TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

- 1. Report No: DRTFCC1801-0013
- 2. Customer
 - Name : Bluebird Inc.
 - Address : (Dogok-dong, SEI Tower 13,14) 39, Eonjuro30-gil, Gangnam-gu, Seoul South Korea
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : Touch Mobile Computer / EF501R FCC ID : SS4EF501R
- 5. Test Method Used : KDB558074 D01v04

Test Specification : FCC Part 15.247

- 6. Date of Test : 2017.12.22 ~ 2018.01.03
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmatio n	Tested by Name : JungWoo Kim	Status	Reviewed by Name : GeunKi Son	(Signature)				
	The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.							
	2018.01.15.							
DT&C Co., Ltd.								

Test Report Version

Test Report No.	Date	Description
DRTFCC1801-0013	Jan. 15, 2018	Initial issue

Table of Contents

INFORMATION ABOUT TESTING 5 2.1 Test mode 5 2.2 Auxiliary equipment 5 2.3 Tested environment 6 2.4 EMI suppression Device(s) / Modifications 6 2.5 Measurement Uncertainty 6 3. SUMMARY OF TESTS 7 4. TEST METHODOLOGY 8 4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6.1 FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 9 8.1 TEST RESULT 10 8.1 6dB bandwidth 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
2.2 Auxiliary equipment 5 2.3 Tested environment 6 2.4 EMI suppression Device(s) / Modifications 6 2.5 Measurement Uncertainty 6 3. SUMMARY OF TESTS 7 4. TEST METHODOLOGY 8 4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
2.3 Tested environment 6 2.4 EMI suppression Device(s) / Modifications 6 2.5 Measurement Uncertainty 6 3. SUMMARY OF TESTS 7 4. TEST METHODOLOGY 8 4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
2.4 EMI suppression Device(s) / Modifications 6 2.5 Measurement Uncertainty 6 3. SUMMARY OF TESTS 7 4. TEST METHODOLOGY 8 4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
2.5 Measurement Uncertainty
3. SUMMARY OF TESTS 7 4. TEST METHODOLOGY 8 4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
4. TEST METHODOLOGY 8 4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
4.1 EUT configuration 8 4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
4.2 EUT exercise 8 4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
4.3 General test procedures 8 4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
4.4 Description of test modes 8 5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
5. INSTRUMENT CALIBRATION 9 6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
6. FACILITIES AND ACCREDITATIONS 9 6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
6.1 Facilities 9 6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
6.2 Equipment 9 7. ANTENNA REQUIREMENTS 9 8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
7. ANTENNA REQUIREMENTS
8. TEST RESULT 10 8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
8.1 6dB bandwidth 10 8.2 Maximum peak conducted output power 19 8.3 Maximum power spectral density 21 8.4 Out of band emissions at the band edge / conducted spurious emissions 30
8.2 Maximum peak conducted output power
8.3 Maximum power spectral density
8.4 Out of band emissions at the band edge / conducted spurious emissions
•
8.5 Radiated spurious emissions63
8.6 Power-line conducted emissions70
9. LIST OF TEST EQUIPMENT73
APPENDIX I
APPENDIX II
APPENDIX III

1. EUT DESCRIPTION

FCC Equipment Class	Digital Transmission System(DTS)
Product	Touch Mobile Computer
Model Name	EF501R
Add Model Name	NA
Power Supply	DC 3.8 V
Frequency Range	• 802.11b/g/n(20/40 MHz) : 2412 MHz ~ 2462 MHz
Max. RF Output Power	2.4GHz Band • 802.11b : 19.36 dBm • 802.11g : 21.73 dBm • 802.11n (HT20) :20.21 dBm • 802.11n (HT40) :20.41 dBm
Modulation Type	• 802.11b: CCK, DSSS • 802.11g/n: OFDM
Antenna Specification	Antenna type: Internal Antenna Antenna gain: 1.108 dBi

. INFORMATION ABOUT TESTING

2.1 Test mode

Test	Worst case data rate	Tested Frequency(MHz)				
mode		Lowest	Middle	Highest		
TM 1	802.11b 1 Mbps	2412	2437	2462		
TM 2	802.11g 6 Mbps	2412	2437	2462		
ТМ 3	802.11n(HT20) MCS 0	2412	2437	2462		
TM 4	802.11n(HT40) MCS 0	2422	2437	2452		

Note 1: The worst case data rate is determined as above test mode according to the power measurements. Also radiated spurious emission was performed at lowest data rate.

Note 2: The power measurement results for all modes and data rate were reported.

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note	
-	-	-	-	-	
-	-	-	-	-	

2.3 Tested environment

Temperature	: 20 ~ 24 °C	
Relative humidity content	: 39 ~ 44 % R.H	
Details of power supply	: DC 3.8 V	

2.4 EMI suppression Device(s) / Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C 63.4-2014 and ANSI C 63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Test items	Measurement uncertainty		
Transmitter Output Power	0.7 dB (The confidence level is about 95 %, $k = 2$)		
Conducted spurious emission	1.1 dB (The confidence level is about 95 %, $k = 2$)		
AC conducted emission	2.4 dB (The confidence level is about 95 %, k = 2)		
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, $k = 2$)		
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, $k = 2$)		
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)		

3. SUMMARY OF TESTS

FCC Part Section(s)	Parameter	Limit	Test Condition	Status Note 1
15.247(a)	6 dB Bandwidth	> 500 kHz		С
15.247(b)	Transmitter Output Power	< 1 Watt		С
15.247(d)	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	С
15.247(e)	Transmitter Power Spectral Density	< 8 dBm/3 kHz		С
-	RSS-Gen [6.6]	Occupied Bandwidth (99 %)		NA
15.247(d) 15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	FCC 15.209 limits	Radiated	C Note 2, 3
15.207 AC Line Conducted Emissions		FCC 15.207 limits	AC Line Conducted	С
15.203	Antenna Requirements	FCC 15.203	-	С

Note 2: This test item was performed in each axis and the worst case data was reported.

Note 3: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS.

4. TEST METHODOLOGY

Generally the tests were performed according to the KDB558074 D01v04, KDB662911 D01v02r01. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v04.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v04. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10 as stated on section 12.1 of the KDB558074 D01V04.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042. The site is constructed in conformance with the requirements.

- FCC MRA Accredited Test Firm No. : KR0034

www.dtnc.net			
Telephone	•	+ 82-31-321-2664	
FAX	:	+ 82-31-321-1664	

6.2 Equipment

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, loop, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

7.1 According to FCC 47 CFR §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antenna is attached on the main PCB using the special spring tension. (Refer to Internal Photo file.) Therefore this E.U.T Complies with the requirement of §15.203

8. TEST RESULT

8.1 6dB bandwidth

Test Requirements and limit, §15.247(a)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure:

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074

D01V04

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW. (RBW : 100 kHz / VBW : 300 kHz)
- 3. Detector = Peak.
- 4. Trace mode = **Max hold**.
- 5. Sweep = Auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Results: Comply

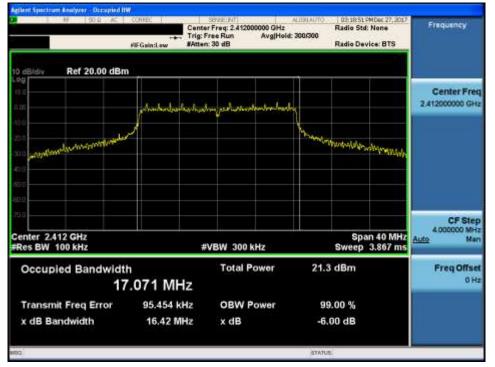
Test Mode	Frequency	Test Results[MHz]
	Lowest	9.056
TM 1	Middle	8.124
	Highest	8.611
	Lowest	16.420
TM 2	Middle	16.380
	Highest	16.400
	Lowest	17.590
TM 3	Middle	17.610
	Highest	17.620
	Lowest	35.160
TM 4	Middle	35.230
	Highest	35.390

RESULT PLOTS

6 dB Bandwidth

6 dB Bandwidth

TM 1 & Middle



TM 1 & Highest


Dt&C

TM 2 & Lowest


6 dB Bandwidth

TM 2 & Middle

🛈 Dt&C

TM 2 & Highest

FCC ID: SS4EF501R

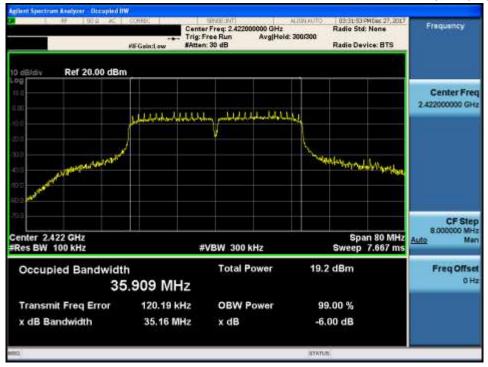
🛈 Dt&C


6 dB Bandwidth

TM 3 & Lowest

6 dB Bandwidth

TM 3 & Middle



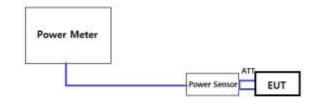
🛈 Dt&C

TM 3 & Highest

TM 4 & Lowest

6 dB Bandwidth

TM 4 & Middle



8.2 Maximum peak conducted output power

Test Requirements and limit, §15.247(b)

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

1. PKPM1 Peak power meter method of KDB558074 D01V04

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

2. Method AVGPM-G (Measurement using a gated RF average power meter) of KDB558074 D01V04

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Note: The measure-and-sum technique is used for test mode with multiple transmitting.

Test Results: Comply

From			Maxim	um Peak Co	nducted Ou	tput Power	(dBm) for <u>8</u>	02.11b	
Freq. (MHz)	Det. Data Rate [Mbps								
		1	2	5.5	11	-	-	-	-
2412	PK	19.13	19.05	19.01	18.94	-	-	-	-
2412	AV	16.88	16.83	16.75	16.71	-	-	-	-
2437	PK	19.24	19.20	19.14	19.09	-	-	-	-
2437	AV	16.83	16.79	16.74	16.70	-	-	-	-
2462	PK	19.36	19.30	19.24	19.20	-	-	-	-
2402	AV	16.95	16.90	16.82	16.74	-	-	-	-

Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm) for 802.11g										
		Data Rate [Mbps]										
		6	9	12	18	24	36	48	54			
2412	PK	21.13	21.09	21.02	20.95	20.87	20.74	20.69	20.55			
2412	AV	14.87	14.85	14.79	14.71	14.66	14.58	14.53	14.47			
2437	PK	21.52	21.48	21.39	21.32	21.27	21.21	21.14	21.09			
2437	AV	14.93	14.90	14.88	14.82	14.77	14.76	14.74	14.70			
2462	PK	21.73	21.68	21.64	21.57	21.48	21.39	21.34	21.26			
	AV	14.94	14.93	14.90	14.86	14.84	14.82	14.78	14.75			

Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm) for <u>802.11n(HT20)</u>										
		Data Rate [MCS]										
		0	1	2	3	4	5	6	7			
2412	PK	20.10	20.04	19.96	19.87	19.84	19.77	19.71	19.65			
	AV	11.83	11.79	11.73	11.65	11.57	11.52	11.46	11.42			
2437	PK	20.11	20.07	19.95	19.87	19.75	19.72	19.64	19.56			
2437	AV	11.82	11.78	11.71	11.64	11.58	11.52	11.47	11.38			
2462	PK	20.21	20.17	20.11	20.05	19.96	19.89	19.84	19.79			
	AV	11.87	11.84	11.79	11.73	11.64	11.61	11.56	11.49			

Freq. (MHz)	Det.	Maximum Peak Conducted Output Power (dBm) for 802.11n(HT40)										
		Data Rate [MCS]										
		0	1	2	3	4	5	6	7			
2422	PK	20.17	20.13	20.08	19.97	19.91	19.85	19.77	19.72			
	AV	11.94	11.90	11.82	11.76	11.71	11.63	11.58	11.55			
2437	PK	20.09	20.01	19.94	19.88	19.79	19.72	19.64	19.58			
	AV	11.80	11.75	11.71	11.63	11.56	11.52	11.46	11.37			
2452	PK	20.41	20.37	20.31	20.25	20.19	20.12	20.07	19.98			
	AV	11.86	11.82	11.74	11.68	11.62	11.55	11.49	11.37			

8.3 Maximum power spectral density

Test requirements and limit, §15.247(e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure


Method PKPSD of KDB558074 D01V04 is used.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to : **3 kHz** ≤ RBW ≤ **100 kHz**
- 4. Set the VBW ≥ **3 x RBW**
- 5. Detector = **Peak**
- 6. Sweep time = **Auto couple**
- 7. Trace mode = Max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Results: Comply

Test Mode	Frequency	RBW	PKPSD [dBm]
	Lowest	3 kHz	-5.46
TM 1	Middle	3 kHz	-4.86
	Highest	3 kHz	-5.97
	Lowest	3 kHz	-9.83
TM 2	Middle	3 kHz	-10.24
	Highest	3 kHz	-10.21
	Lowest	3 kHz	-14.37
TM 3	Middle	3 kHz	-13.23
	Highest	3 kHz	-13.29
	Lowest	3 kHz	-16.15
TM 4	Middle	3 kHz	-15.34
	Highest	3 kHz	-16.12

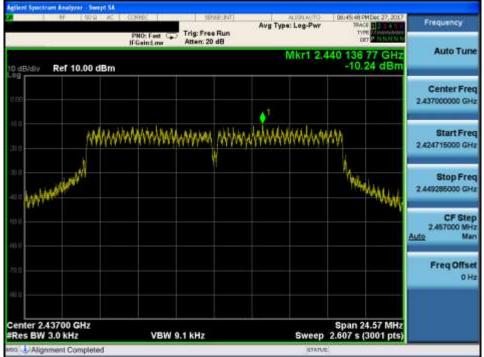
RESULT PLOTS

Maximum PPSD

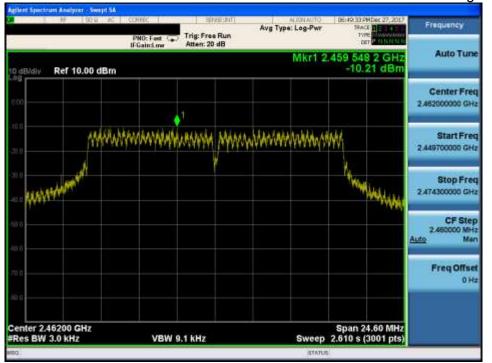
TM 1 & Middle

Maximum PPSD

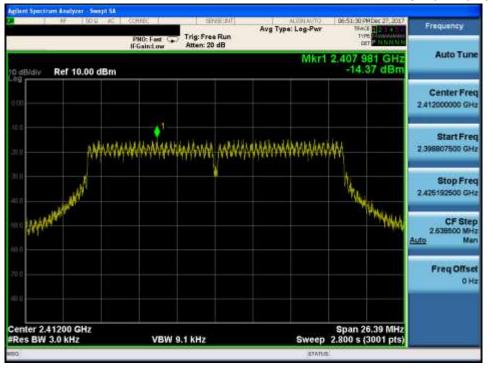
TM 1 & Highest


Maximum PPSD

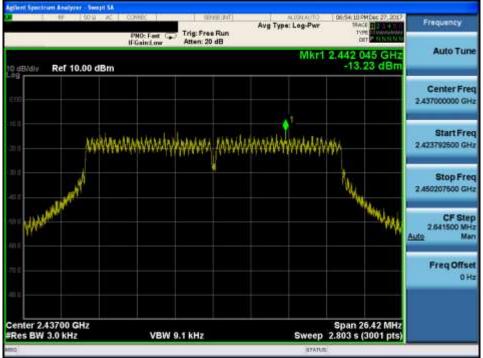
TM 2 & Lowest


Maximum PPSD

TM2 & Middle


Maximum PPSD

TM 2 & Highest

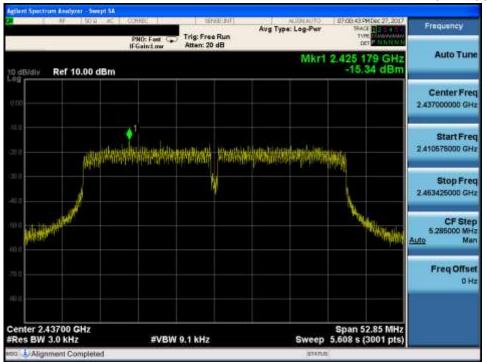

Maximum PPSD

Maximum PPSD

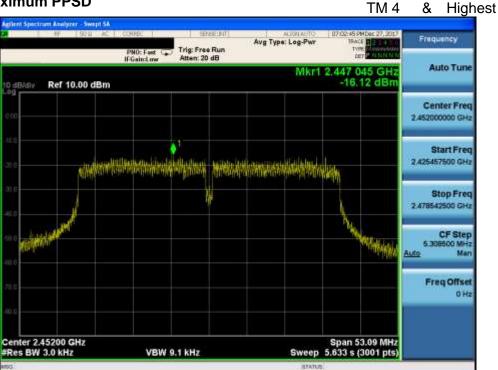
TM3 & Middle

Maximum PPSD

Maximum PPSD


🛈 Dt&C

TM 4 & Lowest



Maximum PPSD

TM4 & Middle

Maximum PPSD

8.4 Out of band emissions at the band edge / conducted spurious emissions

Test requirements and limit, §15.247(d)

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in band average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

Test Configuration:

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 – Reference Level of KDB558074 D01v04

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = **Peak.**
- 6. Sweep time = **Auto couple.**
- 7. Trace mode = **Max hold.**
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level.

- Measurement Procedure 2 - Unwanted Emissions of KDB558074 D01v04

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz. (Actual 1 MHz , See below note)
- 3. Set the VBW ≥ 3 x RBW. (Actual 3 MHz, See below note)
- 4. Detector = **Peak**.
- 5. Ensure that the number of measurement points \geq Span / RBW.
- 6. Sweep time = Auto couple.
- 7. Trace mode = **Max hold.**
- 8. Allow the trace to stabilize. (this may take some time, depending on the extent of the span)
- 9. Use the peak marker function to determine the maximum amplitude level.

Note : The conducted spurious emission was tested with below settings. Frequency range: 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

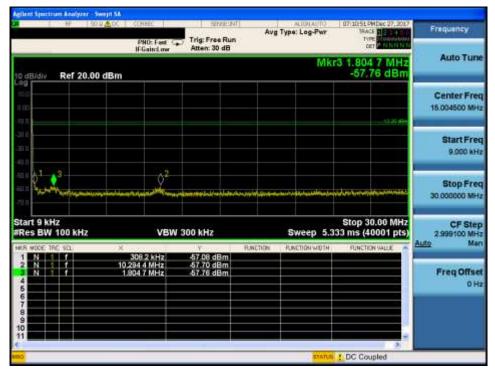
Frequency range: 30 MHz ~ 10 GHz, 10 GHz ~25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

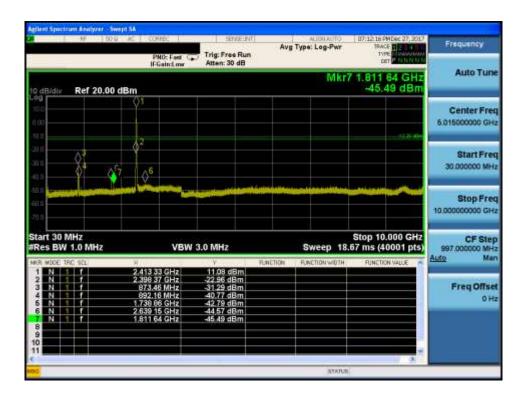
LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

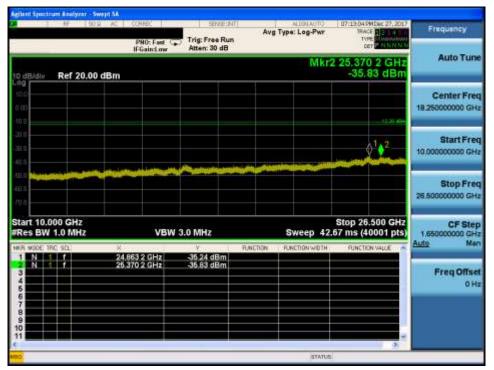
If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

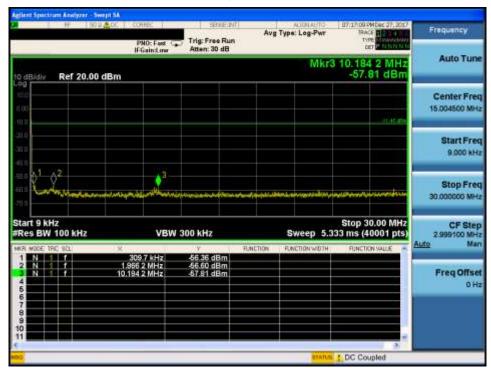
RESULT PLOTS

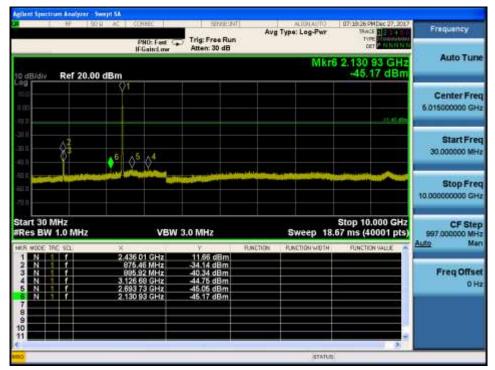
TM 1 & Lowest


Reference 87:06:02 PM Dec 27, 2017 TRACE TRACE Frequency Avg Type: Log-Pwr Trig: Free Run Atten: 30 dB 199 PND: Fast G Auto Tune Mkr1 2.413 041 GHz 7.80 dBm Ref 20.00 dBm dBA0 Center Freq 2,412000000 GHz Start Freq 2.405208000 GHz Stop Freq 2.418792000 GHz CF Step 1.358400 MHz Man Auto Freq Offset 0 Hz Center 2.412000 GHz #Res BW 100 kHz Span 13.58 MHz Sweep 1.400 ms (3001 pts) VBW 300 kHz


Low Band-edge

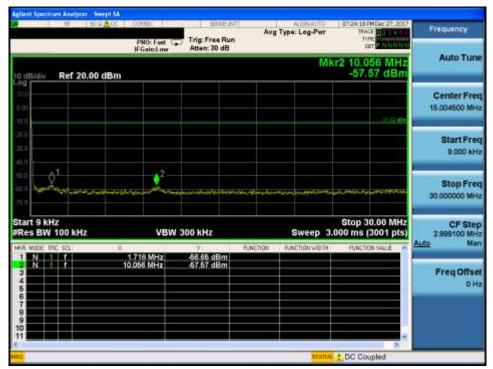

Pages: 31 / 87



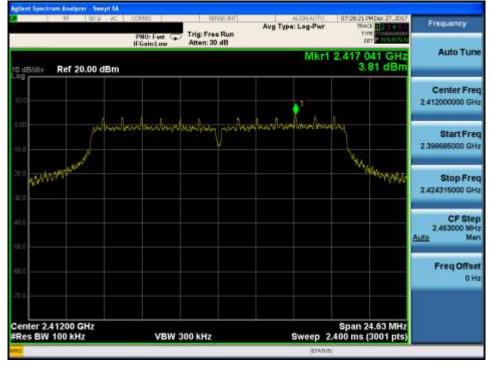

TM 1 & Middle

Reference

TM 1 & Highest

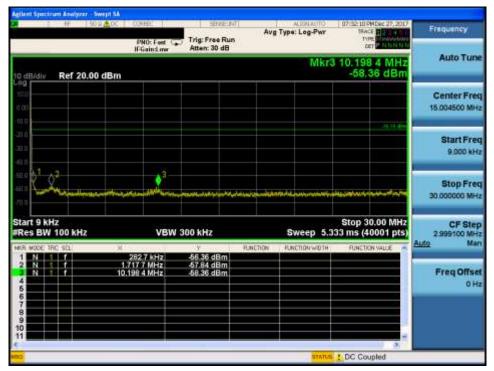

Reference

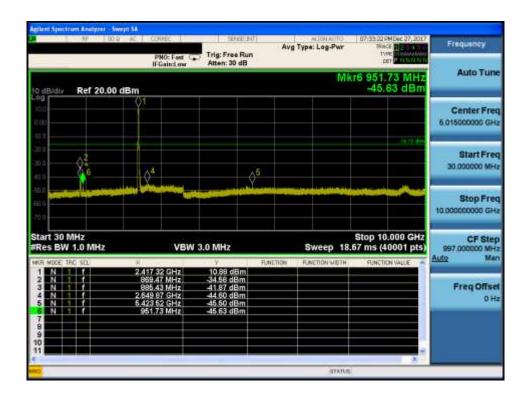
High Band-edge



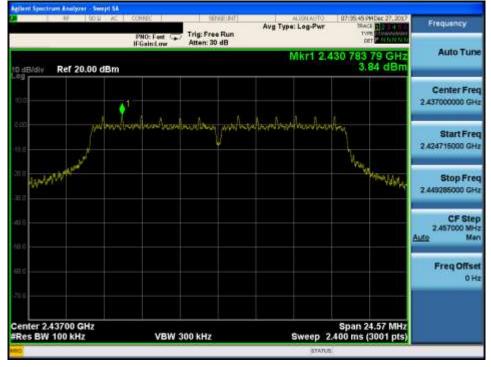
🛈 Dt&C

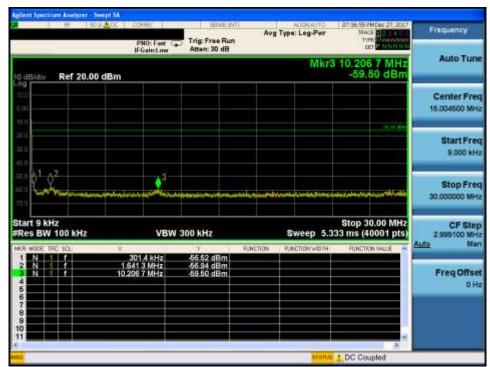
TM 2 & Lowest


Reference

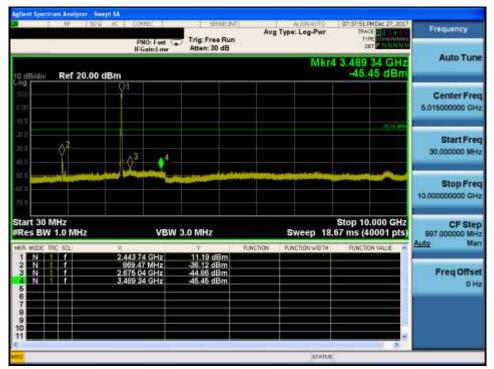


Low Band-edge

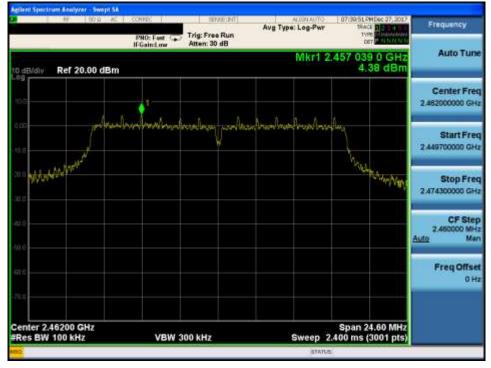




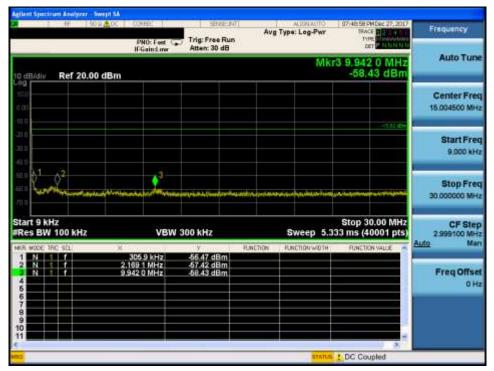
🛈 Dt&C

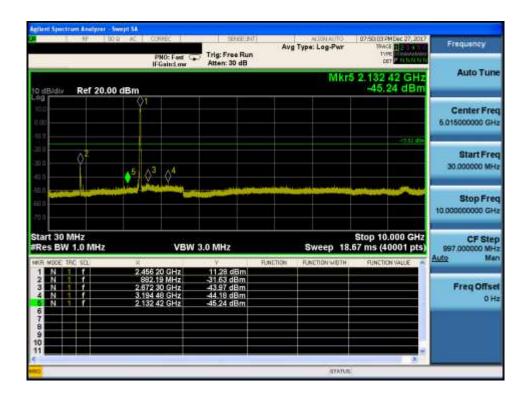

TM 2 & Middle


Reference

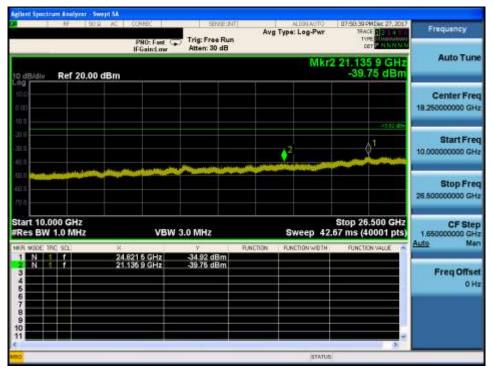


TM 2 & Highest

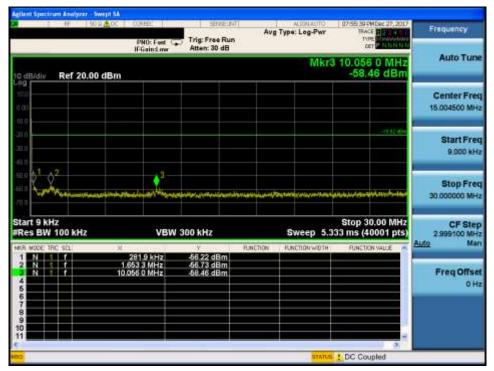

Reference

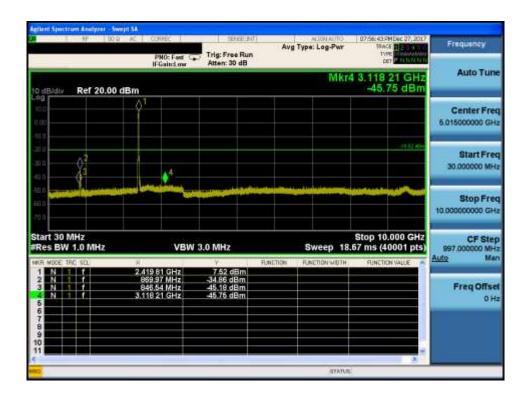


High Band-edge

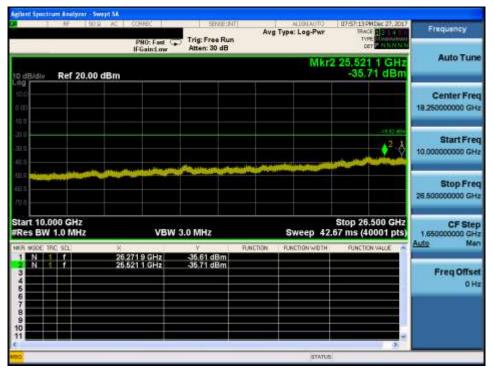


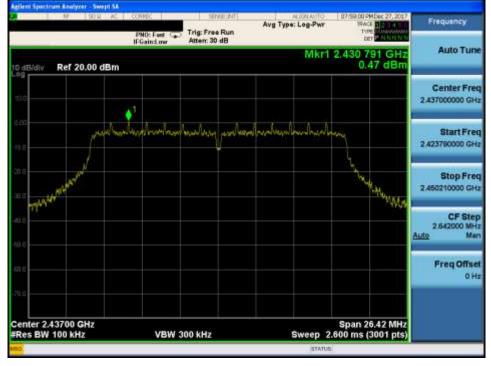
TM 3 & Lowest

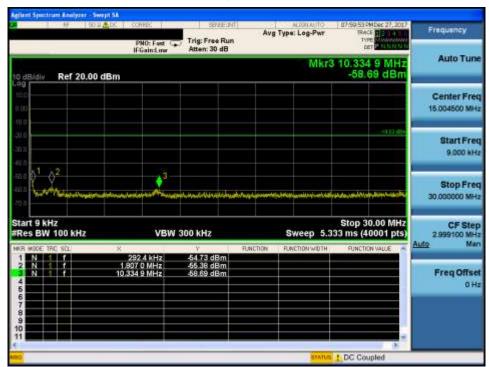

Reference

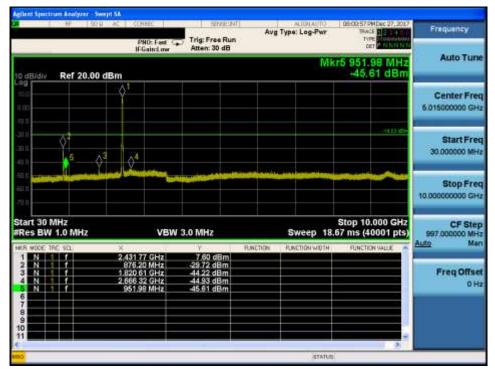


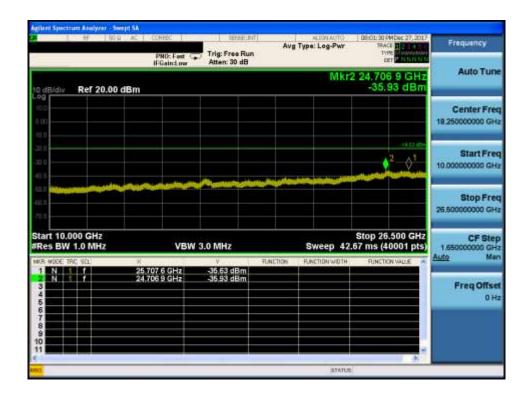
Low Band-edge

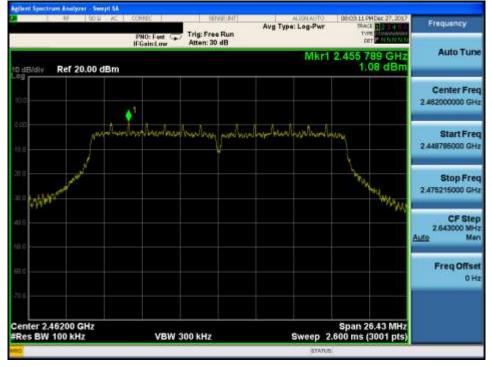




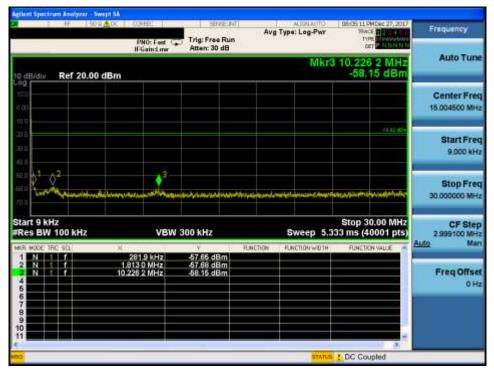



TM 3 & Middle

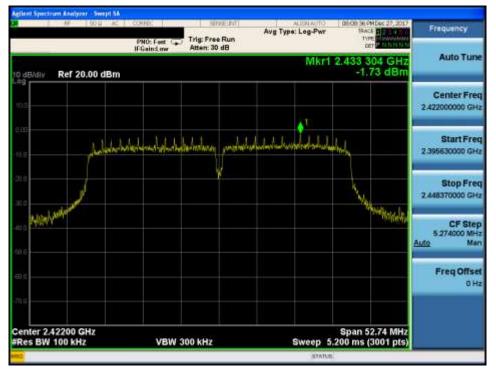

Reference



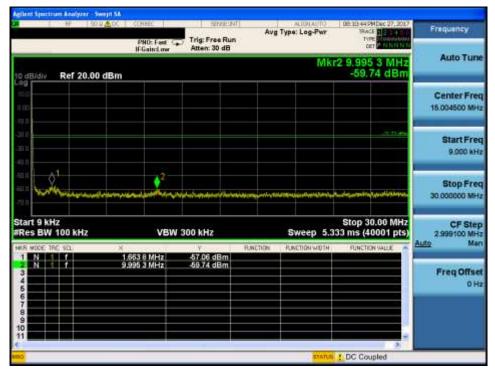
TM 3 & Highest


Reference

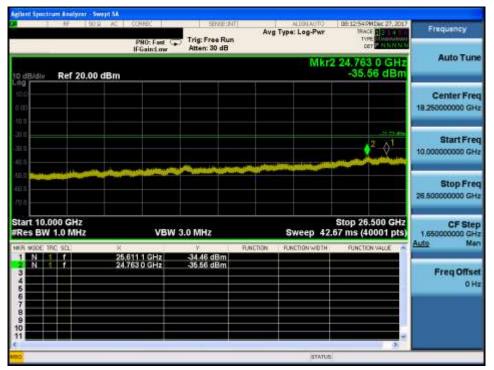
High Band-edge

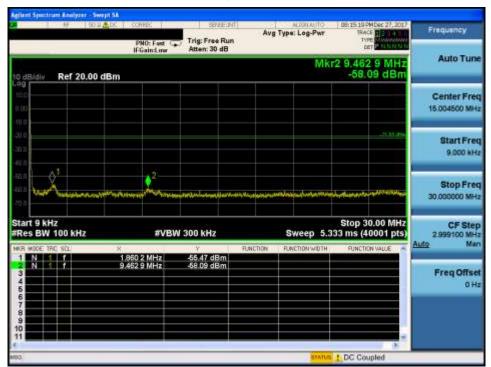


TM 4 & Lowest


Reference

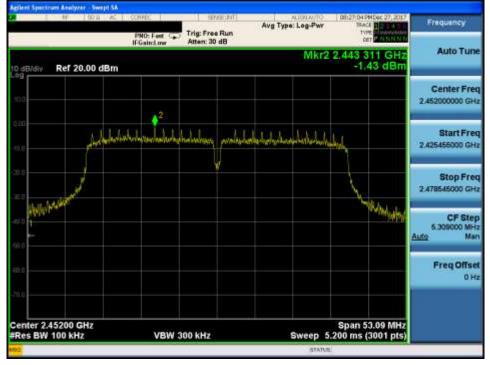
Low Band-edge



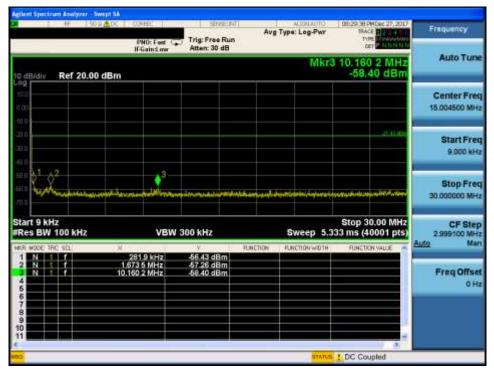


TM 4 & Middle

Reference

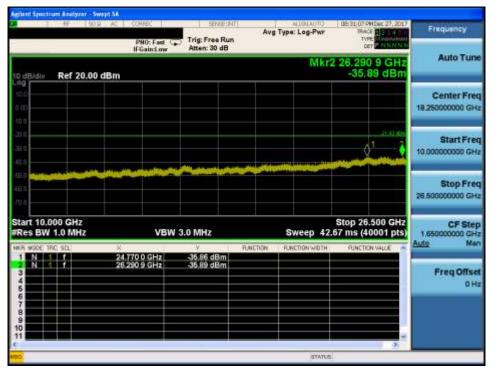

Frequency			Type: Log-Pwr		Trig: Free Run Atten: 30 dB	NO: Fast G	F	191.9	
Auto Tun	.59 MHz 16 dBm	kr6 82 -46	M				1Bm	Ref 20.00 c	dB/div
Center Fre 5.015000000 GH							^ 1		
Start Fre 30.000000 MH	_71.61.000					0ª		\uparrow^2 \uparrow^2	ę
Stop Fre 10.00000000 GH	~						anin silin	-	
CF Ste 997.000000 MH Auto Ma	0.000 GHz 10001 pts)	67 ms (4	Sweep 18. FUNCTION WIDTH	FUNCTION	3.0 MHz	2	. Ko	0 MHz	es BW
Freq Offse 0 H					4.96 dBm 34.47 dBm 42.88 dBm 46.52 dBm 46.97 dBm 46.97 dBm	86 GHz 18 MHz 12 GHz 16 GHz 13 GHz 19 MHz	1,818 (3,237) 9,458 (

TM 4 & Highest


Reference



High Band-edge



8.5 Radiated spurious emissions

Test Requirements and limit, §15.247(d), §15.205, §15.209

In any 100 kHz bandwidth outside the operating frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 KHz bandwidth within the band. In case the emission fall within the restricted band specified on 15.205(a) and (b), then the 15.209(a) limit in the table below has to be followed.

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 - 0.490	2400/F (kHz)	300
0.490 – 1.705	24000/F (kHz)	30
1.705 – 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.52525	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	156.7 ~ 156.9	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	162.0125 ~ 167.17	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	167.72 ~ 173.2	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	240 ~ 285	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	322 ~ 335.4	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	399.90 ~ 410	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	608 ~ 614	3345.8 ~ 3358		
		960 ~ 1240	3600 ~ 4400		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

- 1. The EUT is placed on a non-conductive table, emission measurements at below 1 GHz, the table height is 80 cm and above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 1 or 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting for Radiated Emission Measurements.

The radiated emission was tested according to the section 6.3, 6.4, 6.5 and 6.6 of the ANSI C63.10-2013 with following settings.

Peak Measurement

RBW = As specified in below table, VBW \geq 3 x RBW, Sweep = Auto, Detector = Peak, Trace mode = Max Hold until the trace stabilizes.

Frequency	RBW
9-150 kHz	200-300 Hz
0.15-30 MHz	9-10 kHz
30-1000 MHz	100-120 kHz
> 1000 MHz	1 MHz

Average Measurement:

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW \geq 3 x RBW.
- 3. Detector = RMS (Number of points \geq 2 x Span / RBW)
- 4. Averaging type = power. (i.e., RMS)
- 5. Sweep time = auto.
- 6. Perform a trace average of at least 100 traces.
- 7. A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is 10 log(1/x), where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Test Mode	Date rate	Duty Cycle (%)	Duty Cycle Correction Factor (dB)
TM 1	1Mbps	96.91	0.14
TM 2	6Mbps	84.01	0.76
TM 3	MCS0	82.98	0.81
TM 4	MCS0	70.93	1.49

Duty Cycle Correction factor

Note: Please refer to the test report of the granted module.

Test Results: Comply

Please refer to next page for data table and the appendix III for worst data plots.

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detecto r Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2387.78	Н	Z	PK	48.55	0.70	N/A	N/A	49.25	74.00	24.75
Lowest	2387.74	Н	Z	AV	40.44	0.70	0.14	N/A	41.28	54.00	12.72
Lowest	4824.19	V	Z	PK	46.81	4.86	N/A	N/A	51.67	74.00	22.33
	4823.97	V	Z	AV	38.46	4.86	0.14	N/A	43.46	54.00	10.54
Middle	4874.05	V	Z	PK	47.01	5.07	N/A	N/A	52.08	74.00	21.92
wildule	4873.94	V	Z	AV	37.22	5.07	0.14	N/A	42.43	54.00	11.57
	2483.59	Н	Z	PK	48.25	1.07	N/A	N/A	49.32	74.00	24.68
Highest	2483.57	Н	Z	AV	40.11	1.07	0.14	N/A	41.32	54.00	12.68
nignest	4923.76	V	Z	PK	46.62	5.23	N/A	N/A	51.85	74.00	22.15
	4924.09	V	Z	AV	36.41	5.23	0.14	N/A	41.78	54.00	12.22

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 1(TM 1)

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)

					1						
Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detecto r Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.89	Н	Z	PK	64.13	0.70	N/A	N/A	64.83	74.00	9.17
	2389.96	Н	Z	AV	48.28	0.70	0.76	N/A	49.74	54.00	4.26
Lowest	4822.87	V	Z	PK	44.45	4.86	N/A	N/A	49.31	74.00	24.69
	4822.70	V	Z	AV	34.13	4.86	0.76	N/A	39.75	54.00	14.25
Middle	4873.19	V	Z	PK	44.93	5.07	N/A	N/A	50.00	74.00	24.00
Middle	4873.63	V	Z	AV	34.18	5.07	0.76	N/A	40.01	54.00	13.99
	2483.67	Н	Z	PK	62.47	1.07	N/A	N/A	63.54	74.00	10.46
Highoot	2483.57	Н	Z	AV	49.00	1.07	0.76	N/A	50.83	54.00	3.17
Highest	4924.39	V	Z	PK	44.94	5.23	N/A	N/A	50.17	74.00	23.83
	4924.42	V	Z	AV	34.35	5.23	0.76	N/A	40.34	54.00	13.66

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>Test Mode 2(TM 2)</u>

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)

	•			•							
Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detecto r Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.77	Н	Z	PK	57.52	0.70	N/A	N/A	58.22	74.00	15.78
Lowest	2389.96	Н	Z	AV	42.56	0.70	0.81	N/A	44.07	54.00	9.93
	4823.46	V	Z	PK	44.83	4.86	N/A	N/A	49.69	74.00	24.31
	4823.37	V	Z	AV	33.94	4.86	0.81	N/A	39.61	54.00	14.39
Middle	4873.40	V	Z	PK	44.79	5.07	N/A	N/A	49.86	74.00	24.14
Middle	4872.50	V	Z	AV	34.25	5.07	0.81	N/A	40.13	54.00	13.87
	2484.20	Н	Z	PK	58.57	1.07	N/A	N/A	59.64	74.00	14.36
Highaat	2483.73	Н	Z	AV	42.48	1.07	0.81	N/A	44.36	54.00	9.64
Highest	4923.53	V	Z	PK	45.58	5.23	N/A	N/A	50.81	74.00	23.19
	4924.40	V	Z	AV	34.32	5.23	0.81	N/A	40.36	54.00	13.64

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : <u>Test Mode 3(TM 3)</u>

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F + DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz. Therefore Distance Correction Factor(DCF) : - 9.54 dB = 20*log(1m/3m)

Tested Frequency	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detecto r Mode	Reading (dBuV)	T.F (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
	2389.91	Н	Z	PK	59.57	0.70	N/A	N/A	60.27	74.00	13.73
Lowest	2389.81	Н	Z	AV	45.38	0.70	1.49	N/A	47.57	54.00	6.43
Lowest	4842.83	V	Z	PK	44.70	4.94	N/A	N/A	49.64	74.00	24.36
	4842.69	V	Z	AV	34.26	4.94	1.49	N/A	40.69	54.00	13.31
Middle	4874.53	V	Z	PK	45.04	5.07	N/A	N/A	50.11	74.00	23.89
widdle	4874.44	V	Z	AV	34.36	5.07	1.49	N/A	40.92	54.00	13.08
	2484.11	Н	Z	PK	58.17	1.07	N/A	N/A	59.24	74.00	14.76
Lishaat	2484.57	Н	Z	AV	43.22	1.07	1.49	N/A	45.78	54.00	8.22
Highest	4903.25	V	Z	PK	44.88	5.17	N/A	N/A	50.05	74.00	23.95
	4902.56	V	Z	AV	34.40	5.17	1.49	N/A	41.06	54.00	12.94

Radiated Spurious Emissions data(9 kHz ~ 25 GHz) : Test Mode 4(TM 4)

Note.

1. The radiated emissions were investigated 9kHz to 25GHz. And no other spurious and harmonic emissions were found above listed frequencies.

2. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F+ DCCF + DCF / T.F = AF + CL – AG Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

- 3. Measurement Distance = 3 m for below 10 GHz, Measurement Distance = 1 m for above 10 GHz.
 - Therefore Distance Correction Factor(DCF) : 9.54 dB = 20*log(1m/3m)

8.6 Power-line conducted emissions

Test Requirements and limit, §15.207

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

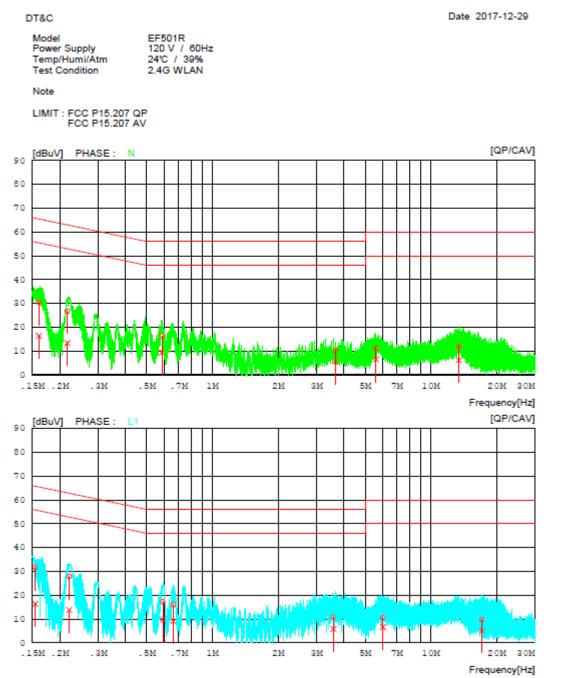
* Decreases with the logarithm of the frequency

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to the test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors Quasi Peak and Average Detector.

Test Results: Comply(Refer to next page.)


The worst data was reported.

RESULT PLOTS

AC Line Conducted Emissions (Graph)

AC Line Conducted Emission

AC Line Conducted Emissions (List)

AC Line Conducted Emission

Date 2017-12-29

DT&C	
Model	

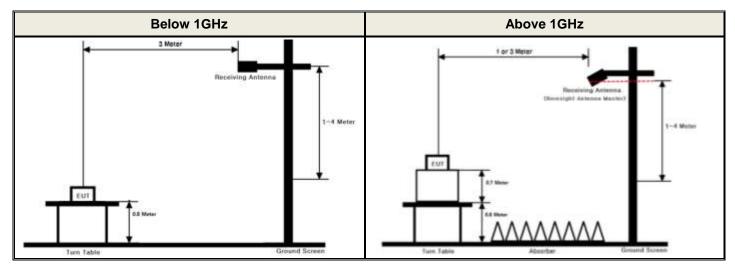
Model	EF501R
Power Supply	120 V / 60Hz
Temp/Humi/Atm	24'C / 39%
Test Condition	2.4G WLAN

Note

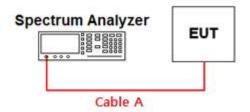
LIMIT : FCC P15.207 QP FCC P15.207 AV

NC	FREQ	READING QP CAV [dBuV][dBuV]	C.FACTOR [dB]	RESULT QP CAV [dBuV][dBuV]	LIMIT QP CAV [dBuV][dBuV	MARGIN QP CAV] [dBuV][dBuV	phase
1	0.16050	20.79 6.75	9.64	30.4316.39	65.44 55.44	35.01 39.05	Ν
2	0.21650	17.12 3.70	9.64	26.7613.34	62.95 52.95	36.1939.61	N
3	0.58750	6.74-0.28	9.64	16.38 9.36	56.00 46.00	39.6236.64	N
4	3.64934	0.68-3.99	9.69	10.37 5.70	56.00 46.00	45.6340.30	N
5	5.60489	1.24-3.24	9.75	10.99 6.51	60.00 50.00	49.0143.49	Ν
6	13.43056	1.97-3.68	9.87	11.84 6.19	60.00 50.00	48.1643.81	N
7	0.15450	21.91 6.57	9.74	31.6516.31	65.75 55.75	34.10 39.44	L1
8	0.22093	18.05 3.99	9.74	27.7913.73	62.78 52.78	34.9939.05	L1
9	0.59250	7.50-0.10	9.74	17.24 9.64	56.00 46.00	38.7636.36	L1
10	0.66250	6.24-0.69	9.75	15.99 9.06	56.00 46.00	40.0136.94	L1
11	3.57469	0.98-4.00	9.79	10.77 5.79	56.00 46.00	45.23 40.21	L1
12	6.04015	0.70-3.19	9.82	10.52 6.63	60.00 50.00	49.48 43.37	L1
13	17.15769	-0.19-4.78	9.95	9.76 5.17	60.00 50.00	50.24 44.83	L1

9. LIST OF TEST EQUIPMENT


Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	17/09/06	18/09/06	MY48011075
Spectrum Analyzer	Agilent Technologies	N9020A	17/09/05	18/09/05	MY46471251
Multimeter	FLUKE	17B	17/04/12	18/04/12	26030065WS
DC Power Supply	SM techno	SDP30-5D	17/09/08	18/09/08	305DMG304
Signal Generator	Rohde Schwarz	SMBV100A	17/01/04	18/01/04	255571
Signal Generator	Rohde Schwarz	SMF100A	17/04/21	18/04/21	102341
Thermohygrometer	BODYCOM	BJ5478	17/04/11	18/04/11	120612-2
50W 10dB ATT	SMAJK	SMAJK-50-10	17/09/06	18/09/06	2-50-10
Loop Antenna	Schwarzbeck	FMZB1513	16/04/22	18/04/22	1513-128
BILOG ANTENNA	Schwarzbeck	VULB 9160	16/08/05	18/08/05	9160-3362
Horn Antenna	ETS-LINDGREN	3117	16/05/03	18/05/03	00140394
Horn Antenna	A.H.Systems Inc.	SAS-574	17/07/31	19/07/31	155
PreAmplifier	Agilent	8449B	17/09/05	18/09/05	3008A02108
PreAmplifier	TSJ	MLA-010K01- B01-27	17/03/06	18/03/06	1844539
EMI Test Receiver	Rohde Schwarz	ESR7	17/02/16	18/02/16	101061
EMI Test Receiver	Rohde Schwarz	ESR7	17/11/16	18/11/16	101109
High-pass filter	Wainwright	WHKX12-2580- 3000-18000- 80SS	17/09/05	18/09/05	3
High-pass filter	Wainwright	WHNX6-6320- 8000-26500- 40CC	17/09/05	18/09/05	1
TRANSIENT LIMITER	EMCIS	TL-B0930A	17/09/07	18/09/07	11002
SINGLE-PHASE MASTER	NF	4420	17/09/01	18/09/01	3049354420023
TWO-LINE V-NETWORK	Rohde Schwarz	ENV216	17/10/10	18/10/10	101979
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2496A MA2411B	17/04/11	18/04/11	1338004 1306053

Note: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.03	15	0.92
1	0.30	20	1.37
2.402 & 2.440 & 2.480	0.44	25	2.25
5	0.60	-	-
10	0.89	-	-

Note 1: The path loss from EUT to Spectrum analyzer was measured and used for test. Path loss (S/A's correction factor) = Cable A (Attenuator, Applied only when it was used externally)

Middle

&

APPENDIX II

Duty cycle plots

Test Procedure

Duty Cycle

Duty Cycle was measured using section 6.0 b) of KDB558074 D01V04 :

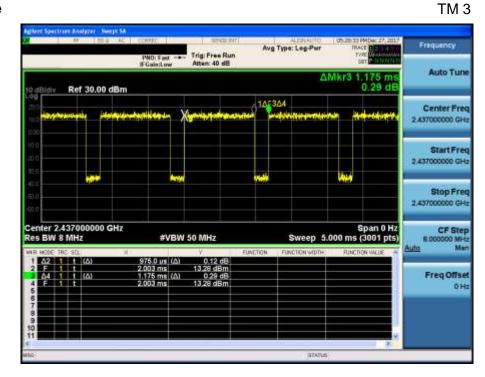
The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TM 1 Frequency Avg Type: Log-Pun Trig: Free Run Atten: 40 dB PNO: Fast Auto Tun AMkr3 6.4 -1.14 di Ref 30.00 dBm 304 χ. Center Fred 2.437000000 GH Start Freq 2,437000000 GH Stop Freq 2.437000000 GH Span 0 Hz Sweep 30.00 ms (3001 pts) ter 2.437000000 GHz CF Step #VBW 50 MHz Res BW 8 MHz = 0 21 Freq Offse 21.39 d OH IGT/KTLB

TRF-RF-232(02)160407

Dt&C


TM 2 & M

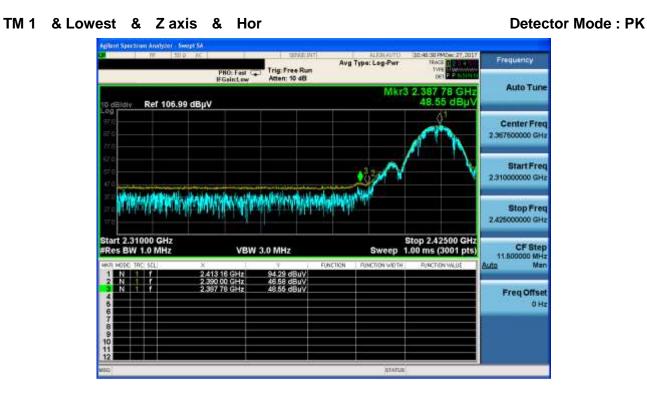
Middle

Duty Cycle

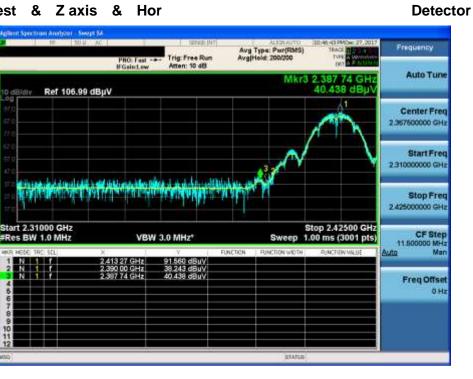
150 B .4C	PNO: Fast -+	Trig: Free Run		g-Pwr II	ACE DESIGNATION	Frequency
30.00 dBm	o canatiw	744615 19 942		∆Mkr3 [°]	1.238 ms 0.26 dB	Auto Tune
	etunation >	(gian, shidanaa	105304	,italian jeruke		Center Freq 2.437000000 GHz
						Start Freq 2.437000000 GHz
						Stop Freq 2.437000000 GHz
00000 GHz z	#VBW	50 MHz	Swe			CF Step 8.000000 MHz Auto Man
8 (Δ) (Δ)	1.040 ms (Δ) 1.987 ms 1.238 ms (Δ) 1.987 ms	V 40.57 dB 16.28 dBm 0.26 dB 16.28 dBm	FUNCTION FUNCTION	N'MOTH RINC	TON VALUE -	Freq Offset 0H:
	(30.00 dBm All Cano and All	PH0: Fast → (30.00 dBm	Flam: tow Atten: 40 dB 1 30.00 dBm	PH0: Fast Trig: Free Run Avg Type: Let PE0:sts.tree Trig: Free Run Atten: 40 dB / 30.00 dBm 10/ 3/4 10/ 3/4 / 400 mm Hollowellow 10/ 3/4 10/ 3/4 / 400 mm (/// 1.040 mm (/// 0.057 dB) 15/ 28 dBm 10/ 40/ mm (/// 0.057 dB) / 401 1.238 mm (// 1.238 dBm 15/ 28 dBm 10/ 40/ 40/ 40/ 40/ 40/ 40/ 40/ 40/ 40/ 4	PN0: Fail Trig: Free Run Atten: 40 dB Avg Type: Leg-Per In 2 30.00 dBm Atten: 40 dB AMKr3 1 4 30.00 dBm 10/304 Atten: 40 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 00000 dBm 4 0 dB 4 0 dB 4 0 dBm 4 0 dB 4 0 dB 4 0 dBm 4 0 dB 4 0 dB	PHOT Fast Trig: Free Run Atten: 40 dB Avg Type: Leg-Pur Type: Leg-Pur Comparison Type: Leg-Pur Type: Leg-Pur Type: Leg-Pur Comparison Type: Leg-Pur Type: Leg-Pur Type: Leg-Pur Comparison 30.00 dBm ΔMkr3 1.238 ms 0.26 dB 0.26 dB 40.00 dBm 10/304 10/304 40.00 dBm 10/304 10/0000 40.00 dBm 10/0000 10/0000 40.00 dBm 10/0000 10/0000 40.00 dBm 40.0000 50.000 40.00000 GHz Span 0 Hz 50000 ms (3001 pts) 15 28 dBm 50.000 ms (3001 pts) 8 V Exection Function width 40.00000 1.987 ms 15 28 dBm 15 28 dBm

& Middle

Duty Cycle


Duty Cycle

TM 4 & Middle


	11 [50]	PNO:	Fast -+	Trig: Free Ru	21	Avg Type: Leg-		TRACE DEPENDENT	Frequency
d Blaiv R	tef 30,00	FGain	:Low	Atten: 40 dB			ΔMk	r3 688.0 µs 0.90 dB	Auto Tun
		hinggalahang)	(₩ ^{1Δ2}	3 <u>04</u>	**	1.000 C	Center Fre 2.437000000 GH
no 60 60									Start Fre 2.437000000 GH
nd Re Ra			Vertei			N	- Kitelyn		Stop Fre 2.437000000 GH
		CH-						Span 0 Hz	CF Ste
enter 2.437 es BW 8 M	Hz	GHZ	#VBW	50 MHz				ms (3001 pts)	8.000000 MF
es BW 8 M	Hz	8		Ŷ.	FUNETI			mis (3001 pts) Runchon Willie	8.000000 MH
es BW 8 M 1 02 1 2 F 1 4 F 1 4 F 1 6	Hz t (Δ) t (Δ)	R 488.0 1.195	us (Δ) ms us (Δ)	7 50 MHz 7 2.29 dB 5.68 dBm 0.90 dB 5.68 dBm	FUNCTI				8.000000 MH
es BW 8 M R MORE TRC 1 A2 1 2 F 1 4 F 1 5	Hz t (Δ) t (Δ)	8 400.0 1.195 600.0	us (Δ) ms us (Δ)	V 2.29 dB 5.68 dBm 0.90 dB	FUNCT				Auto Freq Offse

APPENDIX III

Unwanted Emissions (Radiated) Test Plot

TM 1 & Lowest & Zaxis & Hor

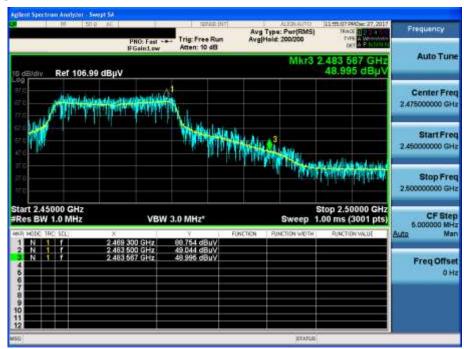
TM 1 & Highest & Zaxis & Hor

TM 1 & Highest & Zaxis & Hor

TM 2 & Lowest & Zaxis & Hor

TM 2 & Lowest & Zaxis & Hor

Frequency Avg Type: Per(RMS) Avg[Hold: 200/200 Trig: Free Run Atten: 10 dB PNO: Fest Auto Tune Mkr3 2.389 96 GH 48.282 dBu Ref 106.99 dBµV Center Freq 2.367600000 GHI Start Freq 2.310000000 GHz Stop Freq 2.42500000 GHz Start 2.31000 GHz #Res BW 1.0 MHz Stop 2.42500 GHz 1.00 ms (3001 pts) CF Step 11.600000 MHz VBW 3.0 MHz* Sweep N.M Ma 48.121 dBu 49.282 dBu Freq Offse OH



TM 2 & Highest & Zaxis & Hor

Detector Mode : PK

TM 2 & Highest & Zaxis & Hor

TM 3 & Lowest & Zaxis & Hor

Detector Mode : PK

TM 3 & Lowest & Zaxis & Hor

Frequency Avg Type: Per(RMS) Avg[Hold: 200/200 Trig: Free Run Atten: 10 dB PNO: Fest Auto Tune Mkr3 2.389 96 GH 42.562 dBu Ref 106.99 dBµV Center Freq 2.367600000 GHI Start Freq 2,310000000 GHz 3 1 entre and a second s Stop Freq 2.42500000 GHz Start 2.31000 GHz #Res BW 1.0 MHz Stop 2.42500 GHz 1.00 ms (3001 pts) CF Step 11.600000 MHz VBW 3.0 MHz* Sweep N.M Ma 42.065 dBu 42.562 dBu Freq Offse OH

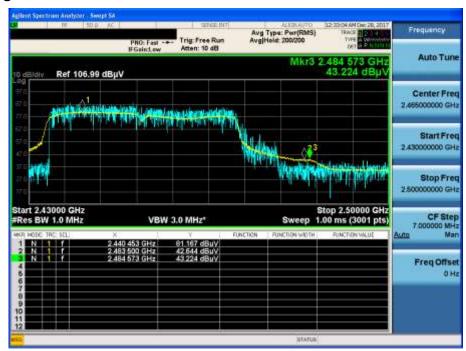
TM 3 & Highest & Zaxis & Hor

TM 3 & Highest & Zaxis & Hor

TM 4 & Lowest & Zaxis & Hor

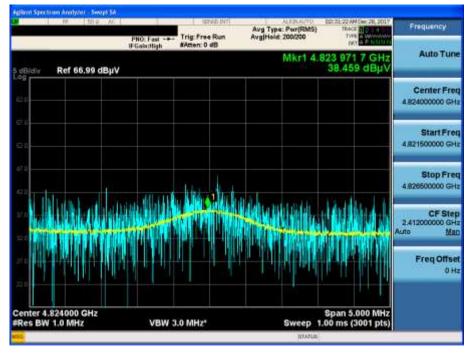
TM 4 & Lowest & Zaxis & Hor

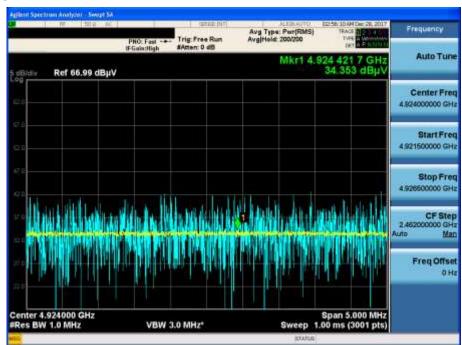
Frequency Avg Type: Per(RMS) Avg|Hold: 200/200 Trig: Free Run Atten: 10 dB PNO: Fest -Auto Tune Mkr3 2.389 81 GH2 45.376 dBu Ref 106.99 dBµV Center Freq 2.380000000 GHz 111 Start Freq 2,310000000 GHz and the second a dia Name 18. Sk. Stop Freq 2.450000000 GHz Start 2.31000 GHz #Res BW 1.0 MHz Stop 2.45000 GHz 1.00 ms (3001 pts) CF Step 14.00000 MHz VBW 3.0 MHz* Sweep Ma v.m 45 469 dBu\ 45 376 dBu\ Freq Offse OH



TM 4 & Highest & Zaxis & Hor

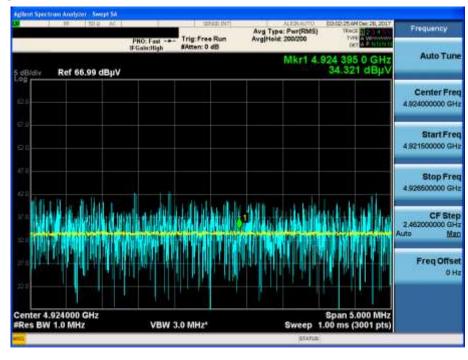
Detector Mode : PK

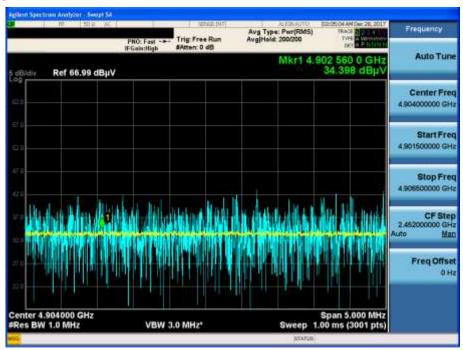

TM 4 & Highest & Zaxis & Hor


Detector Mode : AV

TM 1 & Lowest & Z axis & Ver

TM 2 & Highest & Zaxis & Ver




🛈 Dt&C

TM 3 & Highest & Zaxis & Ver

TM 4 & Highest & Zaxis & Ver

