

TEST REPORT

This laboratory is accredited by National Radio Research Agency Laboratory and National Voluntary Laboratory Accreditation Program. The tests reported herein have been performed in accordance with

its terms of accreditation.

Test Report No. Issue Date Applied Standard Trade Name Equipment Name Model Name Serial Number

- : LR500112004A
- : April 01, 2020
- : FCC Part 15, Subpart B
- : BLUEBIRD INC.
- : Fixed RFID Reader
- : FR900
- : Identification

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TESTING NVLAP LAB CODE 2

Revision history

Revision	Date of issue	Test report No.	Description
0	01.04.2020	LR500112004A	Initial

>>TABLE OF CONTENTS<<

LTA Certification	4
General information's	6
1- Brief Information	7
2- Test Site Description	.1
3- Test Procedure	3
4- List of Equipment Used For the Tests 1	.6
5- EMISSION	17
Conclusions	25

LTA Certification

Applicant / Manufacture

Company name	:	BLUEBIRD INC.
Address	:	3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
Telephone / Facsimile	:	+82-2-2258-9209
Factory		
Company name	:	BLUEBIRD INC.
Address	:	3F, 115, Irwon-ro, Gangnam-gu, Seoul, Republic of Korea
<u>Equipment Under Te</u>	st	(<u>EUT)</u>
Equipment Name		: Fixed RFID Reader
Model name		: FR900
Serial number		: Identification
Intended environment		: Industrial area
Date of receipt		: December 20, 2019
EUT condition		: Pre-production, not damaged
Test Mode		: Operating mode
Interface ports		: DC IN, Ethernet, GPIO, USB Host, Antenna Port #1 ~ #8
Power rating		: DC 24 V, PoE/PoE+
Test Voltage		: AC 120 V, 60 Hz
Model Description		
- NONE		
Model Specification		
- NONE		

*** To be continued next page ***

LTA Certification -cont.-

Test Performed

Test started & completed	:	:	March 27 - 28, 2020
Location	:	:	LTA Co., Ltd.
Test Specification			
Purpose of the test	:		Compliance test to the following standard
Applied standard	:		FCC Part 15, Subpart B
Classification	:		Class A
Deviations from Standard Test	Method :		N/A
Test Results			
Measurement	Results*		Test method
Conducted Emissions	Complies		ANSI C 63.4-2014
Radiated Emissions	Complies		ANSI C 63.4-2014

 \ast : The compliance statement is based on nominal value only.

Modification performed by the lab.;

- N.A

-We were performed the test according to LTA procedure LTA-QI-04.

Laboratory's Certificate

Report number	:	LR500112004A
Issue date	:	April 01, 2020

This test report is issued under the authority of:

Young Kyu Shin, Technical Manager

The test was supervised by:

Kany Jar Gyu

Jae Gyu Kang, Test Engineer

The results in this report apply only to the sample(s) tested.

It is not allowed to copy this report even partly without the allowance of the test laboratory.

General information's

Purpose

This document is based on the Electromagnetic Interference (EMI) tests performed on the **"FR900"**. The measurements were performed according to the measurement procedure described in ANSI C 63.4-2014. The tests were carried out in order to confirm whether the electromagnetic emissions from the EUT(Equipment Under Test), are within the Class A limits defined in FCC Part 15, Subpart B- "Section 15.107- Conducted limits" and "Section 15.109-Radiated emission limits".

Test Performed

Company name	:	LTA Co., Ltd.	
Address	:	34, Songju-ro 236Beon-gil, Yangji-myeon, Cheoin-gu Gyeonggi-do 449-822, Korea	Yongin-si,
Telephone	:	+82-31-323-6008	
Facsimile		+82-31-323-6010	

Measurement uncertainty

Conducted Emissions	(0.15 to 30 MHz) :	±2.80 [dB] (k=2)	
Radiated Emissions	(30 to 1,000 MHz):	H : ±4.84 [dB] (k=2)	V:±4.92 [dB] (k=2)
	(1 GHz to 6 GHz) :	H:±5.97 [dB] (k=2)	V:±5.96 [dB] (k=2)
	(6 GHz to 18 GHz) :	H:±6.20 [dB] (k=2)	V:±6.20 [dB] (k=2)

The coverage factor k=2 yields approx. a 95% level of confidence for near-normal distribution typical of most measurement results.

Accredited agencies

LTA Co., Ltd. Is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference	
NVLAP	U.S.A	200723-0	2020-09-30	ECT accredited Lab.	
	KOREA		-		
RRA	U.S.A	KR0049	2021-04-11	RRA accredited Lab.	
	CANADA	KK0049	2021-06-16	KKA accredited Lab.	
	VIETNAM		2021-04-12		
		C-4948	2020-09-10		
VCCI	JAPAN	T-2416	2020-09-10	VCCI registration	
VCCI	JAPAN	R-4483(10 m)	2020-10-15	VCCI registration	
		G-10847	2022-06-13		
KOLAS	KOREA	KT551	2021-08-20	KOLAS accredited Lab.	

1- Brief Information

<u>1-1 Test Summary</u>

Parameter	Applied Standard	Status (note 1)
I. Emission		
Conducted Emissions	FCC Part 15.107	С
Radiated Emissions	FCC Part 15.109	С
Note 1: C=Complies NC=Not Complies NT=	Not Tested NA=Not Applicable	
* The data in this test report are traceable to the national	l or international standards.	

Frequency range to be scanned:

0.15 MHz - 30 MHz as conducted measurement

30 MHz to 5th harmonic of the highest frequency or 40 GHz, whichever is lower as radiated measurement.

Bandwidth:

Measured by the CISPR quasi-peak function Bandwidth is 9 kHz in the frequency 0.15 MHz to 30 MHz and 120 kHz in the frequency 30 MHz to 1,000 MHz.

Measured by the Peak function Bandwidth is 1 MHz in the frequency 1 GHz to 40 GHz.

A sample calculation:

COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction

Emission Level= meter reading + COR.F

<u>1-2 Test mode of the EUT</u>

The tests have been conducted with the following operational mode(s) of the EUT.

Operating mode (DC Adapter), Operating mode (PoE)

1-3 Modification

- 1. Insert ferrite core at Infrared sensor (GPIO port) cable.
- Model : ZCAT 3035 1330, Manufacture : TDK, Quantity : 1 EA
- 2. Insert core at Infrared Ethernet port cable.
- Model : BNF-27, Manufacture : FEELUX, Quantity : 1 EA
- Model : TR42-58A, Manufacture : FEELUX, Quantity : 1 EA
- 3. Insert Copper Tape to PoE Tranform to GND.
- 4. Insert Copper Tape at the inside surface of the case.
- 5. Insert Copper Tape around the internal USB Type A Port.
- 6. Insert Copper Tape at DDR2 Line on the front of the main board.
- 7. Insert Copper Tape at Ethernet Line on the back of the main board.
- 8. Insert Gasket Tape around the Six Screw Holes on the case.

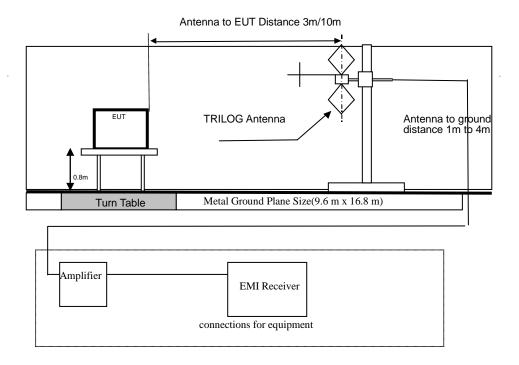
<u>1-4 List of EUT and ACCESSORY</u>

EUT				
Equipment Name	Model Name	Serial No.	Manufacturer	Remarks
Fixed RFID Reader	FR900	N/A	BLUEBIRD INC.	-
Antenna #1	PRL90209	N/A	Laird TECHNOLOGIES	-
Antenna #2	PRL90209	N/A	Laird TECHNOLOGIES	-
Antenna #3	PRL90209	N/A	Laird TECHNOLOGIES	-
Antenna #4	PRL90209	N/A	Laird TECHNOLOGIES	-
Infrared Sensor	N/A	N/A	N/A	-
AC/DC Adapter	GM95-240400-F	N/A	Foshan Shunda Guanyuda Power Supplu Co.,Ltd.	-
ACCESSORY / Operat	ting mode (DC Adapter)		
Equipment Name	Model Name	Serial No.	Manufacturer	Remarks
USB Memory Stick	SDCZ48-032G	BM160525533B	SANDISK	-
Notebook	1EK14PA#AB1	5CD7150WPK	HP	-
ACCESSORY / Operat	ting mode (PoE)			
Equipment Name	Model Name	Serial No.	Manufacturer	Remarks
USB Memory Stick	SDCZ48-032G	BM160525533B	SANDISK	-
Notebook	1EK14PA#AB1	5CD7150WPK	HP	-
PoE Injector	GT96300-3656-T3- APOE	N/A	GlobTeK, Inc.	-

1-5 Cable List

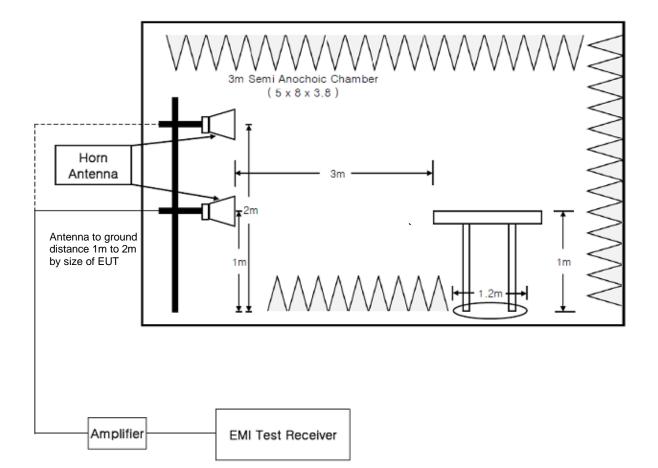
Cable List / Operati	ing mode (DC Adapt	er)				
Fro	om	То		Length	Shi	elding
Туре	I/O Port	Туре	I/O Port	(m)	Cable	backshell
	DC IN	DC Adapter	DC OUT	0.5	NO	Plastic
	Ethernet	Notebook	LAN	3.2	NO	Plastic
	GPIO	Infrared Sensor	DATA OUT	8.5	NO	Plastic
	USB Host	USB Memory Stick	-	-	-	Plastic
	Antenna Port #1	Antenna #1	RF Port #1	10.0	NO	Metal
	Antenna Port #2	Antenna #1	RF Port #2	10.0	NO	Metal
EUT	Antenna Port #3	Antenna #2	RF Port #1	10.0	NO	Metal
	Antenna Port #4	Antenna #2	RF Port #2	10.0	NO	Metal
	Antenna Port #5	Antenna #3	RF Port #1	10.0	NO	Metal
	Antenna Port #6	Antenna #3	RF Port #2	10.0	NO	Metal
	Antenna Port #7	Antenna #4	RF Port #1	10.0	NO	Metal
	Antenna Port #8	Antenna #4	RF Port #2	10.0	NO	Metal
DC Adapter	AC IN	AC Power Source	3 Pin AC Line	1.3	NO	Plastic
Cable List / Operati	ing mode (PoE)			:	<u>.</u>	:
Fro	om	То	Length	Shielding		
Туре	I/O Port	Туре	I/O Port	(m)	Cable	backshell
	Ethernet	PoE Injector	DATA OUT	3.2	NO	Plastic
	GPIO	Infrared Sensor	DATA OUT	8.5	NO	Plastic
	USB Host	USB Memory Stick	-	-	-	Plastic
	Antenna Port #1	Antenna #1	RF Port #1	10.0	NO	Metal
	Antenna Port #2	Antenna #1	RF Port #2	10.0	NO	Metal
EUT	Antenna Port #3	Antenna #2	RF Port #1	10.0	NO	Metal
	Antenna Port #4	Antenna #2	RF Port #2	10.0	NO	Metal
	Antenna Port #5	Antenna #3	RF Port #1	10.0	NO	Metal
	Antenna Port #6	na Port #6 Antenna #3		10.0	NO	Metal
	Antenna Port #7	Antenna #4	RF Port #1	10.0	NO	Metal
	Antenna Port #8	Antenna #4	RF Port #2	10.0	NO	Metal
DoF Interter	DATA	Notebook	LAN	3.3	NO	Plastic
PoE Injector	AC IN	AC Power Source	3 Pin AC Line	1.3	NO	Plastic

2- Test Site Description


1-Facility

All the testing facilities are periodically serviced as a daily check for equipment and cables systems, an every 6 months facility check for the facilities and a monthly check and annual calibration for testing equipment according to ISO/IEC 17025. All the testing facilities are used as the same specifications shown below. There are descriptions both for radiated disturbance measurement and conducted disturbance measurement conformed by ANSI C 63.4-2014. The NSA measurement of the 10 m chamber was performed on January 18, 2020 according to ANSI C 63.4:2014 The SVSWR measurement of the 10 m chamber was performed on January 18, 2020 according to ANSI C 63.4:2014

2-1 Conducted Emissions



2-2 Radiated Emissions – Below 1 GHz

2-3 Radiated Emissions – Above 1 GHz

3- Test Procedure

3-1 Conducted Emissions

- The measurement is carried out on an open site with horizontal and metallic ground plane.
- An AMN(Artificial Mains Network) with a nominal impedance (50 $\Omega/50~\mu H)$ as defined
- in ANSI C 63.4-2014., shall be utilized.
- The AMN is grounded on a horizontal metal ground plane.
- Measurement is carried out using an EMI receiver with quasi-peak detectors and average detector. (Refer to the List of test equipment used for the test.)
- The shortest distance between the EUT and the AMN is 0.8 m.
- The EUT is placed on the non-conducting table with 0.8 m height.
- Refer to "Brief Information"(page 7-9) about details of the EUT and configuration of the cables.
- Measurement is carried out as manual operation.
- -searching the maximum frequency point of the disturbance wave in each frequency range.
- -reading the disturbance level of quasi-peak, average and Line (L) and Neutral (N) in 9 kHz bandwidth by the EMI receiver.
- -calculating the measurement result with the following formula or equation.
- (Result = Reading + Cor.F.(LISN Factor + Cable Loss + Pulse Limiter)
- (ex) = $13.23 \text{ dB}\mu\text{V} + (9.63 \text{ dB} + 0.01 \text{ dB} + 9.86 \text{ dB})$
 - $= 32.73 \text{ dB}\mu\text{V}$

3-2 Radiated Emissions – Below 1 GHz

- Test site is met the requirements of ANSI C 63.4-2014 and the distance between the EUT and the antenna is adjusted 3 m or 10 m.
- The turntable can be rotated 360 degrees.
- The antenna can be adjusted between 1 m and 4 m in height above the ground.
- The EUT is placed on the non-conducting table with 0.8 m height on the turntable.
- · Measurements are carried out using an EMI receiver with quasi-peak detectors (120 kHz bandwidth).
- Refer to the list of test equipment used for the test.
- The TRILOG antenna are used as wideband antenna.
- The TRILOG antenna is used in the frequency range of 30 MHz to 1 000 MHz.
- A variable attenuator is used for verifying amplifier's linearity.
- Rotating the turntable and adjusting the height of the antenna are carried out by control buttons on the console.
- Refer to "Brief Information" (page 7-9) about details of the EUT and configuration of the cables.
- Measurement is carried out by a LTA operator as manual operation.

-searching the worst direction with the maximum level of the disturbance wave in rotating the turntable 360 degrees at each searched frequency point.

-setting the height of the antenna with the maximum level of the disturbance wave from 1 m to 4 m.

-reading the disturbance level by the EMI receiver with quasi-peak detectors (120 kHz bandwidth) according to ANSI C 63.4-2014.

-measuring to vertical and horizontal polarization.

-calculating the measurement result with the following formula or equation:

(Result = Reading + Cor.F (antenna factor + cable loss – PreAmp Gain)

(ex) = 50.6 dB μ V/m + (11.08 dB(1/m) + 1.31 dB - 27.32 dB)

 $= 35.67 \text{ dB}\mu\text{V/m}$

3-3 Radiated Emissions – Above 1 GHz

• Test site is met the requirements of ANSI C 63.4-2014 and the distance between the EUT and the antenna is adjusted 3 m.

- The turntable can be rotated 360 degrees.
- The antenna can be adjusted between 1 m and 4 m in height above the ground.
- The EUT is placed on the non-conducting table with 1 m height on the turntable.
- Measurements are carried out using an EMI receiver with peak and average detectors(1 MHz bandwidth).
- Refer to the list of test equipment used for the test.
- The HORN antenna are used as wideband antenna.
- The HORN antenna is used in the frequency range of 1 GHz to 18 GHz.
- A variable attenuator is used for verifying amplifier's linearity.
- Rotating the turntable and adjusting the height of the antenna are carried out by control buttons on the console.
- Refer to "Brief Information" (page 7-9) about details of the EUT and configuration of the cables.
- Measurement is carried out by a LTA operator as manual operation.

-searching the worst direction with the maximum level of the disturbance wave in rotating the turntable 360 degrees at each searched frequency point.

-setting the height of the antenna with the maximum level of the disturbance wave from 1 m to 4 m

-reading the disturbance level by the EMI receiver with peak and average detectors (1 MHz bandwidth) according to ANSI C 63.4-2014.

-measuring to vertical and horizontal polarization.

-calculating the measurement result with the following formula or equation:

(Result = Reading + Cor.F (antenna factor + cable loss – PreAmp Gain)

(ex) = $35.9 \text{ dB}\mu\text{V/m} + (23.92 \text{ dB}(1/m) + 7.01 \text{ dB} - 38.33 \text{ dB})$

 $= 28.5 \ dB\mu V/m$

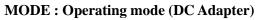
4- List of Equipment Used For the Tests

Conducted Emissions

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\square	EMI TEST Receiver	ESR	Rohde & Schwarz	101499	2020.07.04	1 year
\square	Pulse Limiter	ESH3-Z2	Rohde & Schwarz	100710	2021.03.16	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	100378	2020.09.05	1 year
	LISN	ESH3-Z6	Rohde & Schwarz	101468	2020.09.05	1 year
\square	LISN(main)	ENV216R	Rohde & Schwarz	101222	2020.09.06	1 year
	LISN(sub)	LT32C/10	AFJ	32031518210	2020.09.05	1 year
\boxtimes	TEST PROGRAM	e3_ce 20181212a (V9)	AUDIX	-	-	-

Radiated Emissions – Below 1 GHz

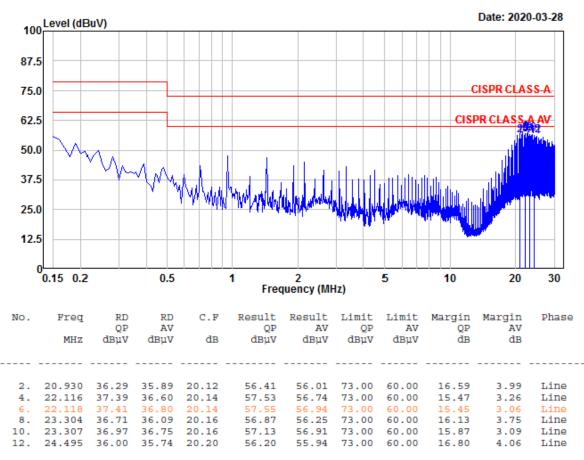
	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval	
\square	EMI TEST Receiver	ESU	Rohde & Schwarz	100092	2020.09.05	1 year	
\square	Amplifier (25 dB)	8447D	HP	2944A07684	2021.03.16	1 year	
	BILOG Antenna	VULB 9168	SCHWARZBECK	775	2021.03.26 (KOLAS)	2 year	
\boxtimes	BILOG Antenna	VULB 9168	SCHWARZBECK	775	2021.11.12 (RRA)	2 year	
\square	TEST PROGRAM	e3 20181212a (V9)	AUDIX	-	-	-	


Radiated Emissions – Above 1 GHz

	Item	Model Name	Manufacturer	Serial No.	Next Cal.	Interval
\boxtimes	EMI TEST Receiver	ESU	Rohde & Schwarz	100092	2020.09.05	1 year
\boxtimes	Amplifier	8449B	HP	3008A00671	2020.09.05	1 year
	Amplifier	PAM-840A	COM-POWER	461314	2021.03.16	1 year
	HORN ANTENNA	3116B	ETS	133350	2020.05.10	1 year
	HORN ANTENNA	3116B	ETS	81109	2020.05.10	1 year
	HORN ANTENNA	3115	ETS	114105	2021.09.17 (KOLAS)	2 year
\boxtimes	HORN ANTENNA	3115	ETS	114105	2021.11.11 (RRA)	2 year
\boxtimes	TEST PROGRAM	e3 20181212a (V9)	AUDIX	-	-	-

5- EMISSION

5-1 Conducted Emissions

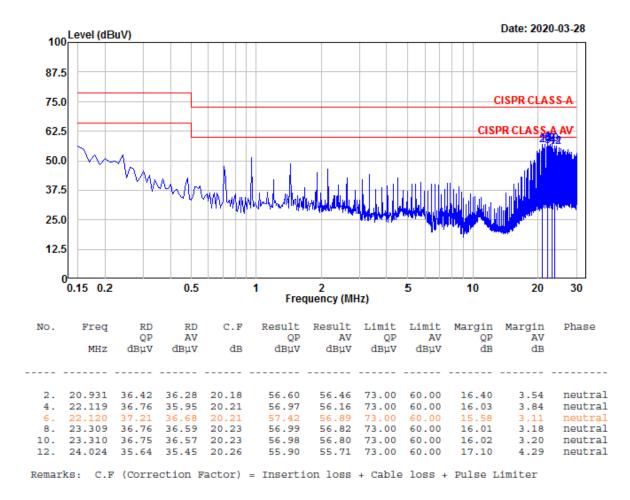


(LINE)

\cap		-Λ
V		A

4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT /Model No	. : FR900	Phase	: Line
Test Mode	: Operating mode(DC Adapter)	Test Power	: 120 V / 60 Hz
Temp./ Humi.	: 22 'C / 32 % R.H.	Test Engineer	: KANG J G

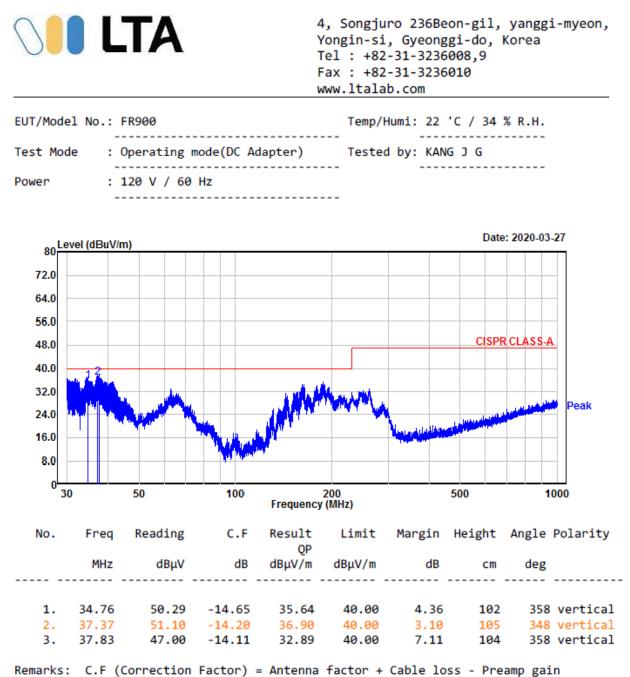

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss + Pulse Limiter

MODE : Operating mode (DC Adapter) (NEUTRAL)

LTA

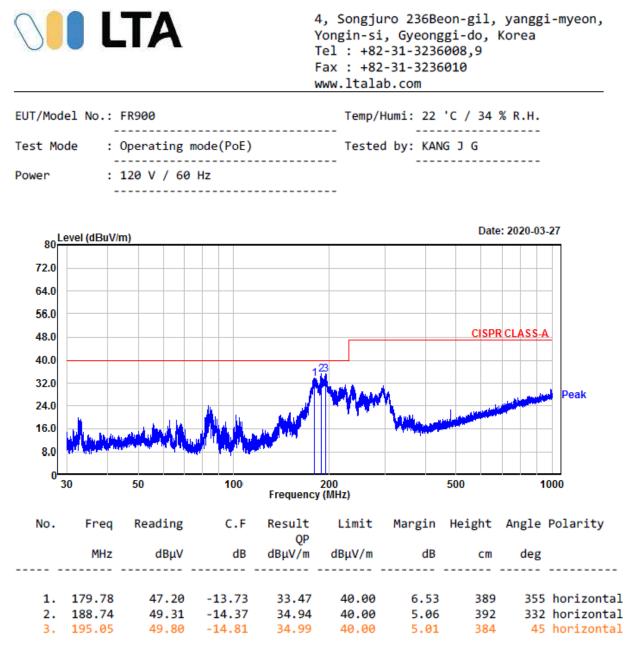
4, Songjuro 236 Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT /Model No.	: FR900	Phase	: Neutral
Test Mode	: Operating mode(DC Adapter)	Test Power	: 120 V / 60 Hz
Temp./ Humi.	: 22 'C / 32 % R.H.	Test Engineer	: KANG J G

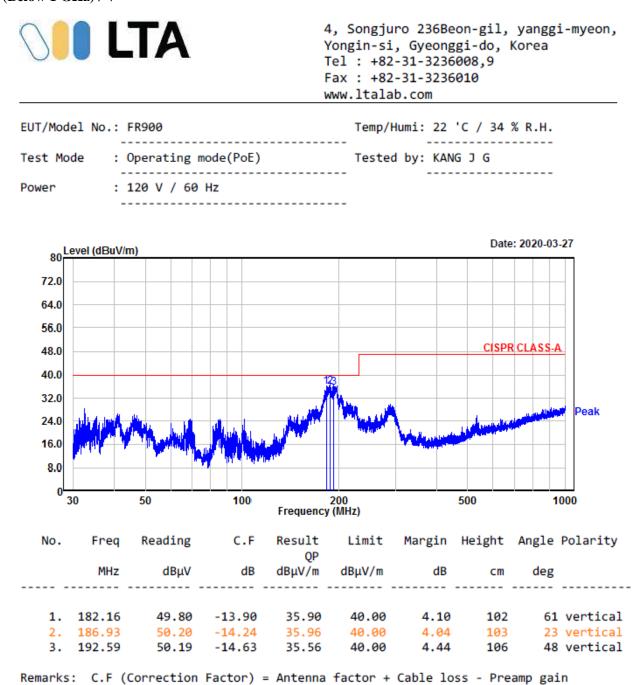


5-2 Radiated Emissions

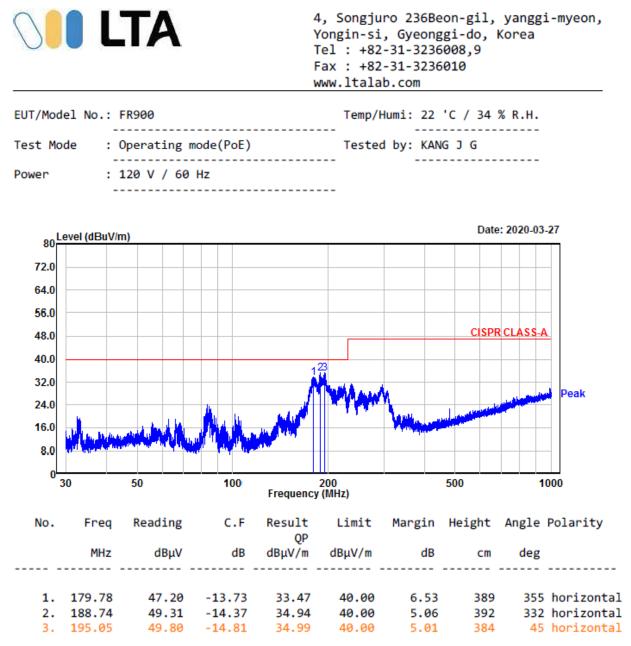
MODE : Operating mode (DC Adapter)


(Below 1 GHz) / V

MODE : Operating mode (DC Adapter)

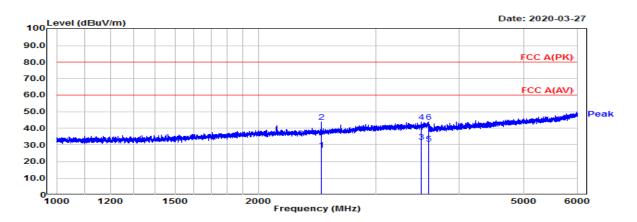

(Below 1 GHz) / H

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

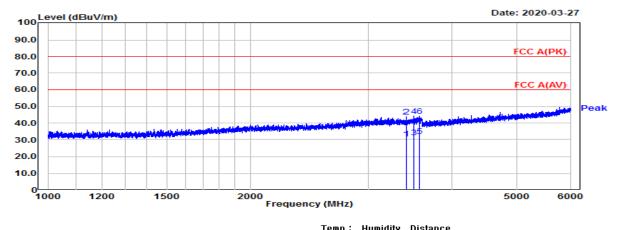

MODE : Operating mode (PoE) (Below 1 GHz) / V

MODE : Operating mode (PoE)

(Below 1 GHz) / H


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

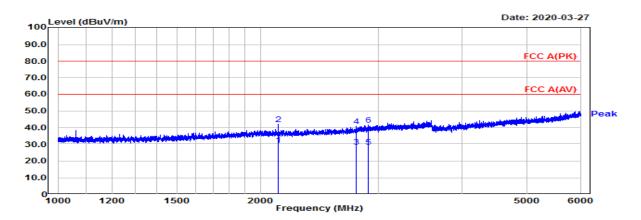
MODE : Operating mode (DC Adapter)


(Above 1 GHz)

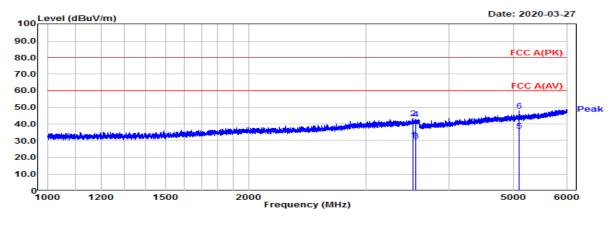
(Above 1 GHz) / H

EUT/Model No	.: FR900	Temp/Humi: 22 'C / 34 % R.H.
Test Mode	: Operating mode(DC Adapter)	Tested by: KANG J G
Power	: 120 V / 60 Hz	

Manufacture : BLUEBIRD INC.	Test Date	Temp.: [℃]	Humidity : [%]	Distance (m)
Model : FR900	2020-03-27	22.00	34.00	3.8
TEST mode: Operating mode(DC Adapter)				


Frequency	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∀	dBuV	dB	dBu∀/m	dBu∀/m	dBuV/m	dBu∀/m	dB	dB	cm	deg	H/V
3417.55	39.37	26.35	6,33	45.70	32.68	80.00	60,00	34.30	27.32	148	242	Н
3505, 93	39.74	26.95	6.57	46.31	33.52	80.00	60.00	33.69	26.48	134	352	Н
3575.71	39.24	27.16	6,90	46.14	34.06	80.00	60.00	33.86	25.94	136	149	Н
2483.19	43.74	26.66	2.07	45.81	28.73	80.00	60.00	34.19	31.27	121	283	V
3507.50	39.22	27.35	6.58	45.80	33.93	80.00	60.00	34.20	26.07	117	49	V
3593.38	38.67	25.65	7.00	45.67	32,65	80.00	60.00	34.33	27.35	124	22	V

MODE : Operating mode (PoE)


(Above 1 GHz) / V

(Above 1 GHz) / H

Manufacture : BLUEBIRD INC.	Test Date	Temp.: [℃]	Humidity :[%]	Distance (m)
Model : FR900	2020-03-27	22.00	34.00	3.8
TEST mode: Operating mode(PoE)				

Frequency	Reading(PK)	Reading(AV)	C.F	Result(PK)	Result(AV)	Limit(PK)	Limit(AV)	Margin(PK)	Margin(AV)	Height	Angle	Polarity
MHz	dBu∀	dBu∨	dB	dBu∀/m	dBu∀/m	dBuV/m	dBuV/m	dB	dB	cm	deg	H/V
3528.78	38.77	25.75	6.68	45.45	32.43	80.00	60.00	34.55	27.57	152	178	Н
3564.52	38.29	25.15	6.85	45.14	32.00	80.00	60.00	34.86	28.00	162	175	Н
5098.43	36.49	24.66	13.43	49.92	38.09	80.00	60.00	30.08	21.91	132	101	Н
2124.28	43.07	30.65	0.91	43.98	31.56	80.00	60.00	36.02	28.44	121	311	V
2777.43	38.85	26.55	3.86	42.71	30.41	80.00	60.00	37.29	29.59	110	204	V
2898.18	38.79	25.75	4.61	43.40	30, 36	80.00	60,00	36.60	29.64	108	167	V

Conclusions

Product models **"FR900"** meets all of the Class A requirements of the FCC Part 15, Subpart B. Limits of radio disturbance characteristics of ITE).

(Refer to Test Specification and Test Results in the "LTA certification", page 4 and 5)

- The highest internal source of an EUT is higher than 108 MHz, the measurement shall be made up to 6 GHz. (The highest internal source of an 928 MHz)