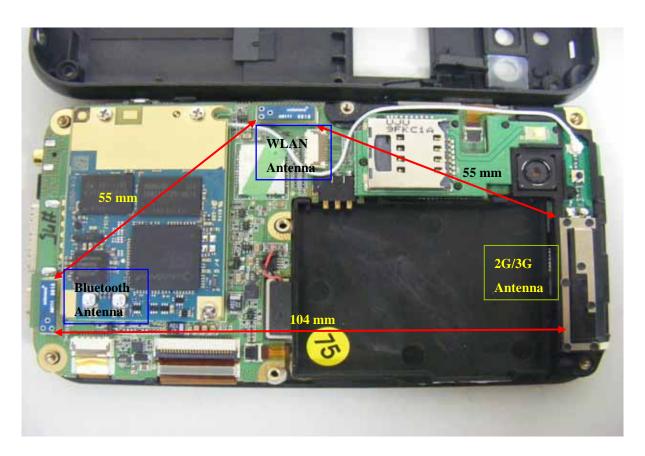
 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 32 / 117

Top View of EUT

Bottom View of EUT



 Report File No. :
 F690501/RF-SAR001864-A1

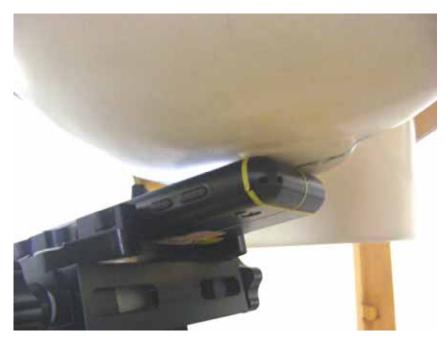
 Date of Issue :
 2010-06-10

 Page :
 33 / 117

Antenna Separation Distance of EUT

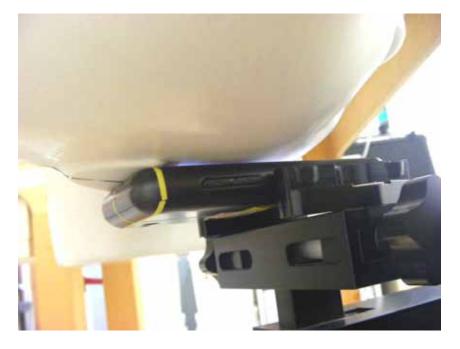
 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10


 Page :
 34 / 117

Test Setup Photographs

Left Ear Cheek



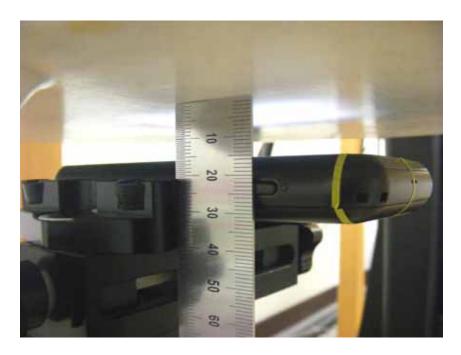
 Report File No. :
 F690501/RF-SAR001864-A1


 Date of Issue :
 2010-06-10

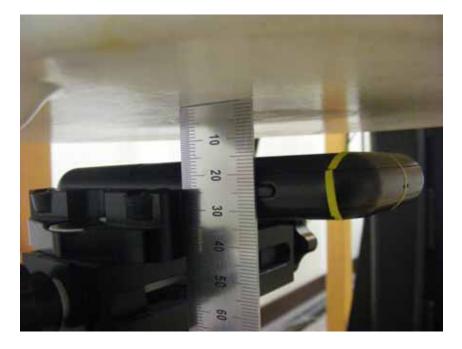
 Page :
 35 / 117

Right Ear Cheek

Right Ear Tilt



 Report File No. :
 F690501/RF-SAR001864-A1

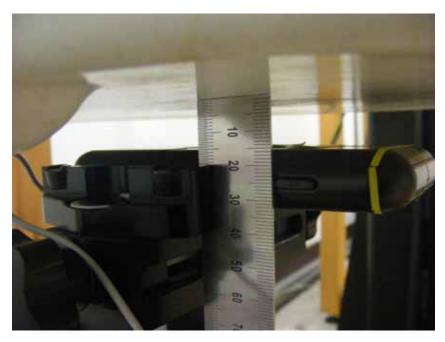

 Date of Issue :
 2010-06-10

 Page :
 36 / 117

Body Front

Body Back

 Report File No. :
 F690501/RF-SAR001864-A1


 Date of Issue :
 2010-06-10

 Page :
 37 / 117

Body Front with Headset

Body Back with Headset

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 38 / 117

Appendix B

Test Plot - DASY4 Report

835 MHz Validation Test

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 39 / 117

Test Laboratory: SGS Testing Korea File Name: Validation 835 MHz.da4

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490 Program Name: Validation 835 MHz

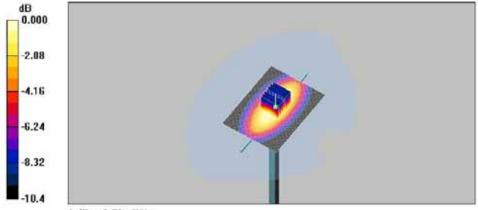
Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.883 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

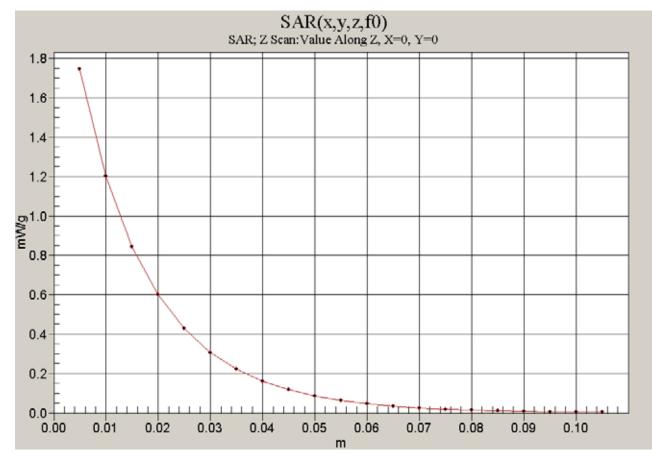
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 835 MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.70 mW/g

Validation 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.6 V/m; Power Drift = -0.017 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.52 mW/g; SAR(10 g) = 1.65 mW/g Maximum value of SAR (measured) = 2.73 mW/g

0 dB = 2.73 mW/g



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 40 / 117

Z Scan

Date of Issue : Page :

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 41 / 117

1900 MHz Validation Test

Test Laboratory: SGS Testing Korea File Name: Validation 1900 MHz.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033 Program Name: Validation_1900 MHz

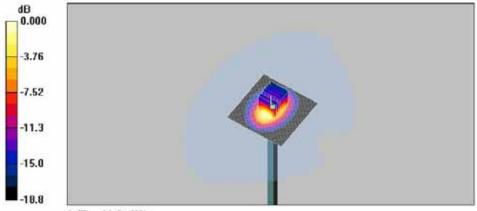
Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

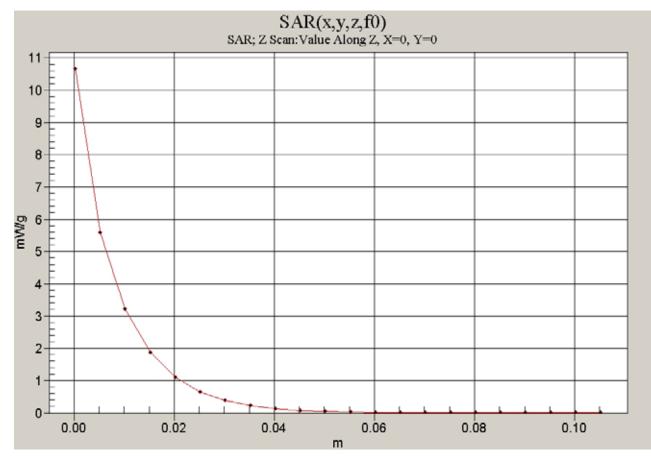
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 1900 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g

Validation 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.5 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.84 mW/g; SAR(10 g) = 5.12 mW/g Maximum value of SAR (measured) = 11.2 mW/g

0 dB = 11.2 mW/g



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 42 / 117

Z Scan

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 43 / 117

GSM 850 Head SAR Test

Test Laboratory: SGS Testing Korea File Name: <u>GSM850_LE.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

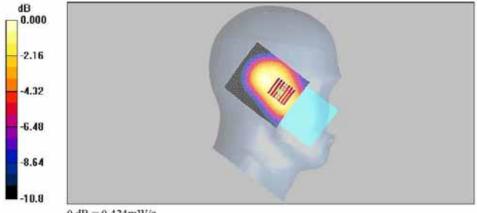
Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_LE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.438 mW/g

GSM850_LE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.0 V/m; Power Drift = -0.066 dBPeak SAR (extrapolated) = 0.531 W/kgSAR(1 g) = 0.408 mW/g; SAR(10 g) = 0.296 mW/gMaximum value of SAR (measured) = 0.434 mW/g

0 dB = 0.434 mW/g

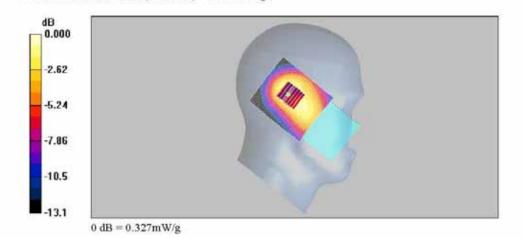
Test Laboratory: SGS Testing Korea File Name: <u>GSM850_LE.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ε_r = 41.3; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

Maximum value of SAR (measured) = 0.327 mW/g

- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_LE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.301 mW/g

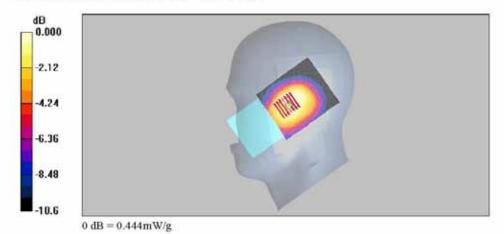
GSM850_LE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.045 dB Peak SAR (extrapolated) = 0.557 W/kg SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.175 mW/g

Test Laboratory: SGS Testing Korea File Name: <u>GSM850_RE.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ε_r = 41.3; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

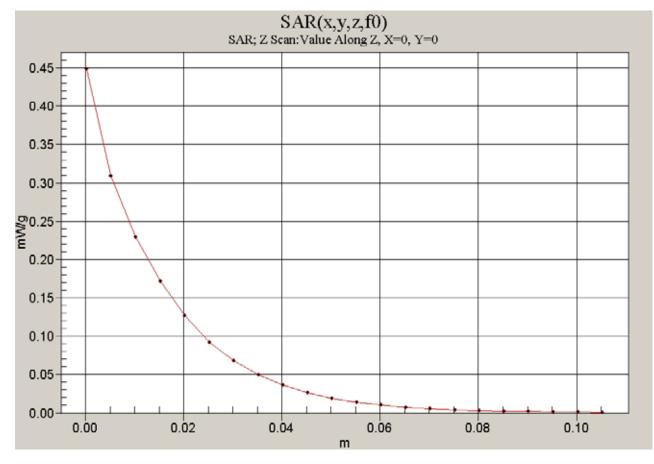

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_RE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.452 mW/g

GSM850_RE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.9 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 0.525 W/kg SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.305 mW/g Maximum value of SAR (measured) = 0.444 mW/g



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

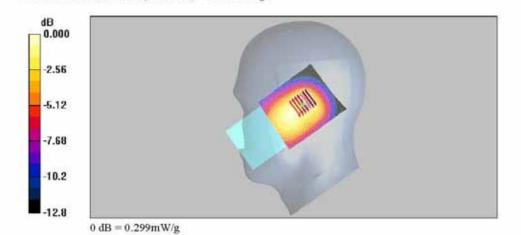
 Page :
 46 / 117

Z Scan

Test Laboratory: SGS Testing Korea File Name: <u>GSM850_RE.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ε_r = 41.3; ρ = 1000 kg/m³ Phantom section: Right Section


DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_RE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.295 mW/g

GSM850_RE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.008 dB Peak SAR (extrapolated) = 0.466 W/kg SAR(1 g) = 0.269 mW/g; SAR(10 g) = 0.174 mW/g Maximum value of SAR (measured) = 0.299 mW/g

GSM850 Body SAR Test

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 48 / 117

Test Laboratory: SGS Testing Korea File Name: <u>GPRS850_Body.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

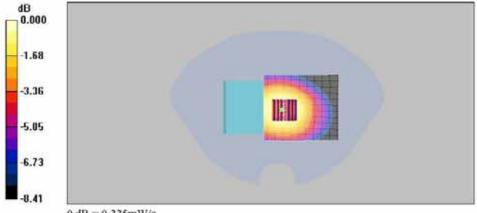
Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 mho/m; ϵ_{p} = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS850_Front_Mid_2Tx/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.333 mW/g

GPRS850_Front_Mid_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.0 V/m; Power Drift = -0.113 dB Peak SAR (extrapolated) = 0.407 W/kgSAR(1 g) = 0.317 mW/g; SAR(10 g) = 0.237 mW/gMaximum value of SAR (measured) = 0.335 mW/g

0 dB = 0.335 mW/g

Test Laboratory: SGS Testing Korea File Name: <u>GPRS850_Body.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

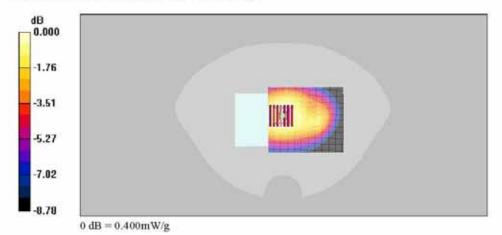
Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS850_Back_Mid_2Tx/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.395 mW/g

GPRS850_Back_Mid_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

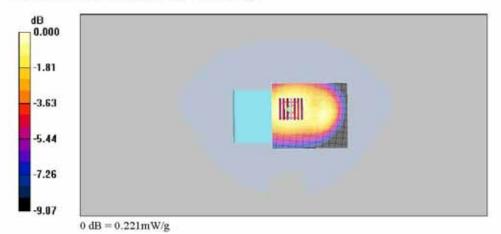
Reference Value = 20.4 V/m; Power Drift = 0.022 dB Peak SAR (extrapolated) = 0.485 W/kg SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.277 mW/g Maximum value of SAR (measured) = 0.400 mW/g

Test Laboratory: SGS Testing Korea File Name: <u>GSM850_Body.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:


- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM850_Back_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.218 mW/g

GSM850_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.0 V/m; Power Drift = 0.089 dBPeak SAR (extrapolated) = 0.269 W/kgSAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.153 mW/gMaximum value of SAR (measured) = 0.221 mW/g

Test Laboratory: SGS Testing Korea File Name: <u>GPRS850_Body.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: GSM850; Frequency: 836.6 MHz;Duty Cycle: 1:4.15 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

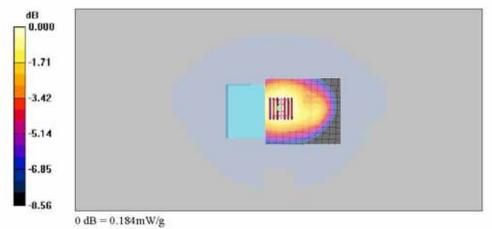
DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

EGPRS850_Back_Mid_2Tx/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.184 mW/g

EGPRS850_Back_Mid_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.1 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.221 W/kg SAR(1 g) = 0.173 mW/g; SAR(10 g) = 0.128 mW/g

Maximum value of SAR (measured) = 0.126 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 52 / 117

PCS1900 Head SAR Test

Test Laboratory: SGS Testing Korea File Name: PCS1900_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ϵ_r = 40; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_LE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.306 mW/g

PCS1900_LE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.7 V/m; Power Drift = 0.039 dB Peak SAR (extrapolated) = 0.498 W/kg SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.155 mW/g Maximum value of SAR (measured) = 0.317 mW/g

0 dB = 0.317 mW/g

Test Laboratory: SGS Testing Korea File Name: PCS1900_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

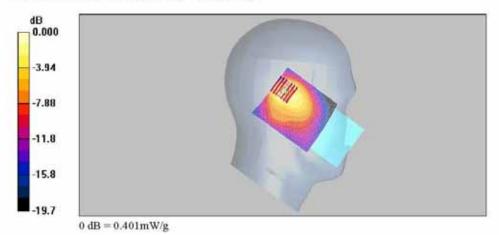
Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ε_r = 40; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

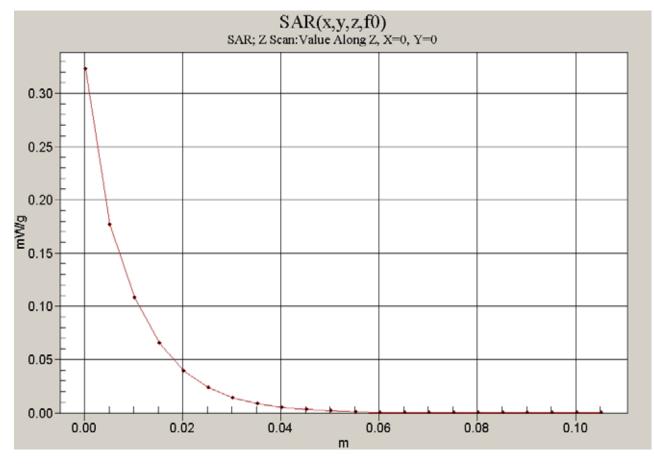

- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_LE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.403 mW/g

PCS1900_LE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.6 V/m; Power Drift = 0.035 dB Peak SAR (extrapolated) = 0.641 W/kg

SAR(1 g) = 0.351 mW/g; SAR(10 g) = 0.187 mW/gMaximum value of SAR (measured) = 0.401 mW/g



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 54 / 117

Z Scan

Test Laboratory: SGS Testing Korea File Name: PCS1900_RE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

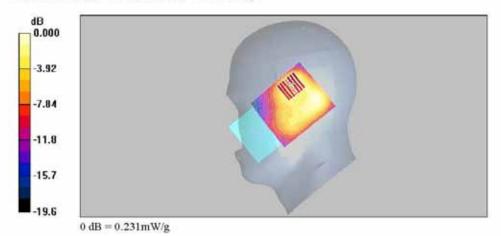
Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ε_r = 40; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_RE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.225 mW/g

PCS1900_RE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.71 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 0.370 W/kg SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.113 mW/g Maximum value of SAR (measured) = 0.231 mW/g

Test Laboratory: SGS Testing Korea File Name: PCS1900_RE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

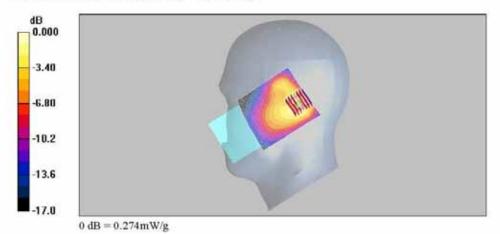
Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ε_r = 40; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

PCS1900_RE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.277 mW/g

PCS1900_RE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.38 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.394 W/kg SAR(1 g) = 0.246 mW/g; SAR(10 g) = 0.139 mW/g Maximum value of SAR (measured) = 0.274 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 57 / 117

PCS1900 Body SAR Test

Test Laboratory: SGS Testing Korea File Name: <u>GPRS1900.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_{p} = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

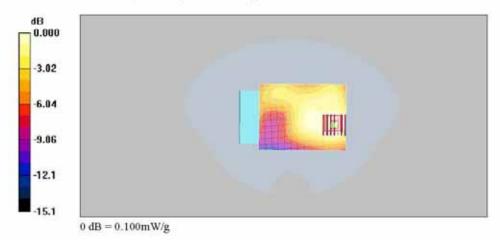
DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS1900_Front_Mid_2Tx/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.103 mW/g

GPRS1900_Front_Mid_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.86 V/m; Power Drift = -0.077 dB

Peak SAR (extrapolated) = 0.134 W/kg SAR(1 g) = 0.092 mW/g; SAR(10 g) = 0.059 mW/g Maximum value of SAR (measured) = 0.100 mW/g

Test Laboratory: SGS Testing Korea File Name: <u>GPRS1900.da4</u>

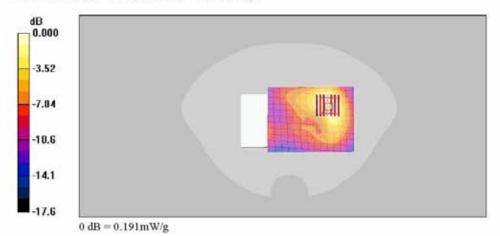
DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GPRS1900_Back_Mid_2Tx/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.196 mW/g

GPRS1900_Back_Mid_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.51 V/m; Power Drift = -0.003 dB Peak SAR (extrapolated) = 0.247 W/kg SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.101 mW/g Maximum value of SAR (measured) = 0.191 mW/g

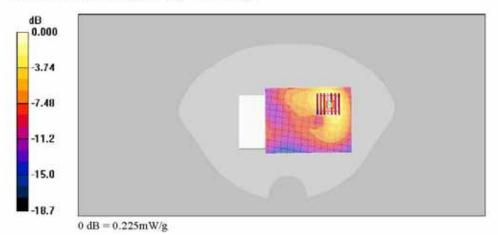
Test Laboratory: SGS Testing Korea File Name: PCS1900_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

GSM1900_Back_Mid/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.228 mW/g

GSM1900_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.33 V/m; Power Drift = -0.090 dB Peak SAR (extrapolated) = 0.298 W/kg SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.115 mW/g Maximum value of SAR (measured) = 0.225 mW/g

Test Laboratory: SGS Testing Korea File Name: <u>GPRS1900.da4</u>

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

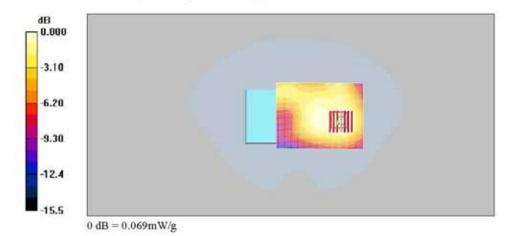
Communication System: PCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

EGPRS1900_Back_Mid_2Tx/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.071 mW/g

EGPRS1900_Back_Mid_2Tx/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.67 V/m; Power Drift = -0.063 dB Peak SAR (extrapolated) = 0.091 W/kg SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.041 mW/g Maximum value of SAR (measured) = 0.069 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 61 / 117

WCDMA V Head SAR Test

Test Laboratory: SGS Testing Korea File Name: WCDMA V_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

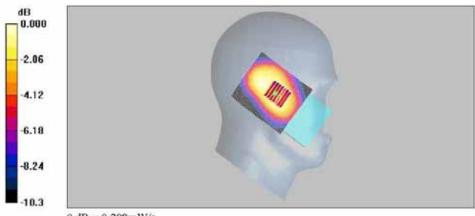
Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.885$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

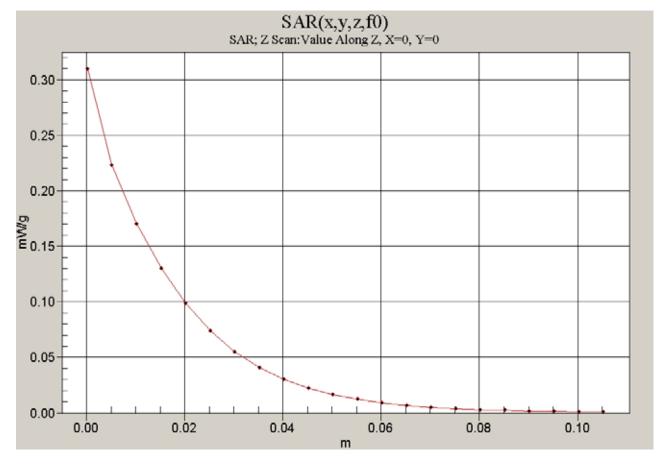
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_LE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.300 mW/g

WCDMA V_LE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.1 V/m; Power Drift = -0.130 dB Peak SAR (extrapolated) = 0.370 W/kg SAR(1 g) = 0.282 mW/g; SAR(10 g) = 0.207 mW/g Maximum value of SAR (measured) = 0.298 mW/g

 $0~\mathrm{dB}=0.298\mathrm{mW/g}$



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 62 / 117

Z Scan

Test Laboratory: SGS Testing Korea File Name: WCDMA V_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

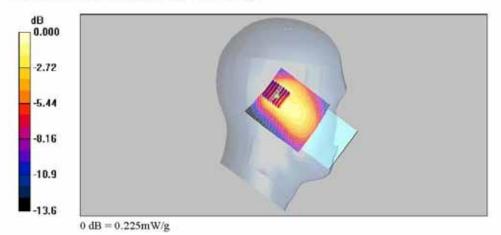
Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ε_r = 41.3; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_LE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.200 mW/g

WCDMA V_LE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.4 V/m; Power Drift = 0.167 dB

Peak SAR (extrapolated) = 0.388 W/kg SAR(1 g) = 0.205 mW/g; SAR(10 g) = 0.121 mW/g Maximum value of SAR (measured) = 0.225 mW/g

Test Laboratory: SGS Testing Korea File Name: WCDMA V_RE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

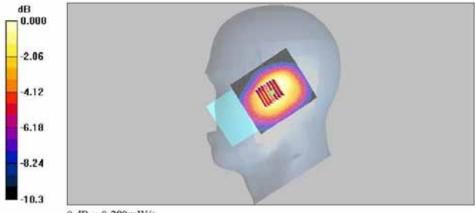
Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ε_r = 41.3; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_RE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.293 mW/g

WCDMA V_RE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.8 V/m; Power Drift = 0.100 dB Peak SAR (extrapolated) = 0.339 W/kg SAR(1 g) = 0.274 mW/g; SAR(10 g) = 0.202 mW/g Maximum value of SAR (measured) = 0.289 mW/g

0 dB = 0.289 mW/g

Test Laboratory: SGS Testing Korea File Name: WCDMA V_RE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

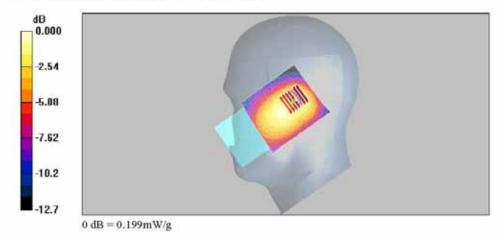
Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.885 mho/m; ε_r = 41.3; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_RE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.201 mW/g

WCDMA V_RE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.5 V/m; Power Drift = -0.169 dB

Peak SAR (extrapolated) = 0.304 W/kg SAR(1 g) = 0.180 mW/g; SAR(10 g) = 0.119 mW/g Maximum value of SAR (measured) = 0.199 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 66 / 117

WCDMA V Body SAR Test

Test Laboratory: SGS Testing Korea File Name: WCDMA V_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

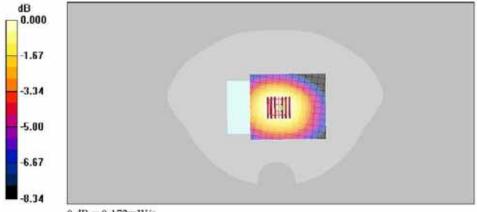
Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Front_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.178 mW/g

WCDMA V_Front_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.6 V/m; Power Drift = 0.042 dB Peak SAR (extrapolated) = 0.201 W/kg SAR(1 g) = 0.163 mW/g; SAR(10 g) = 0.123 mW/g Maximum value of SAR (measured) = 0.172 mW/g

0 dB = 0.172 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 67 / 117

Test Laboratory: SGS Testing Korea File Name: WCDMA V_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

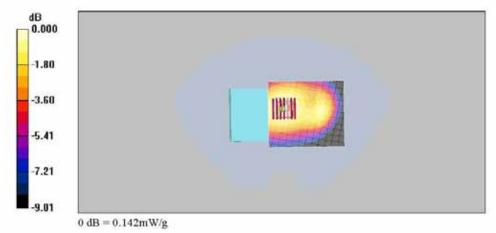
Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Back_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.139 mW/g

WCDMA V_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 12.0 V/m; Power Drift = -0.099 dB Peak SAR (extrapolated) = 0.173 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.097 mW/gMaximum value of SAR (measured) = 0.142 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 68 / 117

Test Laboratory: SGS Testing Korea File Name: WCDMA V_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: WCDMA V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.99 mho/m; ϵ_r = 54.7; ρ = 1000 kg/m³

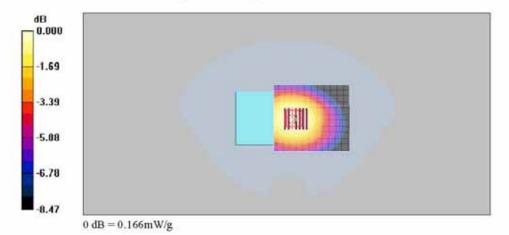
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_HSDPA_Front_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.163 mW/g

WCDMA V_HSDPA_Front_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.0 V/m; Power Drift = 0.199 dB Peak SAR (extrapolated) = 0.196 W/kg SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.118 mW/g Maximum value of SAR (measured) = 0.166 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 69 / 117

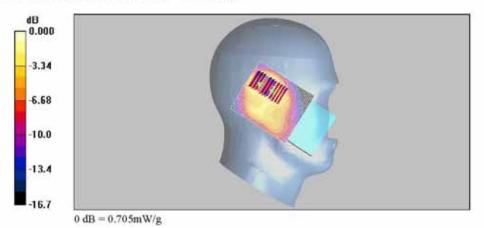
WCDMA II Head SAR Test

Test Laboratory: SGS Testing Korea File Name: WCDMA II_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

Communication System: W-CDMA II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ϵ_r = 40; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:


- Probe: ET3DV6 SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP, Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_LE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.756 mW/g

WCDMA II_LE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.7 V/m; Power Drift = 0.144 dB Peak SAR (extrapolated) = 1.26 W/kg SAR(1 g) = 0.681 mW/g; SAR(10 g) = 0.381 mW/g Maximum value of SAR (measured) = 0.767 mW/g

WCDMA II_LE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.7 V/m; Power Drift = 0.144 dB

Reference value = 16.7 V/m; Power Dnff = 0.144 dB Peak SAR (extrapolated) = 1.06 W/kg SAR(1 g) = 0.640 mW/g; SAR(10 g) = 0.379 mW/g Maximum value of SAR (measured) = 0.705 mW/g

Test Laboratory: SGS Testing Korea File Name: WCDMA II_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

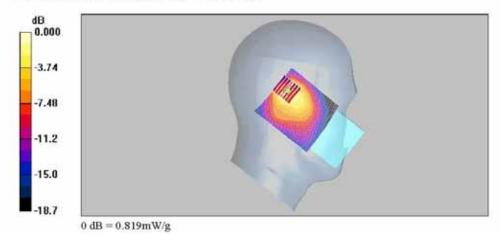
Communication System: W-CDMA II; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1852.4 MHz; σ = 1.42 mho/m; ϵ_r = 40; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_LE_Tilt_Low/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.813 mW/g

WCDMA II_LE_Tilt_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.7 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.717 mW/g; SAR(10 g) = 0.387 mW/g Maximum value of SAR (measured) = 0.819 mW/g

Test Laboratory: SGS Testing Korea File Name: WCDMA II_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

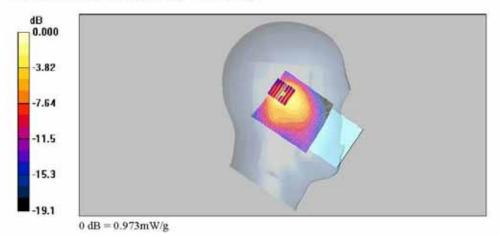
Communication System: W-CDMA II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ε_r = 40; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

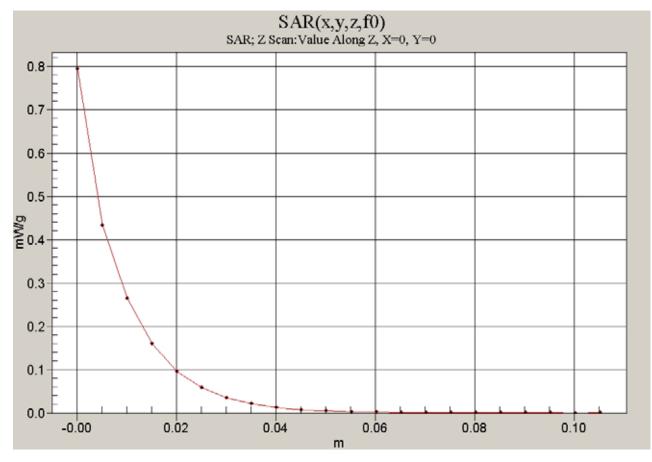

- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_LE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.984 mW/g

WCDMA II_LE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.8 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 0.858 mW/g; SAR(10 g) = 0.453 mW/g Maximum value of SAR (measured) = 0.973 mW/g



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 72 / 117

Z scan

Test Laboratory: SGS Testing Korea File Name: WCDMA II_LE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_LE

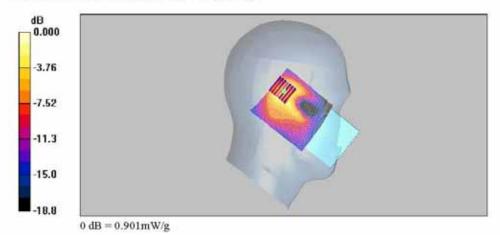
Communication System: W-CDMA II; Frequency: 1907.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1908 MHz; σ = 1.46 mho/m; ϵ_r = 39.7; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_LE_Tilt_High/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.888 mW/g

WCDMA II_LE_Tilt_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.7 V/m; Power Drift = -0.180 dB

Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 0.802 mW/g; SAR(10 g) = 0.425 mW/g Maximum value of SAR (measured) = 0.901 mW/g

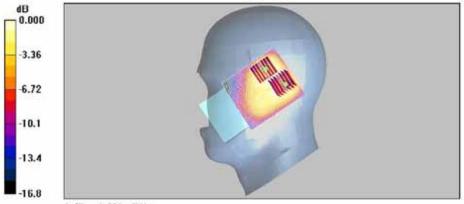
Test Laboratory: SGS Testing Korea File Name: WCDMA II_RE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

Communication System: W-CDMA II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.45 mho/m; ε_r = 40; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_RE_Cheek_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.722 mW/g

WCDMA II_RE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = -0.095 dB Peak SAR (extrapolated) = 1.14 W/kg SAR(1 g) = 0.653 mW/g; SAR(10 g) = 0.355 mW/g Maximum value of SAR (measured) = 0.730 mW/g

WCDMA II_RE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.773 W/kgSAR(1 g) = 0.473 mW/g; SAR(10 g) = 0.270 mW/gMaximum value of SAR (measured) = 0.529 mW/g

0 dB = 0.529 mW/g

Test Laboratory: SGS Testing Korea File Name: WCDMA II_RE.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Head_RE

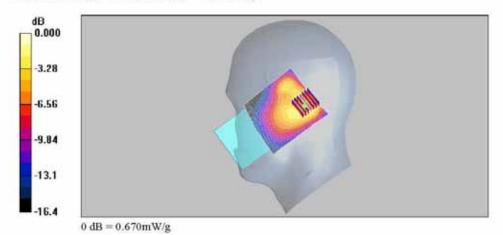
Communication System: W-CDMA II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.45$ mho/m; $\varepsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_RE_Tilt_Mid/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.674 mW/g

WCDMA II_RE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.6 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.969 W/kg SAR(1 g) = 0.600 mW/g; SAR(10 g) = 0.341 mW/g Maximum value of SAR (measured) = 0.670 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 76 / 117

WCDMA II Body SAR Test

Test Laboratory: SGS Testing Korea File Name: WCDMA II_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

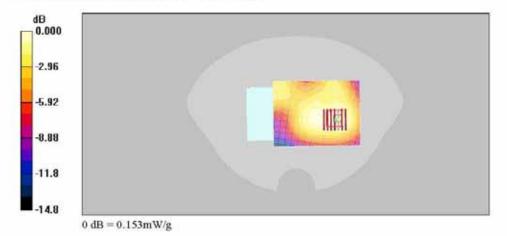
Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; $\varepsilon_{\rm p}$ = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Front_Mid/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.150 mW/g

WCDMA II_Front_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.21 V/m; Power Drift = -0.047 dB Peak SAR (extrapolated) = 0.203 W/kg SAR(1 g) = 0.141 mW/g; SAR(10 g) = 0.089 mW/g Maximum value of SAR (measured) = 0.153 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 77 / 117

Test Laboratory: SGS Testing Korea File Name: WCDMA II_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

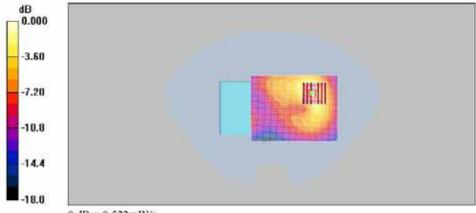
Communication System: W-CDMA II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09


- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299

- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Back_Mid/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.526 mW/g

WCDMA II_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.10 V/m; Power Drift = 0.095 dB

Reference Value = 7.10 V/m; Power Drift = 0.095 dB Peak SAR (extrapolated) = 0.704 W/kgSAR(1 g) = 0.477 mW/g; SAR(10 g) = 0.274 mW/gMaximum value of SAR (measured) = 0.533 mW/g

0 dB = 0.533 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 78 / 117

Test Laboratory: SGS Testing Korea File Name: WCDMA II_Body.da4

DUT: BM-170; Type: Bar; Serial: -Program Name: Body

Communication System: W-CDMA II; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.5; ρ = 1000 kg/m³ Phantom section: Flat Section

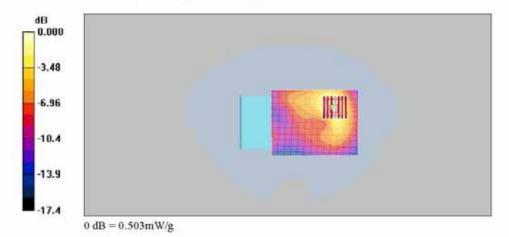
DASY4 Configuration:

- Probe: ET3DV6 - SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE3 Sn567; Calibrated: 2009-12-09

- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299


- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_HSDPA_Back_Mid/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.519 mW/g

WCDMA II_HSDPA_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm Reference Value = 7.10 V/m; Power Drift = 0.011 dB Peak SAR (extrapolated) = 0.665 W/kg SAR(1 g) = 0.454 mW/g; SAR(10 g) = 0.264 mW/g Maximum value of SAR (measured) = 0.503 mW/g

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 79 / 117

Appendix C

Uncertainty Analysis

a	b	с	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Sectio n in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition -Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning - mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation - SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		19.27	

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 80 / 117

Appendix D

Calibration Certificate

- PROBE
- DAE
- 835 MHz, 1900 MHz DIPOLE

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 81 / 117

- PROBE Calibration Certificate (2009)

chmid & Partner Engineering AG eughausstrasse 43, 8004 Zuric	ry of .h. Switzerland	HIC MRA C SHISS S C C C S	Servizio svizzero di tarafura
ccredited by the Swiss Accredita he Swiss Accreditation Servic lultilateral Agreement for the n	e is one of the signatori	es to the EA	No.: SCS 108
lient SGS KES (Dyn	nstec)	Certificate No	o: ET3-1782_Arp09
CALIBRATION	CERTIFICAT	E	
Object	ET3DV6 - SN:1	782	
Calibration procedure(k)		QA CAL-12.v5 and QA CAL-23.v3 edure for dosimetric E-field probe	
Calibration date:	April 30, 2009		
Condition of the calibrated item	In Tolerance		
The measurements and the unor	intainties with confidence	tional standards, which realize the physical un probability are given on the following pages an ony facility: environment temperature (22 ± 3) ¹⁵	d are part of the certificate.
The measurements and the unce All calibrations have been condu	ertainties with confidence		d are part of the certificate.
The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards	Intainties with confidence cted in the closed laborat TE critical for calibration) ID #	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.)	d are part of the certificate.
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198	Intainties with confidence includ in the closed laborat TE critical for calibration) ID # GB41293874	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A	Intainties with confidence inted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Gal Date (Certificate No.) 1.4pr-09 (No. 217-01030) 1.4pr-09 (No. 217-01030)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	Intainties with confidence Inter in the closed laborat TE ontical for calibration) ID # GB41293874 MY41405277 MY41408087	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Apr-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator	Intainties with confidence incled in the closed laborat TE ontical for calibration) ID # GB41293874 MY41495277 MY41495087 SN: S5054 (3c)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1.Apr-09 (No. 217-01030) 1.Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 30 B Attenuator	Intainties with confidence Inter in the closed laborat TE ontical for calibration) ID # GB41293874 MY41405277 MY41408087	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Apr-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES30V2	Intainties with confidence inted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41496087 SN: S5046 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES30V2	Intainties with confidence inted in the closed laborat TE critical for calibration) ID # GB41293874 MY41405277 MY4140807 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10 Mar-10
The measurements and the unoi All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4	Intainties with confidence inted in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41495277 MY41496087 SN: S5046 (20b) SN: S5129 (30b) SN: S5129 (30b) SN: 3013	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1.Apr-09 (No. 217-01030) 1.Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Jan-10
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44128 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator MP 8648C	Intainties with confidence Incled in the closed laborat TE critical for calibration) ID # (IB41293874 MY41495277 MY4149087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 960	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. E83-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E44128 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator MP 8648C	Intainties with confidence includ in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41495877 MY41496877 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 55129 (30b) SN: 560	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01020) 31-Mar-09 (No. 217-01020) 31-Mar-09 (No. 217-01020) 31-Mar-09 (No. 217-01020) 31-Mar-09 (No. 217-01020) 31-Mar-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check
The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 of Attenuator Reference 30 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator MP 8648C	Intainties with confidence Interd in the closed laborat TE critical for calibration) ID # GB41293874 MY41495277 MY41405277 MY4140807 SN 55054 (3c) SN 55054 (3c) SN 55056 (20b) SN 55129 (30b) SN 3013 SN 560 ID # US3642U01700	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09
The measurements and the unoi	Intainties with confidence Incled in the closed laborat TE ontical for calibration) ID # GB41293874 MY41495277 MY41495087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 35129 (30b) SN: 360	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*0 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jain-09 (No. 217-01028) 9-Sep-08 (No. DAE4-880_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
The measurements and the uncl All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	Intainties with confidence Incled in the closed laborat TE ontical for calibration) ID # GB41293874 MY41495277 MY41495087 SN: S5054 (3c) SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: S508 SN: 560 ID # US3642U01700 US3642U01700 US37390585 Name	cal Date (Certificate No.) 1.4pr.09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. DAE4-680_Sep08) Deck Date (in house) 4-Aug-99 (in house check Oct-07) 18-Dct-01 (in house check Oct-08) Function	d are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Mar-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09

Certificate No: ET3-1782_Apr09

Page 1 of 9

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 82 / 117

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

lac-MRA

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

 TSL
 tissue simulating liquid

 NORMx,y,z
 sensitivity in free space

 ConvF
 sensitivity in TSL / NORMx,y,z

 DCP
 diode compression point

 Polarization φ
 φ rotation around probe axis

 Polarization 9
 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1782 Apr09

Page 2 of 9

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 83 / 117

ET3DV6 SN:1782

April 30, 2009

Probe ET3DV6

SN:1782

Manufactured: April 15, 2003 Last calibrated: April 22, 2008 Recalibrated: April 30, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1782_Apr09

Page 3 of 9

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 84 / 117

11.144

ET3DV6 SN:1782

April 30, 2009

DASY - Parameters of Probe: ET3DV6 SN:1782

Sensitivity in Free Space^A

Diode Compression^B

NormX	2.03 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV
NormY	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV
NormZ	1.92 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	90 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.6	6.3
SARbe [%]	With Correction Algorithm	0.9	0.5

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.5	7.5
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

Sensor Offset

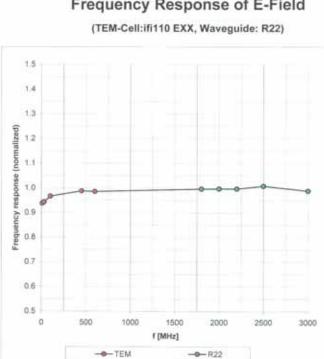
```
Probe Tip to Sensor Center 2.7 mm
```

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 6 The uncertainties of NomX,Y,Z do not affect the E^{2} field uncertainty inside TSL (see Page II).

* Numerical linearization parameter: uncertainty not required.

Certificate No: ET3-1782_Apr09


Page 4 of 9

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 Page : 85 / 117

ET3DV6 SN:1782

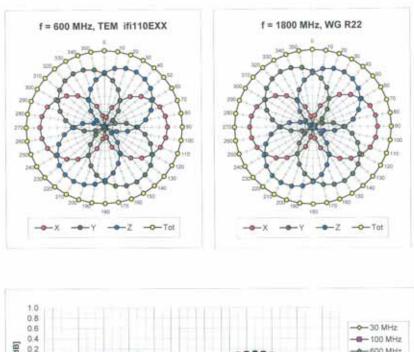
April 30, 2009

Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1782_Apr09

Page 5 of 9


 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 86 / 117

ET3DV6 SN:1782

April 30, 2009

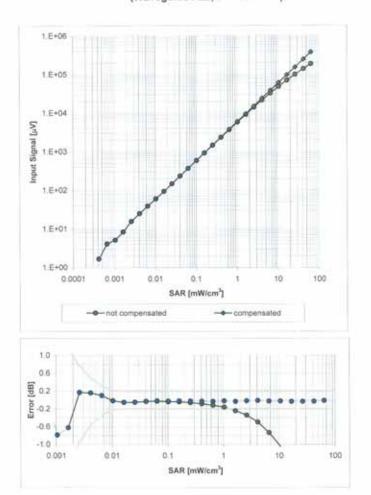
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

 10
 0.8
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4
 0.4</td

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1782_Apr09

Page 6 of 9


 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 87 / 117

ET3DV6 SN:1782

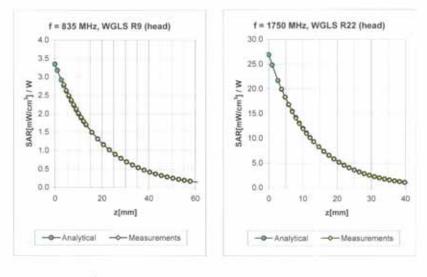
April 30, 2009

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1782_Apr09

Page 7 of 9


 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 88 / 117

ET3DV6 SN:1782

April 30, 2009

Conversion Factor Assessment

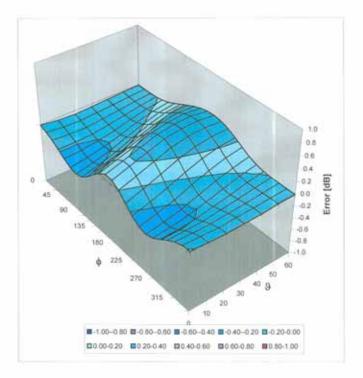
f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	$43.5\pm5\%$	0.87 ± 5%	0.29	1.94	6.66 ± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.51	2.09	6.18 ± 11.0% (k=2)
1750	±50/±100	Head	40.1±5%	1.37 ± 5%	0.50	2.68	5.19 ± 11.0% (k=2)
1900	±50/±100	Head	$40.0\pm5\%$	$1.40\pm5\%$	0.64	2.29	5.00 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.80	1.71	4.45 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7±5%	0.94 ± 5%	0.21	1.99	7.22 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2±5%	$0.97 \pm 5\%$	0.40	2.42	6.07 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	$1.49 \pm 5\%$	0.63	3.09	4.71 ± 11.0% (k=2)
1900	±50/±100	Body	53.3 ± 5%	1.52±5%	0.84	2.44	4.45 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	1.95±5%	0.70	1.40	3.95 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No. ET3-1782_Apr09

Page 8 of 9

 Report File No. :
 F690501/RF-SAR001864-A1


 Date of Issue :
 2010-06-10

 Page :
 89 / 117

ET3DV6 SN:1782

April 30, 2009

Deviation from Isotropy in HSL Error (\u00f3, \u00f3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No. ET3-1782_Apr09

Page 9 of 9

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 90 / 117

- PROBE Calibration Certificate (2010)

credited by the Swiss Accredit	tation Service (SAS)	Accreditation	Servizio svizzero di taratura Swiss Calibration Service No.: SCS 108
he Swiss Accreditation Servi ultilateral Agreement for the			
lient SGS-KES (Dy			ET3-1782_Apr10
CALIBRATION	CERTIFICAT	E	
Object	ET3DV6 - SN:1	782	
Calibration procedure(s)		QA CAL-12.v6, QA CAL-23.v3 and edure for dosimetric E-field probes	
Calibration date:	April 28, 2010		
The measurements and the un All calibrations have been cond	certainties with confidence fucted in the closed laborat	bonal standards, which realize the physical uni probability are given on the following pages an ory fability: environment temperature (22 ± 3)°C	d are part of the certificate.
The measurements and the un All calibrations have been cond Calibration Equipment used (M	certainties with confidence fucted in the closed laborat MTE critical for calibration)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C	d are part of the certificate.
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards	certainties with confidence fucted in the closed faborat MTE critical for calibration) [ID #	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.)	d are part of the certificate and humidity < 70%. Scheduled Calibration
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E4419B	certainties with confidence fucted in the closed laborat MTE critical for calibration)	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01135)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A	certainties with confidence fucted in the closed laborat MATE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages and ory facility: environment temperature (22 ± 3)°C Gal Date (Certificate No.) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A	certainties with confidence fucted in the closed laboration) ID # GB41293874 MY41496277 MY41498087	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Gal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power smote E44198 Power smote E4419A Reference 3 dB Attenuator	certainties with confidence fucted in the closed laborat MATE critical for calibration) ID # GB41293874 MY41495277	probability are given on the following pages and ory facility: environment temperature (22 ± 3)°C Gal Date (Certificate No.) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138)	d are part of the certificate and humidity < 70%. Scheduled Galibration Apr-11 Apr-11 Apr-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44108 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	certainties with confidence fucted in the closed laboration ATE critical for calibration) ID # GB41293874 MY41496277 MY41496087 SN: S5054 (3c)	probability are given on the following pages and ony facility: environment temperature (22 ± 3)*C Gal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136)	d are part of the certificate and humidity < 70%. Scheduled Galibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator	certainties with confidence fucted in the closed faborat (STE critical for calibration) ID # GB41293874 MY41496277 MY41496277 MY41496087 SN 55054 (3c) SN 55085 (20b) SN 55129 (3cb) SN 3013	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01150) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01150) 30-Dec-09 (No. ES3-3013_Dec09)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 91 obe ES3DV2	certainties with confidence fucted in the closed faborat MTE critical for calibration) ID # GB41293874 MY41498277 MY4149807 SN 55054 (3c) SN 55054 (3c) SN 55058 (20b) SN 55129 (30b)	probability are given on the following pages and ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 9 dB Attenuator Reference Probe ES3DV2 DAE4	certainties with confidence fucted in the closed faborat (STE critical for calibration) ID # GB41293874 MY41496277 MY41496277 MY41496087 SN 55054 (3c) SN 55085 (20b) SN 55129 (3cb) SN 3013	probability are given on the following pages an ory facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01150) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01150) 30-Dec-09 (No. ES3-3013_Dec09)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44108 Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	certainties with confidence fucted in the closed laboration MTE critical for calibration) ID # GB41293874 MY41498087 SN 55054 (3c) SN 55054 (3c) SN 55058 (20b) SN 55129 (30b) SN 55129 (30b) SN 5600	probability are given on the following pages and ony facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01150) 30-Dec-09 (No. ES3-3013_Dec09) 20-Sep-09 (No. DAE4-660_Sep09)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 7/sbe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	certainties with confidence fucted in the closed faborat MTE critical for calibration) ID# GB41293874 MY41498087 SN 55054 (3c) SN 55056 (20b) SN 55129 (30b) SN 55129 (30b) SN 55129 (30b) SN 560 ID#	probability are given on the following pages and ony fability: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01159) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 7/sbe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	certainties with confidence fucted in the closed faborat MTE critical for calibration) GB41293874 MY41498087 SN 55054 (26) SN 55058 (20b) SN 55129 (30b) SN 55129 (30b) SN 5513 SN 660 ID # US3642U01700	probability are given on the following pages an ory facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8048C Network Analyzer HP 8753E	certainties with confidence fucted in the closed laboration ATE critical for calibration ID # GB41293874 MY41498087 SN 55054 (3c) SN 55054 (3c) SN 5508 (20b) SN 55129 (30b) SN 5608 ID # UD3642U01700 US3642U01700 US37390585	probability are given on the following pages and ony facility: environment temperature (22 ± 3)*C Gal Date (Certificate No.) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No: DAE4-660_Sep09) 29-Sep-09 (No: DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the un All calibrations have been conc Calibration Equipment used (M Primary Standards Power meter E44198 Power sensor E4412A Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8048C Network Analyzer HP 8753E	certainties with confidence fucted in the closed laboration MTE critical for calibration ID # GB41293874 MY41498087 SN S5054 (3c) SN S5054 (3c) SN S5028 (20b) SN S5129 (30b) SN 660 ID # US3642U01700 US37390685 Name	probability are given on the following pages and ony facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-See-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct-11
The measurements and the un	certainties with confidence fucted in the closed laboration MTE critical for calibration ID # GB41293874 MY41498087 SN S5054 (3c) SN S5054 (3c) SN S5028 (20b) SN S5129 (30b) SN 660 ID # US3642U01700 US37390685 Name	probability are given on the following pages and ony facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01136) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-See-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function	d are part of the certificate and humidity < 70%. Scheduled Calibration Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct-11

Report File No. : F690501/RF-SAR001864-A1 2010-06-10 Date of Issue : 91/117 Page :

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

s

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL

CF

tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A. B. C Polarization () p rotation around probe axis Polarization 3 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 3 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y.z. Assessed for E-field polarization 9 = 0 (f < 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \le 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MH₂
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required

Certificate No: ET3-1782 Apr10

Page 2 of 11

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 92 / 117

ET3DV6 SN:1782

April 28, 2010

Probe ET3DV6

SN:1782

April 15, 2003
April 30, 2009
April 27, 2010
April 28, 2010

Calibrated for DASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1782_Apr10

Page 3 of 11

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 93 / 117

ET3DV6 SN:1782

April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	2.01	1.74	1.86	± 10.1%
DCP (mV) ⁸	93.9	96.4	91.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	с	VR mV	Unc ^e (k=2)
10000	CW	0.00	х	0.00	0.00	1.00	300.0	±1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

* The uncertainties of NormX,Y,Z do not effect the E²-field uncertainty inside TSL (see Pages 5 and 6)

* Numerical linearization parameter: uncertainty not required.

⁸ Uncertainty is determined using the maximum deviation from linear response applying recallangular distribution and is expressed for the square of the field value

Certificate No: ET3-1782_Apr10

Page 4 of 11

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 94 / 117

ET3DV6 SN:1782

April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvFX Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	$43.5 \pm 5\%$	0.87 ± 5%	6.67	6.67	6.67	0.19	2.19 ± 13.3%
835	± 50 / ± 100	41.9 ± 5%	0.89 ± 5%	6.26	6.26	6.26	0.51	2.05 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.30	5.30	5.30	0.53	2.60 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.04	5.04	5.04	0.69	2.24 ±11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.48	4.48	4.48	0.99	1.71 ± 11.0%

² The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the CorvP uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1782_Apr10

Page 5 of 11

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 95 / 117

ET3DV6 SN:1782

April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvFX Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	± 50 / ± 100	56.7 ± 5%	0.94 ± 5%	7.53	7.53	7.53	0.15	2.33 ± 13.3%
835	± 50 / ± 100	55.2 ± 5%	$0.97 \pm 5\%$	6.11	6.11	6.11	0.42	2.40 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	$1.49 \pm 5\%$	4.68	4.68	4.68	0.63	3.03 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52±5%	4,46	4,46	4.46	0.85	2.44 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.07	4.07	4.07	0.99	1.40 ±11.0%

⁶ The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1782_Apr10

Page 6 of 11

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 96 / 117

ET3DV6 SN:1782

April 28, 2010

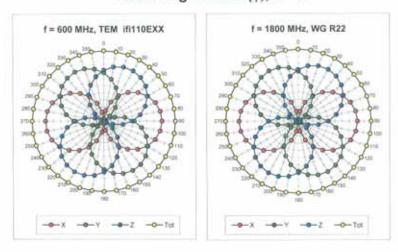
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

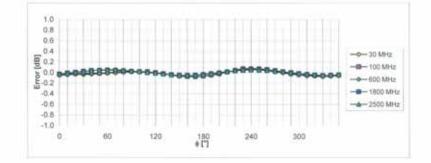
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1782_Apr10

Page 7 of 11


 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10


 Page :
 97 / 117

ET3DV6 SN:1782

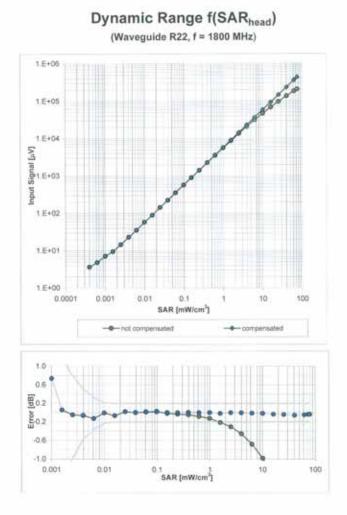
April 28, 2010

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1782_Apr10

Page 8 of 11


 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 98 / 117

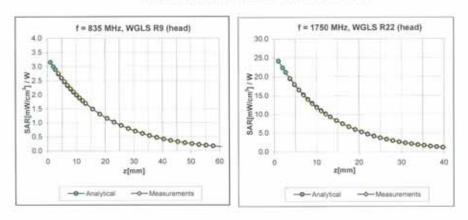
ET3DV6 SN:1782

April 28, 2010

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1782_Apr10

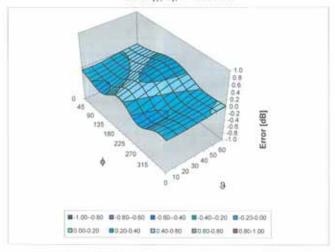
Page 9 of 11


 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 99 / 117

ET3DV6 SN:1782


April 28, 2010

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (¢, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No. ET3-1782_Apr10

Page 10 of 11

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 100 / 117

ET3DV6 SN:1782

April 28, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Certificate No: ET3-1782_Apr10

Page 11 of 11

-DAE Calibration Certificate

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 Page : 101 / 117

libration Laboratory hmid & Partner Engineering AG ghausstrasse 43, 8004 Zurich.		Iac-MRA	S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
redited by the Swiss Accreditation Service	is one of the signatories	to the EA	ditation No.: SCS 108
Itilateral Agreement for the re-	cognition of calibration of		icate No: DAE3-567_Dec09
ALIBRATION C	ERTIFICATE		
bject	DAE3 - SD 000 D	03 AA - SN: 567	
alibration procedure(s)	QA CAL-06.v12 Calibration proceed	lure for the data acquisitic	on electronics (DAE)
Calibration date:	December 9, 200		
The measurements and the unce	rtainties with confidence pr	obability are given on the following	systical units of measurements (SI), pages and are part of the certificate. (22 \pm 3)°C and humidity < 70%.
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the ph obability are given on the following y facility: environment temperature	pages and are part of the certificate.
The measurements and the unce UI calibrations have been condu Calibration Equipment used (M& Primary Standards	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID #	obability are given on the following y facility: environment temperature Cal Date (Certificate No.)	pages and are part of the certificate. (22 ± 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards	rtainties with confidence pr cted in the closed laborator TE critical for calibration)	obability are given on the following y facility: environment temperature	pages and are part of the centricate. (22 ± 3)*C and humidity < 70%
The measurements and the unce NI calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	tainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 0810278 ID #	Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	pages and are part of the centricate. (22 ± 3)°C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	Italinties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 0810278	cbability are given on the following y facility: environment temperature Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	pages and are part of the centricate. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	tainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 0810278 ID #	Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house)	pages and are part of the centricate. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-10 Scheduled Check.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	tainties with confidence proceed in the closed laborator TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	obability are given on the following y facility: environment temperature Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check)	ages and are part of the centricate. (22 ± 3)*C and humidity < 70% Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	Itamie with confidence proceed in the closed laborator TE critical for calibration) ID # SN: 0810278 ID # SE UMS:006 AB:1004 Name	pability are given on the following y facility: environment temperature Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check) Function	ages and are part of the centricate. (22 ± 3)*C and humidity < 70% Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M& Calibration Equipment used (M& Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1 Calibrated by: Approved by:	Italinties with confidence protected in the closed laborator TE critical for calibration) ID # SN: 0810278 ID # SE UMS:006 AB 1004 Name Dominique Steffen Fin Borsholt	Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check) Function Technician	22 ± 3)*C and humidity < 70% (22 ± 3)*C and humidity < 70% Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10 Signature Millow In Number 9, 2009

Certificate No: DAE3-567_Dec09

Page 1 of 5

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 102 / 117

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS C Z Z R R D S Schwar S Serviz S Swiss

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

data acquisition electronics or angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-567_Dec09

Page 2 of 5

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 103 / 117

DC Voltage Measurement

A/D - Converter Reso High Range:	1LS8 =	6.1µV.	full range =	-100+300 mV
Low Bange:	1LSB =	61nV .	full range =	+1+3mV
DASY measurement	parameters: Au			

Calibration Factors	x	Y	z
High Range	404.546 ± 0.1% (k=2)	404.281 ± 0.1% (k=2)	404.334 ± 0.1% (k=2)
Low Range	3.96697 ± 0.7% (k=2)		

Connector Angle

Connector Angle to be used in DASY system	7.5°±1°
Settine to get	

Certificate No: DAE3-567_Dec09

Page 3 of 5

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 104 / 117 Page :

Appendix

1.

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.8	+1.89	-0.00
Channel X + Input	19998.11	-1.59	-0.01
Channel X - Input	-19992.89	7.71	-0.04
Channel Y + Input	199957.5	-46.16	-0.02
Channel Y + Input	19992.42	-7.98	-0.04
Channel Y - Input	-19994.34	4.96	-0.02
Channel Z + Input	199931.6	-61.88	-0.03
Channel Z + Input	19990.70	-8.50	-0.04
Channel Z - Input	-19992.89	-0,04	-0.04

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.7	0.61	0.03
Channel X + Input	199.14	-0.86	-0.43
Channel X - Input	-200.82	-0.72	0.36
Channel Y + Input	2000.0	-0.11	-0.01
Channel Y + Input	198.97	-1.13	-0.56
Channel Y - Input	-201.08	-1.18	0.59
Channel Z + Input	1999.4	-0.87	-0.04
Channel Z + Input	198.62	-1.48	-0.74
Channel Z - Input	-201.26	-1.36	0.68
and the second			

2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	3.98	2.30
	- 200	-0.74	-2.83
Channel Y	200	-0.27	-0.39
	- 200	-0.32	-0.95
Channel Z	200	4,97	4.65
	- 200	-6.07	-6.68

Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200		1.57	-1.52
Channel Y	200	3.06		3.39
Channel Z	200	3.26	-0.28	· · · · · · · · · · · · · · · · · · ·

Certificate No: DAE3-567_Dec09

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16355	16407
Channel Y	16166	16176
Channel Z	15925	16100

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MD

nput 101412	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	-0.19	-1.19	0.58	0.37
Channel Y	-0.59	-1.52	0.73	0.36
Channel Z	-1.05	-2.18	-0.05	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <251A

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	203.2
Channel Y	0.1999	202.8
Channel Z	0.1999	201.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	_
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-567_Dec09

Page 5 of 5

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 106 / 117

- 835 MHz Dipole Calibration Certificate

	h, Switzerland	Tank Right	Servizio svizzero di taratura S Swiss Calibration Service
ccredited by the Swiss Accred e Swiss Accreditation Servic ultilateral Agreement for the r	e is one of the signatorie	s to the EA	ion No.: SCS 108
lent SGS KES (Dyn			No: D835V2-490_Aug09
CALIBRATION	CERTIFICATE		
Dbject	D835V2 - SN: 49	0	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	- Albert
Calibration date:	August 24, 2009		And the Real Property lies
This calibration certificate docum The measurements and the uno	ertainties with confidence p	onal standards, which realize the physical robability are given on the following pages ry facility: environment temperature (22 ± 3	and are part of the certificate.
This calibration certificate docum The measurements and the unor NI calibrations have been condu	ents the traceability to nati intainties with confidence p cted in the closed laborato	robability are given on the following pages	and are part of the certificate.
This calibration certificate docum The measurements and the unor NI calibrations have been condu Calibration Equipment used (M&	ents the traceability to nati intainties with confidence p cted in the closed laborato TE critical for calibration)	robability are given on the following pages ry facility: environment temperature (22 \pm 3	and are part of the certificate. I)°C and humidity < 70%.
Tris calibration certificate docum The measurements and the unce VII calibrations have been condu Calibration Equipment used (M& Primary Standards	ents the traceability to nati intainties with confidence p cted in the closed laborato	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.)	and are part of the certificate.
This calibration certificate docum the measurements and the unor all calibrations have been condu calibration Equipment used (M& Primary Standards Power metor EPM-442A	ents the traceability to nati entainties with confidence p cted in the closed laborato TE critical for calibration) ID #	robability are given on the following pages ry facility: environment temperature (22 \pm 3	and are part of the certificate. I)°C and humidity < 70%. Scheduled Calibration
This calibration certificate docum The measurements and the unor NI calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ents the traceebility to nati entainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898)	and are part of the certificate. i)°C and humidity < 70%. Scheduled Calibration Oct-09
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ents the traceability to nati entainties with confidence p cted in the closed laborator TE oritical for calibration) ID # GB37480704 US37292783	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898)	and are part of the certificate. i)°C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ents the traceability to nati rtainties with confidence p cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	and are part of the certificate. i)°C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power metor EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3	ents the traceability to nati entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20p) SN: 5047.2 / 06327	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	and are part of the certificate. ty*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10
Phis calibration certificate docum The measurements and the unor NII calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ents the traceability to nati etainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327 SN: 3205	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	and are part of the certificate. s)*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe ES3DV3 JAE4 Secondary Standards	ents the traceability to nati intainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. DAE4-601_Mar09)	and are part of the certificate. b)*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ents the traceobility to nati entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087,2 / 06327 SN: 3205 SN: 601 ID #	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00988) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. DAE4-601_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house)	and are part of the certificate. b)*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Jun-10 Mar-10 Scheduled Check
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ents the traceability to nati entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20p) SN: 5087 2 / 06327 SN: 5086 (20p) SN: 5047 2 / 06327 SN: 3205 SN: 601 ID # MY41092317	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. DAE4-601_Mar09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07)	and are part of the certificate. I)*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-09
This calibration certificate docum The measurements and the unor All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ents the traceability to nati trainties with confidence p cted in the closed laborator TE oritical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3005 SN: 601 ID # MY41092317 100005 US37390585 54206	colability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	and are part of the certificate. ty*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09
The measurements and the uno	ents the traceability to nati entainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087 2 / 06327 SN: 5087 2 / 06327 SN: 601 ID # MY41092317 100005	robability are given on the following pages ry facility: environment temperature (22 ± 3 Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	and are part of the certificate. I)*C and humidity < 70%. Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09

Certificate No: D835V2-490_Aug09

Page 1 of 6

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 107 / 117 Page :

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

SHISS CHI/BRA

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-490_Aug09

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW/g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.31 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-490_Aug09

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 109 / 117

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 5.6 jΩ
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.380 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

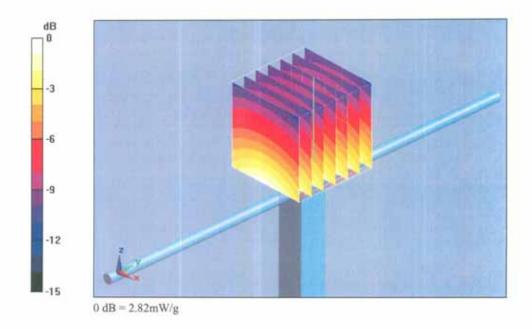
Manufactured by	SPEAG
Manufactured on	May 19, 2003

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 110 / 117 Page :

DASY5 Validation Report for Head TSL

Date/Time: 24.08.2009 12:36:38

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) DASY5 Configuration:

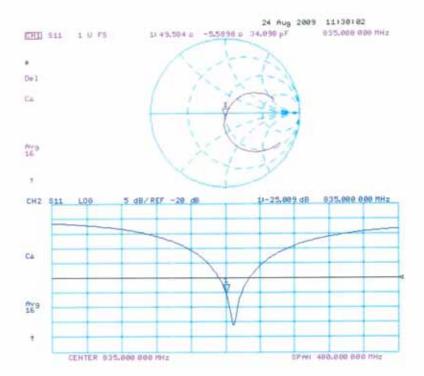
- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.5 V/m; Power Drift = 0.00948 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.82 mW/g

Certificate No: D835V2-490_Aug09

Page 5 of 6



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 111 / 117

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-490_Aug09

Page 6 of 6

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 112 / 117

- 1900 MHz Dipole Calibration Certificate

Engineering AG ughausstrasse 43, 8004 Zuric	y of	HAC-MRA	S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
ccredited by the Swiss Accred the Swiss Accreditation Servic ultilateral Agreement for the r	e is one of the signatorie	s to the EA certificates	editation No.: SCS 108
lient SGS KES (Dyn		Provide State	ficate No: D1900V2-5d033-Aug09
CALIBRATION	CERTIFICATE		
Object	D1900V2 - SN: 5	d033	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation k	its
Calibration date:	August 25, 2009	MI BORT MARK	Indiana Managara
Condition of the calibrated item	In Tolerance		THE REPORT OF THE
The measurements and the unce	rtainties with confidence p	onal standards, which realize the phy robability are given on the following p ry facility: environment temperature (pages and are part of the certificate.
The measurements and the unce NI calibrations have been conduic Calibration Equipment used (M&	rtainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following p ry facility: environment temperature (;	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%.
The measurements and the unce sil calibrations have been condu calibration Equipment used (M& himary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration)	robability are given on the following p ry facility: environment temperature (Cal Date (Calibrated by, Certificat	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%. Ite No.) Scheduled Calibration
The measurements and the unce sil calibrations have been condu- calibration Equipment used (M& himary Standards hower meter EPM-442A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898)	pages and are part of the certificate. 22 ± 3)°C and humidity < 70%. te No.) Scheduled Calibration Oct-09
The measurements and the unce sil calibrations have been condu- calibration Equipment used (M& himary Standards hower meter EPM-442A hower sensor HP 8481A	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # G837480704 US37292783	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898)	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%. te No.) Scheduled Calibration Oct-09 Oct-09 Oct-09
The measurements and the unce still calibrations have been condu- calibration Equipment used (M& himary Standards hower meter EPM-442A hower sensor HP 8481A Reference 20 dB Attenuator	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025)	pages and are part of the certificate. 22 ± 33*C and humidity < 70%. te No.) Scheduled Calibration Oct-09 Oct-09 Mar-10
The measurements and the unce still calibrations have been condu- calibration Equipment used (M& mmary Standards "ower meter EPM-442A "ower sensor HP 8481A Reference 20 dB Attenuator "ype-N mismatch combination	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087.2 / 06327	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	pages and are part of the certificate. 22 ± 33*C and humidity < 70%. te No.) Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10
The measurements and the unce NII calibrations have been conduin Calibration Equipment used (M& Primary Standards Power meter EPM-442A Rower sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025)	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%. te No.) Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power sensor HP-442A Power sensor HP-8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 (AE4	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5088 (20g) SN: 5087.2 / 06327 SN: 3205	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%. te No.) Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 (AE4 Secondary Standards	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Calibrated by, Certificat O8-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%. te No.) Scheduled Calibration Oct-09 Oct-09 Mar-10 Jun-10 Jun-10 Mar-10 Scheduled Check
The measurements and the unce NI calibrations have been conduin Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator (ype-N mismatch combination Reference Probe ES3DV3 0AE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5047 SN: 601 ID #	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. DAE4-601_Mar09 07-Mar-09 (No. DAE4-601_Mar09 Check Date (in house)	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%.
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-601_Mar09 07-Mar-09 (No. DAE4-601_Mar09 Check Date (in house) 18-Oct-02 (in house check Oct-07	pages and are part of the certificate. 22 ± 33*C and humidity < 70%.
The measurements and the unce	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	robability are given on the following p ty facility: environment temperature (<u>Cal Date (Calibrated by, Certificat</u> 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-601_Mar09 <u>Check Date (in house)</u> 18-Oct-02 (in house check Oct-07 18-Oct-01 (in house check Oct-08	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%.
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 601 ID # MY41092317 100005	robability are given on the following p ty facility: environment temperature (Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-601_Mar09 Check Date (in house) 18-Oct-02 (in house check Oct-07) 18-Oct-01 (in house check Oct-08 Function	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%.
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087 2 / 06327 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following p ty facility: environment temperature (<u>Cal Date (Calibrated by, Certificat</u> 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-601_Mar09 <u>Check Date (in house)</u> 18-Oct-02 (in house check Oct-07 18-Oct-01 (in house check Oct-08	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%.
The measurements and the unce All calibrations have been conduin Calibration Equipment used (M& Primary Standards Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	rtainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5087 2 / 06327 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following p ty facility: environment temperature (Cal Date (Calibrated by, Certificat 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 26-Jun-09 (No. 217-01029) 07-Mar-09 (No. DAE4-601_Mar09 Check Date (in house) 18-Oct-02 (in house check Oct-07) 18-Oct-01 (in house check Oct-08 Function	pages and are part of the certificate. 22 ± 3)*C and humidity < 70%.

Certificate No: D1900V2-5d033_Aug09

Page 1 of 6

Report File No. : F690501/RF-SAR001864-A1 Date of Issue : 2010-06-10 113 / 117 Page :

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the ٠ nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ¹ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.0 mW/g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.3 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.21 mW/g
SAR normalized	normalized to 1W	20.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.7 mW/g±16.5 % (k=2)

* Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-5d033_Aug09

Page 3 of 6

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 115 / 117

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51,3 Ω + 2.7 jΩ	
Return Loss	- 30.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 17, 2003

Certificate No: D1900V2-5d033_Aug09

Page 4 of 6

 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

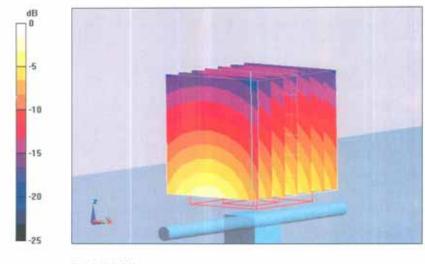
 Page :
 116 / 117

DASY5 Validation Report for Head TSL

Date/Time: 25.08.2009 11:37:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U11 BB Medium parameters used: f = 1900 MHz; σ = 1.45 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

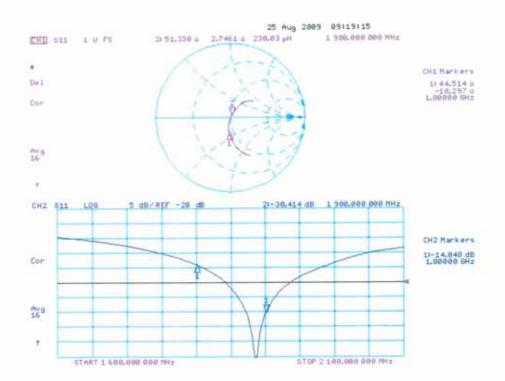
Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 18.4 W/kg SAR(1 g) = 10 mW/g; SAR(10 g) = 5.21 mW/g Maximum value of SAR (measured) = 12.5 mW/g

 $0 \text{ dB} \approx 12.5 \text{mW/g}$

Certificate No: D1900V2-5d033_Aug09

Page 5 of 6



 Report File No. :
 F690501/RF-SAR001864-A1

 Date of Issue :
 2010-06-10

 Page :
 117 / 117

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d033_Aug09

Page 6 of 6