TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel: 031-321-2664, Fax: 031-321-1664

1. Report No: DRTFCC2101-0010(1)

2. Customer

Name: BLUEBIRD INC.

· Address: 3F, 115, Irwon-ro, Gangnam-gu, Seoul, South Korea

3. Use of Report: FCC Certification

4. Product Name / Model Name: Enterprise Full-Touch Handheld Computer / EF550

FCC ID: SS4EF550

5. FCC Regulation(s): Part 15.225

Test Method Used: ANSI C63.10-2013

6. Date of Test: 2021.01.07 ~ 2021.01.11, 2021.01.15

7. Location of Test: Permanent Testing Lab On Site Testing

8. Testing Environment: Refer to appended test report.

9. Test Result: Refer to the attached test result.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Tested by Affirmation

Name: JaeHyeok Bang

Reviewed by

Name : JaeJin Lee

2021, 01, 15,

DT&C Co., Ltd.

This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

(Signature)

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2101-0010	Jan. 13, 2021	Initial issue	JaeHyeok Bang	JaeJin Lee
DRTFCC2101-0010(1)	Jan. 15, 2021	Retested the 20 dB bandwidth	JaeHyeok Bang	JaeJin Lee

CONTENTS

1. General Information	4
1.1. Testing Laboratory	4
1.2. Testing Environment	4
1.3. Measurement Uncertainty	4
1.4 Details of Applicant	5
1.5. Description of EUT	5
1.6. EUT Capabilities	5
2. Information about test items	6
2.1 Test mode	6
2.2 Tested frequency	6
2.3 EMI Suppression Device(s)/Modifications	6
3. Antenna requirements	6
4. Test report	7
4.1 Summary of tests	7
4.2 Transmitter requirements	8
4.2.1 20dB bandwidth	8
4.2.2 In-band emissions	9
4.2.3 Out-of-band emissions	11
4.2.4 Frequency Stability	13
4.2.5 AC Line Conducted Emissions	14
APPENDIX	17

1.1. Testing Laboratory

1. General Information

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of § 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No.: KR0034

- ISED#: 5740A

 www.dtnc.net

 Telephone
 : +82-31-321-2664

 FAX
 : +82-31-321-1664

1.2. Testing Environment

Ambient Condition			
Temperature	+22 °C ~ +25 °C		
 Relative Humidity 	40 % ~ 43 %		

1.3. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty		
AC power-line conducted emission	3.6 dB (The confidence level is about 95 %, $k = 2$)		
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, k = 2)		

1.4 Details of Applicant

Applicant Name	BLUEBIRD INC.
Address	3F, 115, Irwon-ro, Gangnam-gu, Seoul, South Korea

1.5. Description of EUT

Equipment Class	Low Power Communications Device Transmitter(DXX)
Product Name	Enterprise Full-Touch Handheld Computer
Model Name	EF550
Add Model Name	EF550R
Hardware Version	R1.00
Software Version	REV.0.3
Test Device Serial Number	Radiated: EF550A4LAESTFBA054
Power Supply	DC 3.85 V
Frequency Band	13.56 MHz
Modulation Technique	ASK
Channel(s)	1
Antenna type	FPCB Loop Antenna

1.6. EUT Capabilities

This EUT contains the following capabilities:

850/1700/1900 WCDMA, LTE Single transmitting for band 2/4/66/5/12/13/71, 802.11b/g/n WLAN(2.4GHz), 802.11a/n/ac WLAN(5GHz), Bluetooth(BDR, EDR, LE)

2. Information about test items

2.1 Test mode

Test mode1	Continuous transmitting mode
------------	------------------------------

2.2 Tested frequency

Channel	TX Frequency(MHz)
Lowest	13.56
Middle	-
Highest	•

2.3 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

3. Antenna requirements

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The internal antenna is attached on the main PCB using the special spring tension. Therefore this E.U.T Complies with the requirement of §15.203

4. Test report

4.1 Summary of tests

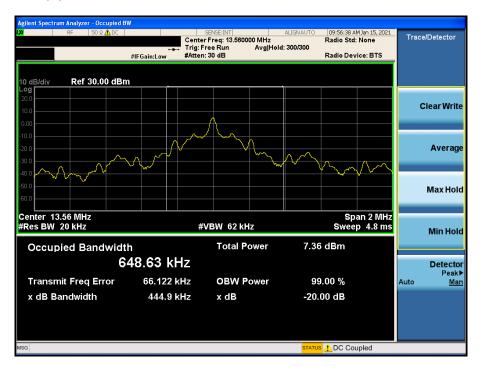
FCC part section(s)	Parameter	Limit	Test condition	Status Note 1
2.1049	20 dB Bandwidth	-		O
15.225 (a)	In-Band Emissions	15,848 μV/m @ 30 m 13.553 MHz – 13.567 MHz		С
15.225 (b)	In-Band Emissions	334 μV/m @ 30 m 13.410 MHz – 13.553 MHz 13.567 MHz – 13.710 MHz	Radiated	С
15.225 (c)	In-Band Emissions	106 μV/m @ 30 m 13.110 MHz – 13.410 MHz 13.710 MHz – 14.010 MHz		С
15.225 (d) 15.209	Out-of Band Emissions	Emissions outside of the specified band (13.110 MHz - 14.010 MHz) must meet the radiated limits detailed in 15.209		ပ
15.225 (e)	Frequency Stability	±0.01 % of operating frequency	Temp & Humid Test Chamber	С
15.207	AC Conducted Emissions	FCC Part 15.207 (see section 4.2.5)	AC Line Conducted	С
15.203	Antenna Requirements	FCC Part 15.203 (see section 3)	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

4.2 Transmitter requirements

4.2.1 20dB bandwidth

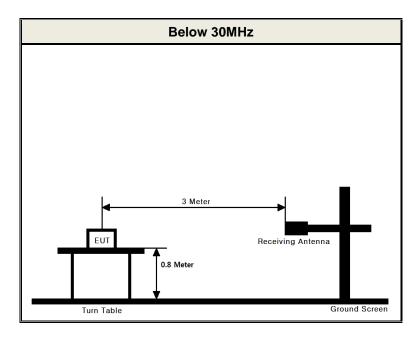

- Procedure:

The 20 dB Bandwidth is measured with a spectrum analyzer connected via a receive antenna placed near the EUT while the EUT is operating in transmission mode.

And spectrum analyzer setting use following test procedure of ANCSI C63.10-2013 – Section 6.9.2.

- 1. Center frequency = EUT channel center frequency
- 2. Span = $2 \sim 5$ times the OBW
- 3. RBW = 1 % ~ 5 % OBW
- 4. VBW ≥ 3 x RBW
- 5. Detector = Peak
- 6. Trace = Max hold
- 7. The trace was allowed to stabilize
- 8. Determine the reference value = Set the spectrum analyzer marker to the highest level of the displayed trace
- 9. Using the marker-delta function of the instrument, determine the "-xx dB down amplitude" using [(reference value) xx].
- 10. Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

- Measurement Data: Comply



- Minimum Standard: NA

4.2.2 In-band emissions

- Test Configuration

- Procedure: The radiated emission was tested according to the section 6.4 of the ANSI C63.10-2013.

The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3 m distance from the antenna. Measurements were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel)

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW		
9 kHz – 150 kHz	200 Hz – 300 Hz		
0.15 MHz – 30 MHz	9 kHz – 10 kHz		
30 MHz – 1 000 MHz	100 kHz – 120 kHz		
> 1 000 MHz	1 MHz		

- Minimum Standard: Part 15.225(a), (b), (c)

Frequency Band [MHz]	Limit at 30 m measurement distance			
r requericy Baria [Miriz]	[uV/m]	[dBuV/m]		
13.553-13.567	15,848	84.0		
13.410-13.553 13.567-13.710	334	50.5		
13.110-13.410 13.710-14.010	106	40.5		

- Measurement Data:

Tested Frequency : <u>13.56 MHz</u>

Measurement Distance : <u>3 Meters</u>

Test Frequency Band [MHz]	Freq. [MHz]	EUT Axis.	ANT (Note 1)	Reading Level [dBuV]	T.F [dB/m]	Field Strength @3 m [dBuV/m]	Field Strength @30 m [dBuV/m]	Limit [dBuV/m]	Margin [dB]
13.110 ~ 13.410	13.349	Z	Р	31.9	10.6	42.5	2.5	40.5	38.0
13.410 ~ 13.553	13.552	Z	Р	45.6	10.6	56.2	16.2	50.5	34.3
13.553 ~ 13.567	13.560	Z	Р	51.5	10.6	62.1	22.1	84.0	61.9
13.567 ~ 13.710	13.568	Z	Р	45.6	10.6	56.2	16.2	50.5	34.3
13.710 ~ 14.010	13.774	Z	Р	30.7	10.5	41.2	1.20	40.5	39.3

Note 1. Loop antenna orientation

Note 2. This test item was performed at 3 m and the data were extrapolated to the specified measurement distance of 30 m using the square of an inverse linear distance extrapolation factor (40 dB/decade) as specified in §15.31(f)2.

• Extrapolation Factor = $20 \log_{10}(3/30)^2 = -40 \text{ dB}$

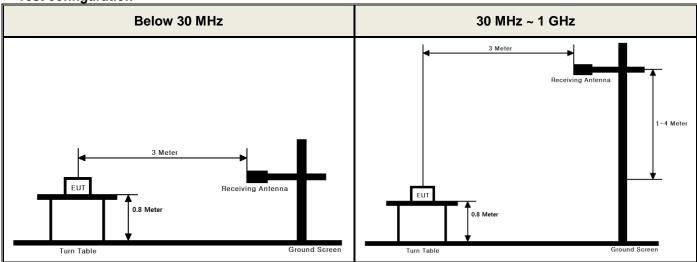
Note 3. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 4. Sample Calculation.

Margin = Limit - Field Strength @ 30 m / Field Strength @ 30 m = Field Strength @ 3 m - 40 dB

Field Strength @ 3 m = Reading + T.F / T.F = AF + CL


Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss

[&]quot;P": Parallel, "V": perpendicular, "G": ground-parallel

4.2.3 Out-of-band emissions

- Test configuration

- Procedure: The radiated emission was tested according to the section 6.4, 6.5 of the ANSI C63.10-2013.

The EUT was tested from 9 kHz up to the 1 GHz excluding the band 13.110 MHz - 14.010 MHz. A The EUT was placed on a 0.8 m high non-conductive table and it was placed at 3m distance from the antenna.

For measurements below 30 MHz were performed for each of the three antenna orientations. (ie. parallel, perpendicular, and ground-parallel) For measurements above 30 MHz were performed for each of the both horizontal and vertical polarizations.

Also, measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9 kHz – 150 kHz	200 Hz – 300 Hz
0.15 MHz – 30 MHz	9 kHz – 10 kHz
30 MHz – 1 000 MHz	100 kHz – 120 kHz
> 1 000 MHz	1 MHz

- Minimum Standard: Part 15.209, 225(d)

• FCC Part 15.209(a):

Frequency [MHz]	Field Strength [uV/m]	Measurement Distance [Meters]
0.009 ~ 0.490	2 400 /F (kHz)	300
0.490 ~ 1.705	2 4000 / F (kHz)	30
1.705 ~ 30	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	200	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.209(b):

In the emission table above, the tighter limit applies at the band edges.

- Measurement Data:

Tested Frequency : 13.56 MHz

Measurement Distance : 3 Meters

Frequency [MHz]	EUT Axis.	ANT (Note 1)	Reading [dBuV]	T.F [dB/m]	Distance factor [dB]	Field Strength [dBuV/m]	Limit [dBuV/m]	Margin [dB]
0.523	Z	Р	38.5	11.0	- 40.0	9.5	33.2	23.7
7.825	Z	Р	37.1	10.9	- 40.0	8.0	29.5	21.5
16.220	Z	V	30.4	10.5	- 40.0	0.9	29.5	28.6
47.460	Z	V	43.0	-8.8	0.0	34.2	40.0	5.8
49.400	Z	V	43.1	-8.9	0.0	34.2	40.0	5.8
53.280	Z	V	42.1	-9.2	0.0	32.9	40.0	7.1
70.740	Z	V	35.8	-11.2	0.0	24.6	40.0	15.4
820.541	Z	V	26.3	3.1	0.0	29.4	46.0	16.6

Note 1. Loop antenna orientation (30 MHz Below)

"P"= Parallel, "V"= perpendicular, "G"= ground-parallel

Bilog antenna polarization (30 MHz above)

"H"= Horizontal, "V"= Vertical

Note 2. All data were recorded using a spectrum analyzer employing a peak detector.

If PK results were meet Quasi-peak limit, Quasi-peak measurements were omitted.

Note 3. No other spurious and harmonic emissions were reported greater than listed emissions above table.

Note 4. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance correction factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

Note 5. Sample calculation

Margin = Limit - Field Strength

Field Strength = Reading + T.F + Distance factor

T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain

4.2.4 Frequency Stability

- Procedure:

Part 15.225 requires that devices operating in the 13.553 – 13.567 MHz shall maintain the carrier frequency within 0.01 % of the operating frequency over the temperature variation of -20 degrees to + 50 degrees C at normal supply voltage.

- Measurement Data: Comply

Operating Frequency : 13,560,000 Hz

VOLTAGE (%)	POWER (V _{DC})	TEMP (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+20(ref)	13,559,879	-121	0.000 894
100 %		-20	13,560,015	15	0.000 112
100 %		-10	13,559,958	-42	0.000 309
100 %		0	13,559,928	-72	0.000 531
100 %	3.85	+10	13,559,888	-112	0.000 827
100 %		+20	13,559,916	-84	0.000 620
100 %		+30	13,559,871	-129	0.000 949
100 %		+40	13,559,932	-68	0.000 499
100 %		+50	13,559,908	-92	0.000 676
115 %	4.43	+20	13,559,901	-99	0.000 726
BATT.ENDPOINT	3.35	+20	13,559,879	-121	0.000 894

- Minimum Standard: Part 15. 225(e)

The frequency tolerance of the carrier signal shall be maintained within ±0.01 % of the operating frequency.

4.2.5 AC Line Conducted Emissions

- Test Requirements and limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).

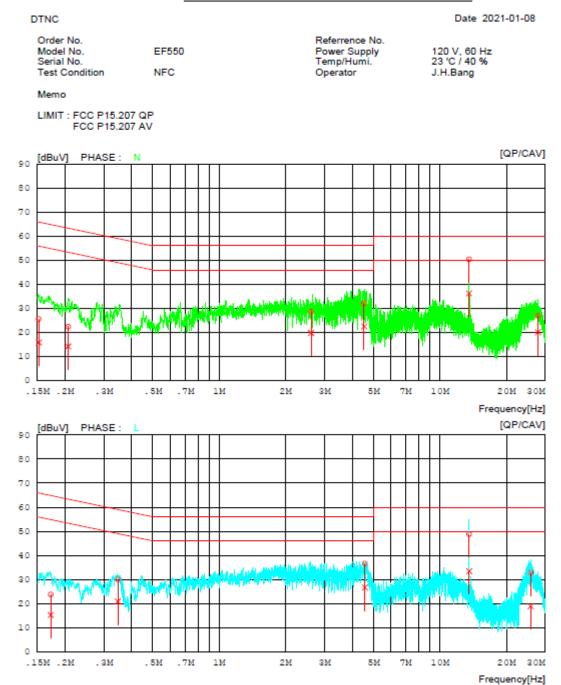
Frequency Range	Conducted	Limit (dBuV)
(MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

- Test Configuration

See test photographs for the actual connections between EUT and support equipment.


- Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.
- Measurement Data: Comply (refer to the next page)

Measurement Data

Results of Conducted Emission

Measurement Data

Results of Conducted Emission

DTNC Date 2021-01-08

Order No. Model No. Serial No.

Test Condition

EF550 NFC Referrence No. Power Supply Temp/Humi. Operator

120 V, 60 Hz 23 'C / 40 % J.H.Bang

Memo

LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READING OP CAV	C.FACTOR	RESULT OP CAV	LIMI OP	IT CAV	MARGIN OP CAV	PHASE
	[MHz]	[dBuV][dBuV]	[dB]	~	~		[dBuV][dBuV]	
1	0.15237	15.67 5.96	9.94	25.6115.90	65.87 5	5.87 4	0.2639.97	N
2	0.20702	12.39 4.32	9.94	22.3314.26	63.32 5	3.32 4	0.9939.06	N
3	2.60755	18.54 9.75	10.06	28.6019.81	56.00 4	6.00 2	7.40 26.19	N
4	4.53394	22.0612.41	10.14	32.20 22.55	56.00 4	6.00 2	3.80 23.45	N
5	13.55840	39.9025.88	10.42	50.3236.30	60.00 5	0.00	9.6813.70	N
6	27.79277	16.30 9.53	10.63	26.9320.16	60.00 5	0.00 3	3.07 29.84	N
7	0.17248	13.82 5.23	9.94	23.7615.17	64.84 5	4.84 4	1.08 39.67	L
8	0.34694	20.0410.89	9.96	30.0020.85	59.04 4	9.04 2	9.04 28.19	L
9	4.56999	26.3616.48	10.13	36.4926.61	56.00 4	6.00 1	9.5119.39	L
10	13.56096	38.30 23.03	10.41	48.71 33.44	60.00 5	0.00 1	1.2916.56	L
11	25.76830	22.21 8.33	10.57	32.7818.90	60.00 5	0.00 2	7.22 31.10	L

APPENDIX

TEST EQUIPMENT FOR TESTS

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	20/12/16	21/12/16	MY46471251
Spectrum Analyzer	Agilent Technologies	N9020A	20/06/24	21/06/24	US47360812
DC Power Supply	Agilent Technologies	66332A	20/06/24	21/06/24	MY43000211
Multimeter	FLUKE	17B+	20/12/16	21/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-1
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2
HYGROMETER	TESTO	608-H1	20/01/21	21/01/21	34862883
Temp & Humi Test Chamber	SJ Science	SJ-TH-S50	20/12/14	21/12/14	SJ-TH-S50- 120203
Loop Antenna	ETS-Lindgren	6502	20/04/24	22/04/24	203480
BILOG ANTENNA	Schwarzbeck	VULB 9160	19/04/23	21/04/23	9160-3362
PreAmplifier	H.P	8447D	20/12/16	21/12/16	2944A07774
EMI Test Receiver	ROHDE&SCHWAR Z	ESU	20/01/20	21/01/20	100538
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	20/08/25	21/08/25	101333
LISN	SCHWARZBECK	NSLK 8128 RC	20/10/23	21/10/23	8128 RC-387
Cable	DT&C	Cable	21/01/08	22/01/08	M-01
Cable	DT&C	Cable	21/01/08	22/01/08	M-02
Cable	DT&C	Cable	21/01/08	22/01/08	M-03
Cable	DT&C	Cable	21/01/08	22/01/08	M-07
Cable	DT&C	Cable	21/01/08	22/01/08	M-09
Cable	DT&C	Cable	20/01/16	21/01/16	RF-82
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0177
Test Software	tsj	Noise Terminal Voltage Measurement	NA	NA	Version 2.00.0170

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017. Note2: The cable is not a regular calibration item, so it has been calibrated by DT&C itself.