

FCC PART 15.247 TEST REPORT

For

SZ DJI TECHNOLOGY CO., LTD

14th floor, West Wing, Skyworth Semiconductor Design Building NO.18 Gaoxin South 4th Ave, Nanshan, Shenzhen, Guangdong, China

FCC ID: SS3-WM3221507

Report Type: Product Type: Phantom 3 Advanced Original Report Allen Dious **Test Engineer:** Allen Qiao **Report Number:** RDG150703008-00A **Report Date:** 2015-07-13 Sola Hugof Sula Huang **Reviewed By:** RF Leader Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	5
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	6
FCC §15.247 (i) & §1.1307 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	7
APPLICABLE STANDARD	7
FCC §15.203 - ANTENNA REQUIREMENT	8
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	9
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY.	
EUT SETUP	9
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.247(a) (2) – 6dB BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM PEAK CONDUCTED OUTPUT POWER	27
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	28
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	29
APPLICABLE STANDARD	
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(e) - POWER SPECTRAL DENSITY	
Applicable Standard	34

l'est Procedure	34
TEST EQUIPMENT LIST AND DETAILS	
Test Data	34

FCC Part 15.247 Page 3 of 47

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The SZ DJI TECHNOLOGY CO., LTD's product, model number: W322A (FCC ID: SS3-WM3221507) (the "EUT") in this report was a Phantom 3 Advanced, which was measured approximately: 50cm (L) x 50 cm (W) x 18.5 cm(H), rated input voltage: DC 15.2V from lithium battery or DC 17.4V from adapter.

Report No.: RDG150703008-00A

Adapter information: dji Model: A14-057N1A

Input: AC 100-240V, 1.8A, 50-60Hz

Output: DC 17.4V, 3.3A

Objective

This report is prepared on behalf of *SZ DJI TECHNOLOGY CO., LTD* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission's rules

The tests were performed in order to determine the compliance of the EUT with FCC Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.247 Page 4 of 47

^{*} All measurement and test data in this report was gathered from production sample serial number: 150703008. (Assigned by BACL.Dongguan). The EUT was received on 2015-07-03.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

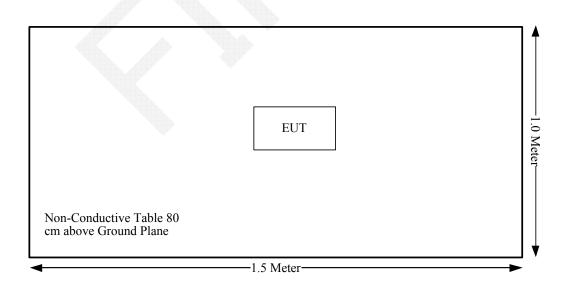
The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

Report No.: RDG150703008-00A

For 2.4G band, 8 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2406.5	5	2446.5
2	2416.5	6	2456.5
3	2426.5	7	2466.5
4	2436.5	8	2476.5

3channels were tested: 2406.5MHz, 2436.5MHz, 2476.5 MHz


EUT Exercise Software

The software "DJI Pilot" was used for testing, which was provided by manufacturer. The maximum power with duty cycle 100% was configured by system default setting.

Equipment Modifications

No modification was made to the EUT.

Block Diagram of Test Setup

FCC Part 15.247 Page 5 of 47

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.247(d)	Spurious Emissions at Antenna Port	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Bandwidth	Compliance
§15.247(b)(3)	Maximum Peak Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RDG150703008-00A

Not Applicable: The EUT powered by lithium battery.

FCC Part 15.247 Page 6 of 47

FCC §15.247 (i) & §1.1307 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247(i) and subpart §1.1307, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RDG150703008-00A

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Averaging Time (minutes)								
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f²)	30					
30–300	27.5	0.073	0.2	30					
300–1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency	Ante	nna Gain		ucted wer	Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)
2406.5	2	1.58	27.99	629.51	20.00	0.19797	1.0

Result: The device meet FCC MPE at 20 cm distance

FCC Part 15.247 Page 7 of 47

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RDG150703008-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has 4 internal antennas arrangement, and the antenna gain is 2.0dBi, fulfill the requirement of the item. Please refer to the internal photos.

Result: Compliance.

FCC Part 15.247 Page 8 of 47

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

Report No.: RDG150703008-00A

If U_{lab} is less than or equal to U_{cispr} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 2, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is:

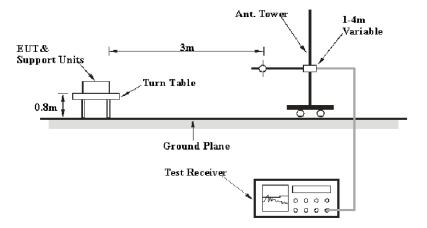
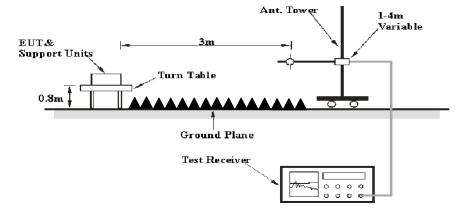

30M~200MHz: 5.0 dB 200M~1GHz: 6.2 dB 1G~6GHz: 4.45 dB 6G~18GHz: 5.23 dB

Table 2 – Values of U_{cispr}

Measurement				
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB			
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB			
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB			


EUT Setup

Below 1GHz:

FCC Part 15.247 Page 9 of 47

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2009. The specification used was the FCC 15.209, and FCC 15.247 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30MHz – 1000 MHz	120 kHz	300 kHz	120kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

FCC Part 15.247 Page 10 of 47

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Report No.: RDG150703008-00A

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Description Model		Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2015-05-09	2016-05-09
Sunol Sciences	Antenna	JB3	A060611-3	2014-07-28	2017-07-27
HP	Amplifier	8447E	2434A02181	2014-09-01	2015-09-01
R&S	Spectrum Analyzer	FSEM	DE31388	2015-05-09	2016-05-09
ETS LINDGREN	Horn Antenna	3115	000 527 35	2012-09-06	2015-09-06
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2015-02-19	2016-02-19
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2014-06-16	2017-06-15
Quinstar	Amplifier	QLW- 18405536-JO	15964001001	2014-09-06	2015-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Section 15.205, 15.209 and 15.247</u>, with the worst margin reading of:

4.32 dB at 2483.5 MHz in the Vertical polarization

Test Data

Environmental Conditions

Temperature:	28.9 °C
Relative Humidity:	45 %
ATM Pressure:	99.6 kPa

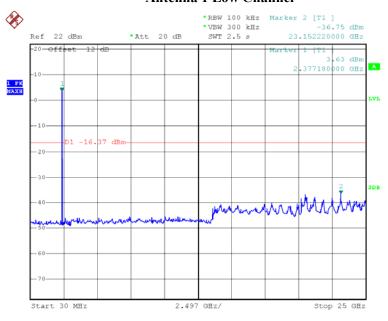
The testing was performed by Allen Qiao on 2015-07-06.

FCC Part 15.247 Page 11 of 47

Mode: Transmitting (the test performed at worse mode determined by conducted output power test)

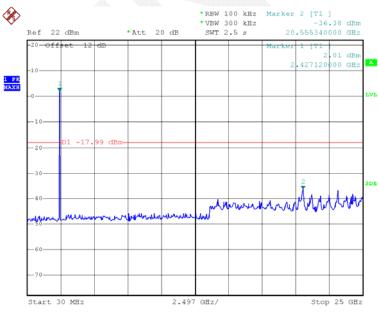
		eceiver		ntenna	Cable	Amplifier	Corrected	FCC 1	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB/m)	loss (dB)	Gain (dB)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			Lov	v Channel:	2406.5 1	МНz			
2406.5	73.77	PK	Н	25.66	3.67	0.00	103.10	N/A	N/A
2406.5	60.11	AV	Н	25.66	3.67	0.00	89.44	N/A	N/A
2406.5	84.26	PK	V	25.66	3.67	0.00	113.59	N/A	N/A
2406.5	69.3	AV	V	25.66	3.67	0.00	98.63	N/A	N/A
2390	30.83	PK	V	25.61	3.63	0.00	60.07	74.00	13.93
2390	14.27	AV	V	25.61	3.63	0.00	43.51	54.00	10.49
4813	32.53	PK	V	30.61	5.05	27.41	40.78	74.00	33.22
4813	19.25	AV	V	30.61	5.05	27.41	27.50	54.00	26.50
7219.5	31.66	PK	V	34.13	6.63	25.91	46.51	74.00	27.49
7219.5	18.73	AV	V	34.13	6.63	25.91	33.58	54.00	20.42
9626	30.08	PK	V	36.00	8.54	27.51	47.11	74.00	26.89
9626	15.82	AV	V	36.00	8.54	27.51	32.85	54.00	21.15
3445	33.2	PK	V	28.62	4.96	27.22	39.56	74.00	34.44
3445	19.89	AV	V	28.62	4.96	27.22	26.25	54.00	27.75
208.48	47.2	QP	Н	11.26	1.73	21.47	38.72	43.50	4.78 *
				lle Channe					T ==
2436.5	72.96	PK	Н	25.73	3.75	0.00	102.44	N/A	N/A
2436.5	58.85	AV	Н	25.73	3.75	0.00	88.33	N/A	N/A
2436.5	83.62	PK	V	25.73	3.75	0.00	113.10	N/A	N/A
2436.5	68.46	AV	V	25.73	3.75	0.00	97.94	N/A	N/A
4873	32.68	PK	V	30.77	5.13	27.42	41.16	74.00	32.84
4873	19.44	AV	V	30.77	5.13	27.42	27.92	54.00	26.08
7309.5	32.64	PK	V	34.34	6.74	25.88	47.84	74.00	26.16
7309.5	19.27	AV	V	34.34	6.74	25.88	34.47	54.00	19.53
9746	30.51	PK	V	36.29	8.61	27.24	48.17	74.00	25.83
9746	16.33	AV	V	36.29	8.61	27.24	33.99	54.00	20.01
1750	35.41	PK	V	24.10	2.62	27.60	34.53	74.00	39.47
1750	19.37	AV	V	24.10	2.62	27.60	18.49	54.00	35.51
3070	33.72	PK	. 1	27.42	6.72	27.47	40.39	74.00	33.61
3070	20.45	AV	V	27.42	6.72	27.47	27.12	54.00	26.88
208.48	46.8	QP	H	11.26 h Channel	1.73	21.47 MHz	38.32	43.50	5.18
2476.5	71.3	PK	H	25.84	3.69	0.00	100.83	N/A	N/A
2476.5	57.21	AV	H	25.84	3.69	0.00	86.74	N/A	N/A
2476.5	81.7	PK	V	25.84	3.69	0.00	111.23	N/A	N/A
2476.5	66.63	AV	V	25.84	3.69	0.00	96.16	N/A	N/A
2483.5	36.48	PK	V	25.86	3.67	0.00	66.01	74.00	7.99
2483.5	20.15	AV	V	25.86	3.67	0.00	49.68	54.00	4.32*
4953	33.33	PK	V	30.98	5.36	27.43	42.24	74.00	31.76
4953	20.03	AV	V	30.98	5.36	27.43	28.94	54.00	25.06
7429.5	32.89	PK	V	34.63	6.88	25.94	48.46	74.00	25.54
7429.5	19.34	AV	V	34.63	6.88	25.94	34.91	54.00	19.09
9906	29.88	PK	V	36.67	8.70	26.72	48.53	74.00	25.47
9906	15.51	AV	V	36.67	8.70	26.72	34.16	54.00	19.84
1870	35.85	PK	V	24.34	3.06	27.51	35.74	74.00	38.26
1870	19.57	AV	V	24.34	3.06	27.51	19.46	54.00	34.54
208.48	47.3	QP	Н	11.26	1.73	21.47	38.82	43.50	4.68*

 $[*]Within\ measurement\ uncertainty!$


FCC Part 15.247 Page 12 of 47

Conducted Spurious Emissions at Antenna Port

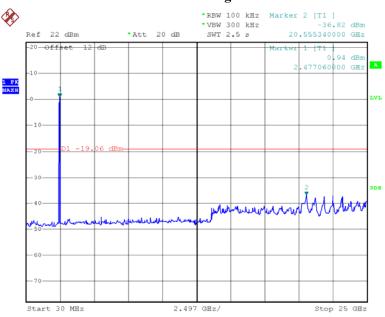
Report No.: RDG150703008-00A


Note: the test performed at high power

Antenna 1 Low Channel

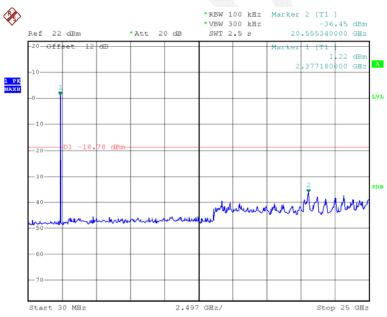
Date: 6.JUL.2015 18:56:13

Antenna 1 Middle Channel



Date: 6.JUL.2015 19:03:34

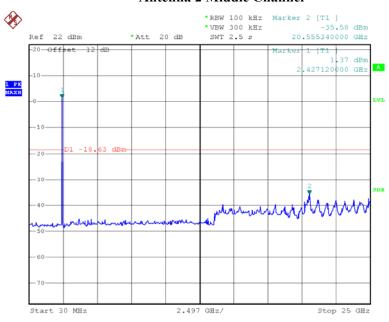
FCC Part 15.247 Page 13 of 47


Antenna 1 High Channel

Report No.: RDG150703008-00A

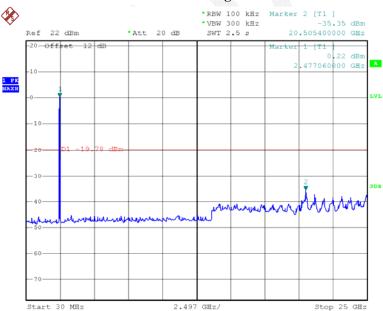
Date: 6.JUL.2015 19:06:05

Antenna 2 Low Channel



Date: 6.JUL.2015 19:17:43

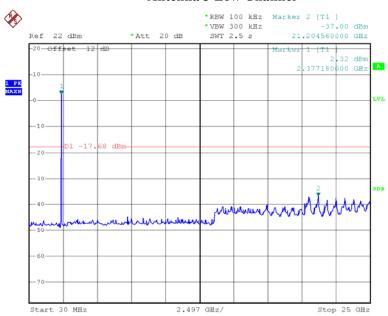
FCC Part 15.247 Page 14 of 47


Antenna 2 Middle Channel

Report No.: RDG150703008-00A

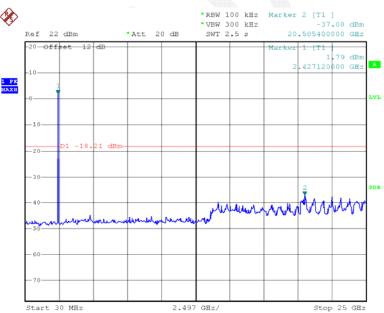
Date: 6.JUL.2015 19:16:12

Antenna 2 High Channel



Date: 6.JUL.2015 19:11:09

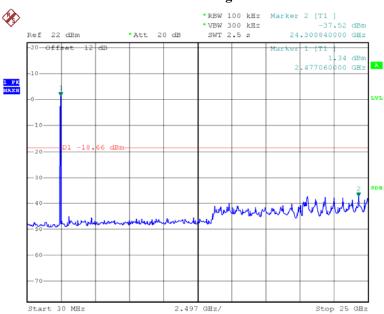
FCC Part 15.247 Page 15 of 47


Antenna 3 Low Channel

Report No.: RDG150703008-00A

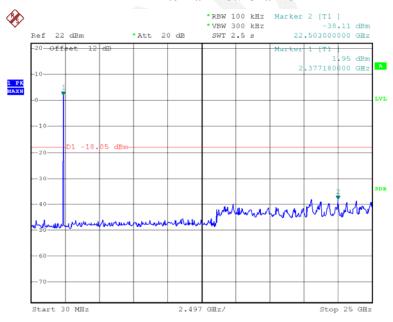
Date: 6.JUL.2015 18:59:00

Antenna 3 Middle Channel



Date: 6.JUL.2015 19:01:46

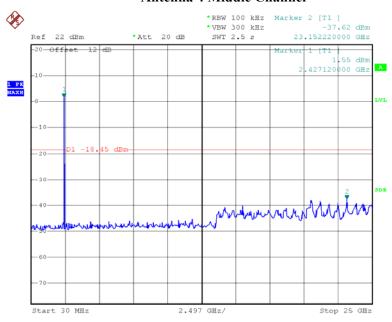
FCC Part 15.247 Page 16 of 47


Antenna 3 High Channel

Report No.: RDG150703008-00A

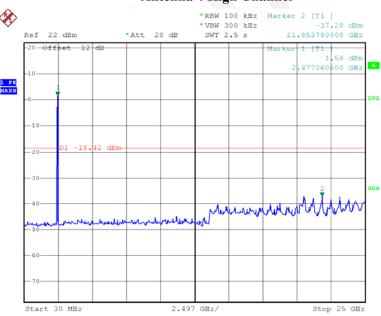
Date: 6.JUL.2015 19:08:58

Antenna 4 Low Channel



Date: 6.JUL.2015 19:20:31

FCC Part 15.247 Page 17 of 47


Antenna 4 Middle Channel

Report No.: RDG150703008-00A

Date: 6.JUL.2015 19:13:48

Antenna 4 High Channel

Date: 6.JUL.2015 19:12:01

FCC Part 15.247 Page 18 of 47

FCC §15.247(a) (2) – 6dB BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RDG150703008-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.1 °C
Relative Humidity:	58 %
ATM Pressure:	99.4 kPa

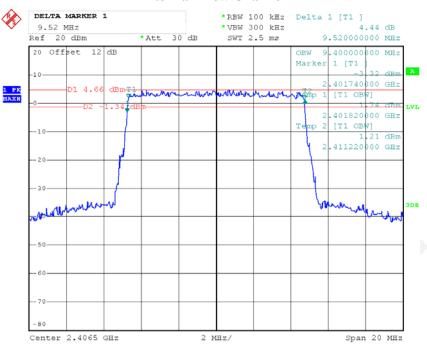
The testing was performed by Allen Qiao on 2015-07-03.

Test Result: Pass.

Please refer to the following tables and plots.

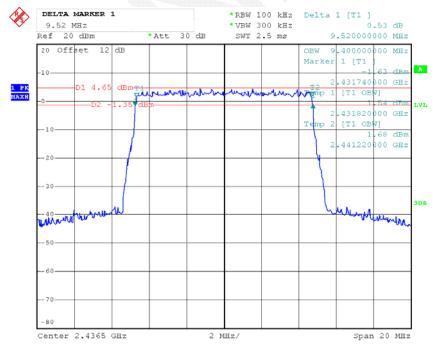
FCC Part 15.247 Page 19 of 47

Test Mode: Transmitting (the test performed at high power)


Test Mode	Channel	Frequency	6 dB Bandwidth	
		(MHz)	(MHz)	
	Low	2406.5	9.52	
Antenna 1	Middle	2436.5	9.52	
	High	2476.5	9.52	
Antenna 2	Low	2406.5	9.52	
	Middle	2436.5	9.56	
	High	2476.5	9.52	
	Low	2406.5	9.52	
Antenna 3	Middle	2436.5	9.56	
	High	2476.5	9.52	
Antenna 4	Low	2406.5	9.52	
	Middle	2436.5	9.52	
	High	2476.5	9.52	

FCC Part 15.247 Page 20 of 47

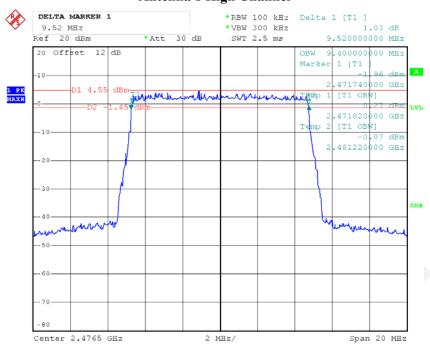
6 dB Bandwidth:


Antenna 1 Low Channel

Report No.: RDG150703008-00A

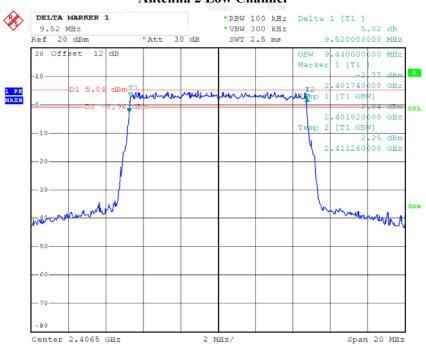
Date: 3.JUL.2015 15:52:22

Antenna 1 Middle Channel



Date: 3.JUL.2015 15:50:31

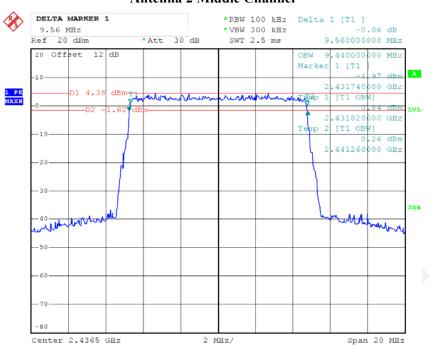
FCC Part 15.247 Page 21 of 47


Antenna 1 High Channel

Report No.: RDG150703008-00A

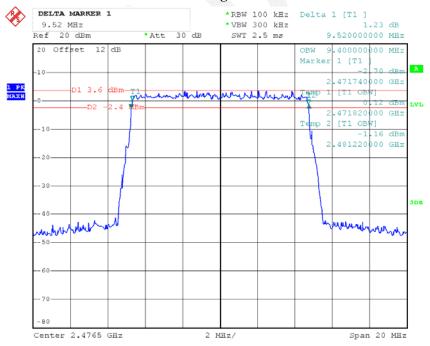
Date: 3.JUL.2015 15:44:51

Antenna 2 Low Channel



Date: 3.JUL.2015 15:34:28

FCC Part 15.247 Page 22 of 47


Antenna 2 Middle Channel

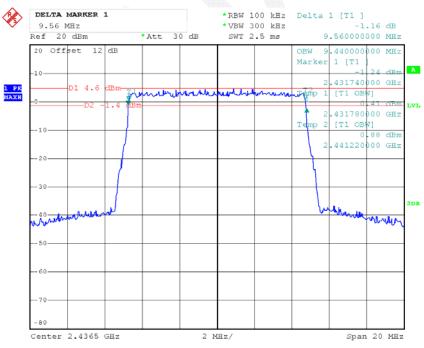
Report No.: RDG150703008-00A

Date: 3.JUL.2015 15:36:34

Antenna 2 High Channel

Date: 3.JUL.2015 15:42:16

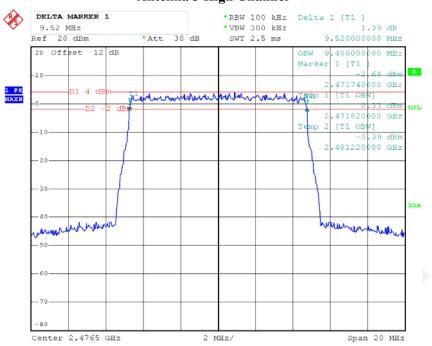
FCC Part 15.247 Page 23 of 47


Antenna 3 Low Channel

Report No.: RDG150703008-00A

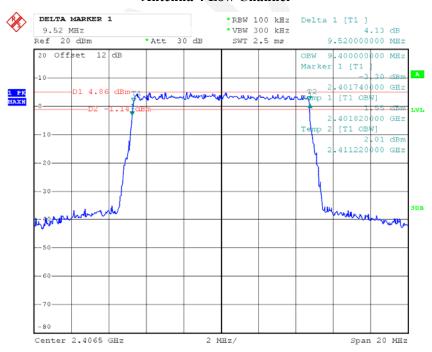
Date: 3.JUL.2015 15:53:17

Antenna 3 Middle Channel



Date: 3.JUL.2015 15:49:06

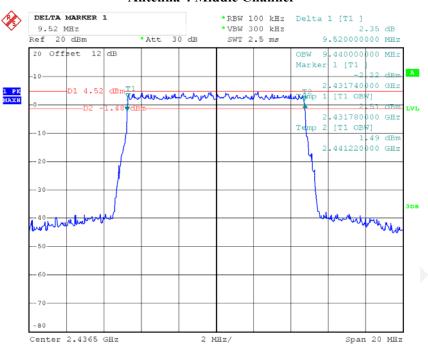
FCC Part 15.247 Page 24 of 47


Antenna 3 High Channel

Report No.: RDG150703008-00A

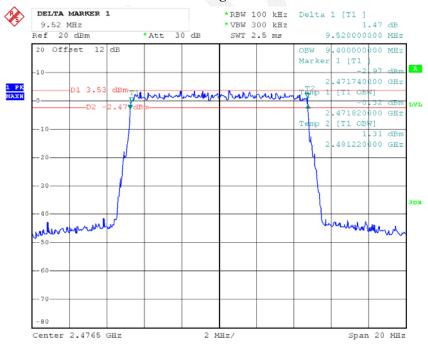
Date: 3.JUL.2015 15:47:35

Antenna 4 Low Channel



Date: 3.JUL.2015 15:32:14

FCC Part 15.247 Page 25 of 47


Antenna 4 Middle Channel

Report No.: RDG150703008-00A

Date: 3.JUL.2015 15:38:29

Antenna 4 High Channel

Date: 3.JUL.2015 15:40:15

FCC Part 15.247 Page 26 of 47

FCC §15.247(b) (3) - MAXIMUM PEAK CONDUCTED OUTPUT POWER

Report No.: RDG150703008-00A

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. According to KDB 558074 D01 DTS Meas Guidance v03r02, place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a Test Equipment.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2014-11-03	2015-11-03
Agilent	Wideband Power Sensor	N1921A	MY54170013	2014-11-03	2015-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2014-11-03	2015-11-03

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 27 of 47

Test Data

Environmental Conditions

Temperature:	26.3 °C
Relative Humidity:	57 %
ATM Pressure:	99.6 kPa

The testing was performed by Allen Qiao on 2015-07-06.

Test Mode: Transmitting

Channel	Frequency Conducted Peak Output Pow (dBm)							
	MHz	Ant. 1 Ant. 2 Ant. 3 Ant						
High Power								
Low	2406.5	24.95	24.52	24.98	24.46			
Middle	2436.5	24.22	23.91	24.16	23.92			
High	2476.5	23.81	22.63	23.76	22.59			
		Low	Power					
Low	2406.5	2.03	0.23	2.02	0.17			
Middle	2436.5	2.49	0.52	2.61	0.50			
High	2476.5	1.02	1.03	1.05	1.02			

Report No.: RDG150703008-00A

The system employed Space Time Block Codes (STBC) technology, and the signals are completely uncorrelated, the system configured two antennas with high power for good performance, and the rest antennas were configured with low power, the worst case in the following table:

Channel	Frequency	Conducted Peak Output Power (dBm)					Limit	Result	
	MHz	Ant. 1	Ant. 2	Ant. 3	Ant. 4	Total	dBm		
Low	2406.5	24.95	0.23	24.98	0.17	27.99	30	Pass	
Middle	2436.5	24.22	0.52	24.16	0.50	27.22	30	Pass	
High	2476.5	23.81	1.03	23.76	1.02	26.82	30	Pass	

FCC Part 15.247 Page 28 of 47

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RDG150703008-00A

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Manufacturer Description		Serial Number	Calibration Date	Calibration Due Date	
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09	

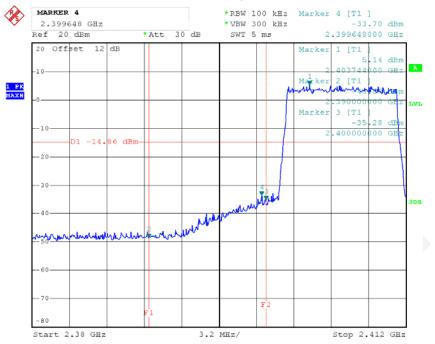
^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

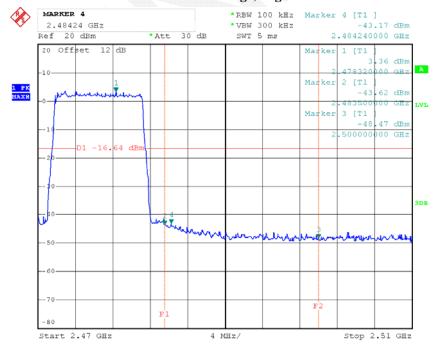
Temperature:	23.8 °C
Relative Humidity:	53 %
ATM Pressure:	99.6 kPa

The testing was performed by Allen Qiao on 2015-07-03.


Test Result: *Compliance(the test performed at high power)*

FCC Part 15.247 Page 29 of 47

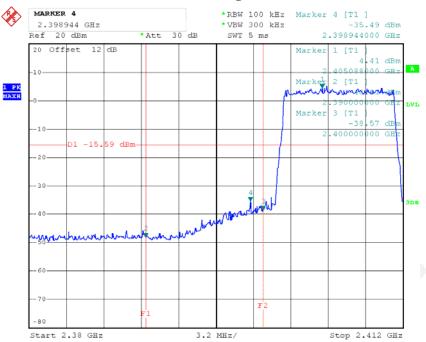
Please refer to following plots.


Antenna 1: Band Edge, Left Side

Report No.: RDG150703008-00A

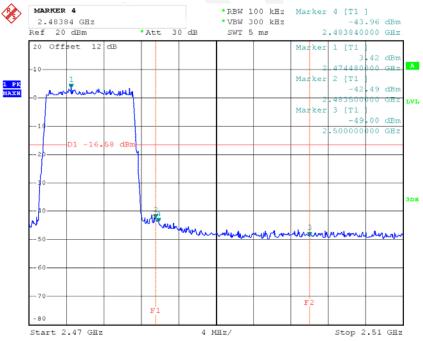
Date: 3.JUL.2015 16:00:15

Antenna 1: Band Edge, Right Side



Date: 3.JUL.2015 16:11:23

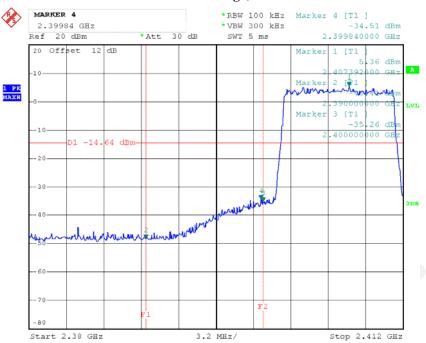
FCC Part 15.247 Page 30 of 47


Antenna 2: Band Edge, Left Side

Report No.: RDG150703008-00A

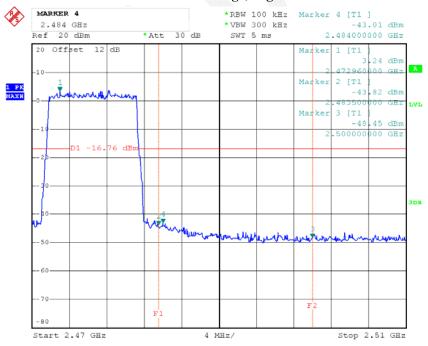
Date: 3.JUL.2015 16:04:35

Antenna 2: Band Edge, Right Side



Date: 3.JUL.2015 16:07:47

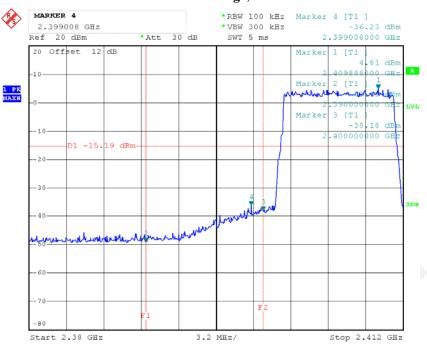
FCC Part 15.247 Page 31 of 47


Antenna 3 Band Edge, Left Side

Report No.: RDG150703008-00A

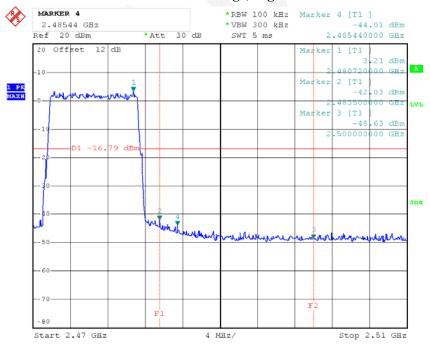
Date: 3.JUL.2015 16:01:51

Antenna 3 Band Edge, Right Side



Date: 3.JUL.2015 16:12:15

FCC Part 15.247 Page 32 of 47


Antenna 4 Band Edge, Left Side

Report No.: RDG150703008-00A

Date: 3.JUL.2015 16:06:02

Antenna 4 Band Edge, Right Side

Date: 3.JUL.2015 16:09:17

FCC Part 15.247 Page 33 of 47

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RDG150703008-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the RBW = 3 kHz, VBW = 10 kHz, Set the span to 1.5 times the DTS bandwidth.
- 4. Use the peak marker function to determine the maximum amplitude level.

Test Equipment List and Details

Manufacturer	Description	Model	Model Serial Number		Calibration Due Date
R&S	Spectrum Analyzer	FSP 38	100478	2015-05-09	2016-05-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23.8 °C
Relative Humidity:	53 %
ATM Pressure:	99.4 kPa

The testing was performed by Allen Qiao on 2015-07-03.

Test Mode: Transmitting

FCC Part 15.247 Page 34 of 47

Test Result: Pass

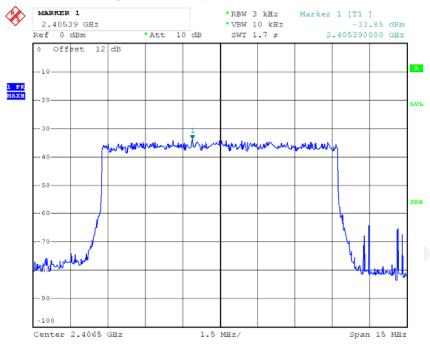
Test Mode: Transmitting

Channel	Frequency	Power Spectral Density (dBm/3kHz)						
	MHz	Ant. 1	Ant. 2	Ant. 3	Ant. 4			
High Power								
Low	2406.5	-11.03	-10.97	-11.51	-11.05			
Middle	2436.5	-11.64	-11.61	-11.21	-12.27			
High	2476.5	-12.84	-12.73	-12.29	-12.55			
		Low	Power					
Low	2406.5	-33.85	-34.81	-33.62	-35.39			
Middle	2436.5	-33.76	-34.65	-32.64	-34.22			
High	2476.5	-34.79	-34.17	-35.40	-34.19			

Report No.: RDG150703008-00A

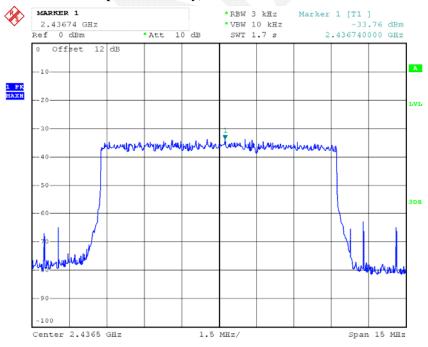
The system employed Space Time Block Codes (STBC) technology, and the signals are completely uncorrelated, the system configured two antennas with high power for good performance, and the rest antennas were configured with low power, the worst case in the following table:

Channel	Frequency		Power (Limits	Result			
	MHz	Ant. 1	Ant. 2	Ant. 3	Ant. 4	Total	dBm/3kHz	
Low	2406.5	-11.03	-10.97	-33.62	-35.39	-7.97	8	Pass
Middle	2436.5	-33.76	-11.61	-11.21	-34.22	-8.37	8	Pass
High	2476.5	-34.79	-34.17	-12.29	-12.55	-9.38	8	Pass


Please refer to the following plots

FCC Part 15.247 Page 35 of 47

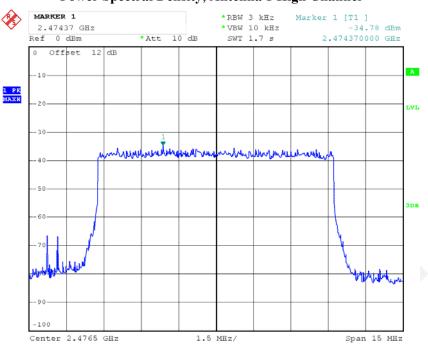
Low Power:


Power Spectral Density, Antenna 1 Low Channel

Report No.: RDG150703008-00A

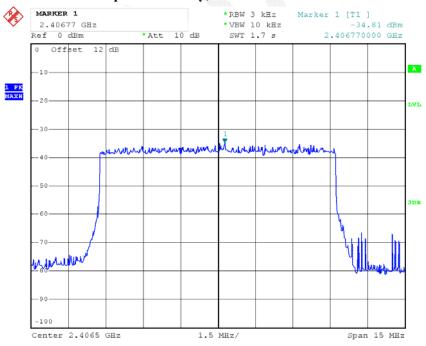
Date: 3.JUL.2015 15:17:13

Power Spectral Density, Antenna 1 Middle Channel



Date: 3.JUL.2015 15:16:26

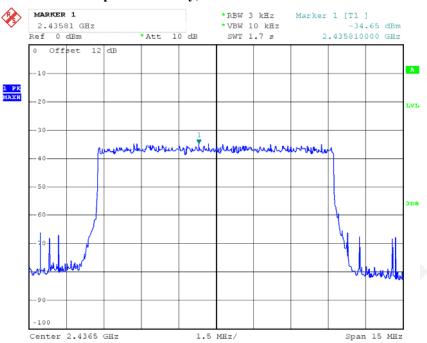
FCC Part 15.247 Page 36 of 47


Power Spectral Density, Antenna 1 High Channel

Report No.: RDG150703008-00A

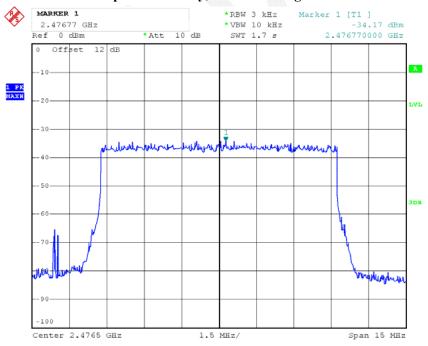
Date: 3.JUL.2015 15:14:03

Power Spectral Density, Antenna 2 Low Channel



Date: 3.JUL.2015 15:06:57

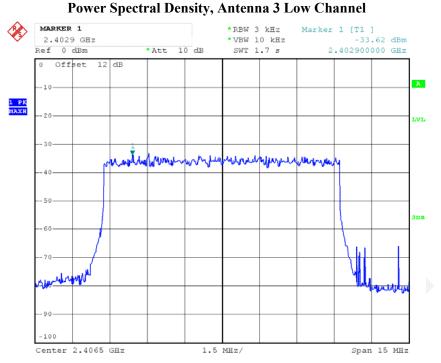
FCC Part 15.247 Page 37 of 47


Power Spectral Density, Antenna 2 Middle Channel

Report No.: RDG150703008-00A

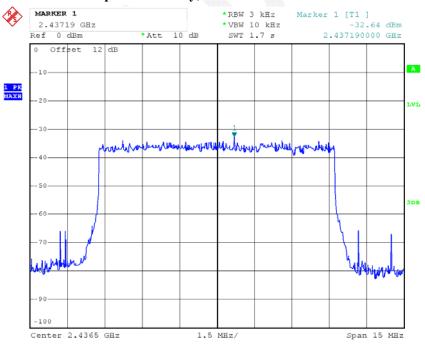
Date: 3.JUL.2015 15:09:35

Power Spectral Density, Antenna 2 High Channel



Date: 3.JUL.2015 15:10:27

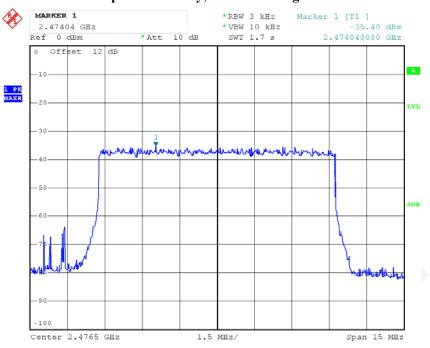
FCC Part 15.247 Page 38 of 47


... C., a street Danielte. Antonno 2 I and Channel

Report No.: RDG150703008-00A

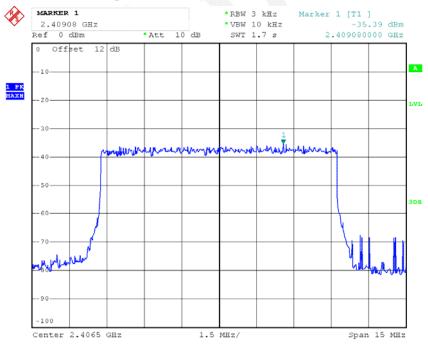
Date: 3.JUL.2015 15:17:53

Power Spectral Density, Antenna 3 Middle Channel



Date: 3.JUL.2015 15:15:41

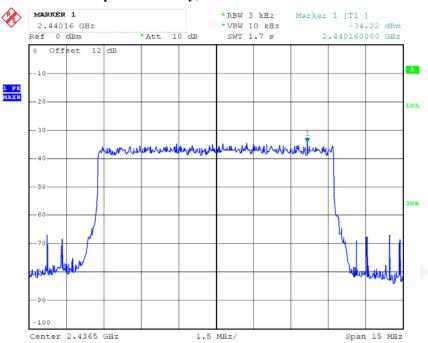
FCC Part 15.247 Page 39 of 47


Power Spectral Density, Antenna 3 High Channel

Report No.: RDG150703008-00A

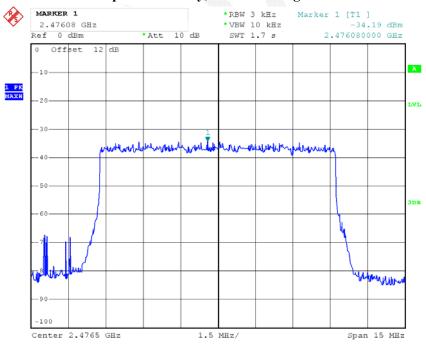
Date: 3.JUL.2015 15:14:58

Power Spectral Density, Antenna 4 Low Channel



Date: 3.JUL.2015 15:08:07

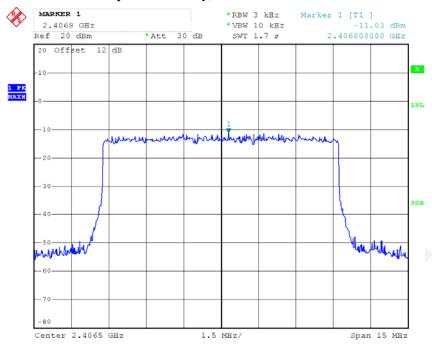
FCC Part 15.247 Page 40 of 47


Power Spectral Density, Antenna 4 Middle Channel

Report No.: RDG150703008-00A

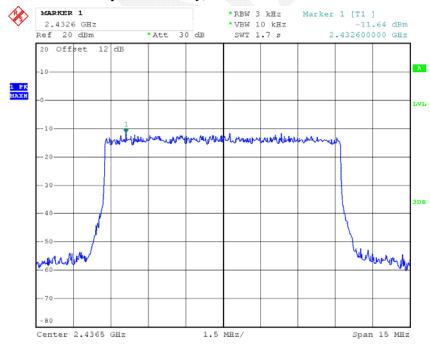
Date: 3.JUL.2015 15:08:53

Power Spectral Density, Antenna 4 High Channel


Date: 3.JUL.2015 15:11:10

FCC Part 15.247 Page 41 of 47

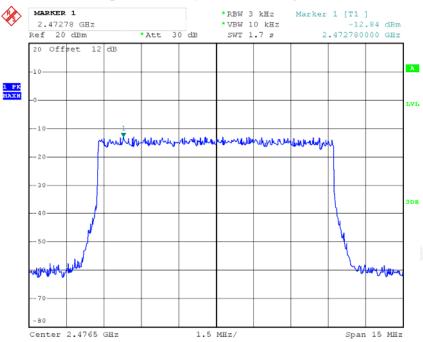
High Power:


Power Spectral Density, Antenna 1 Low Channel

Report No.: RDG150703008-00A

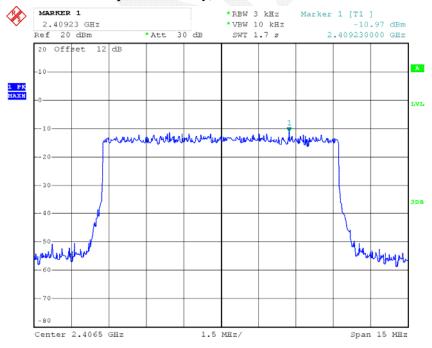
Date: 3.JUL.2015 15:20:45

Power Spectral Density, Antenna 1 Middle Channel



Date: 3.JUL.2015 15:22:32

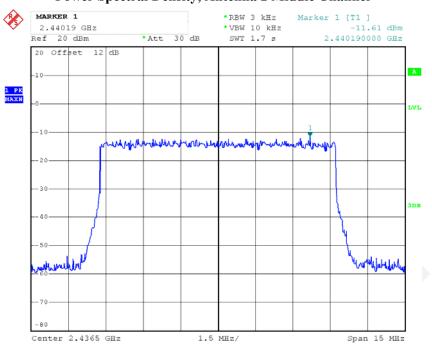
FCC Part 15.247 Page 42 of 47


Report No.: RDG150703008-00A

Power Spectral Density, Antenna 1 High Channel

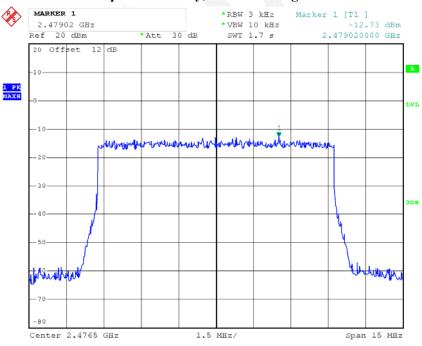
Date: 3.JUL.2015 15:23:14

Power Spectral Density, Antenna 2 Low Channel



Date: 3.JUL.2015 15:27:36

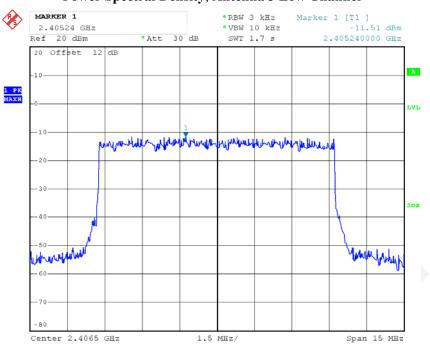
FCC Part 15.247 Page 43 of 47


Power Spectral Density, Antenna 2 Middle Channel

Report No.: RDG150703008-00A

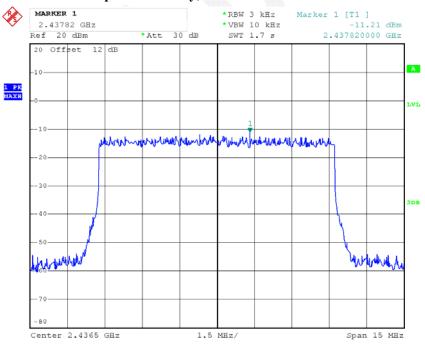
Date: 3.JUL.2015 15:26:47

Power Spectral Density, Antenna 2 High Channel



Date: 3.JUL.2015 15:24:54

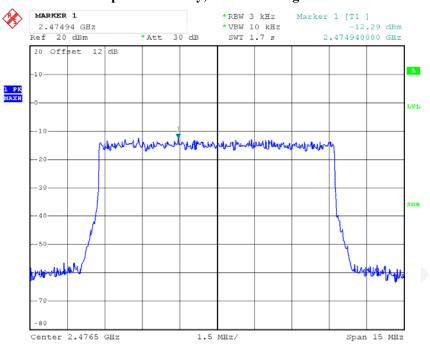
FCC Part 15.247 Page 44 of 47


Power Spectral Density, Antenna 3 Low Channel

Report No.: RDG150703008-00A

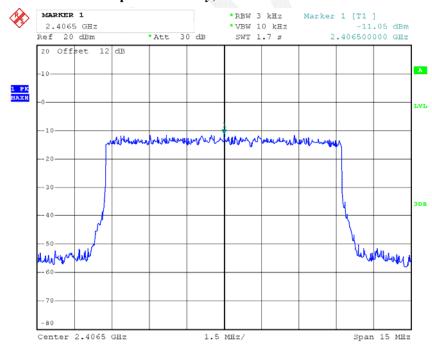
Date: 3.JUL.2015 15:21:09

Power Spectral Density, Antenna 3 Middle Channel



Date: 3.JUL.2015 15:21:43

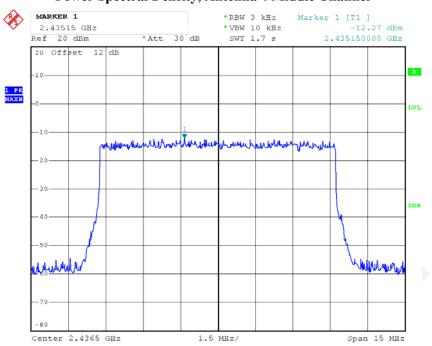
FCC Part 15.247 Page 45 of 47


Power Spectral Density, Antenna 3 High Channel

Report No.: RDG150703008-00A

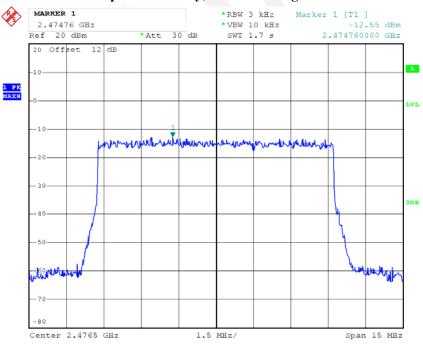
Date: 3.JUL.2015 15:23:53

Power Spectral Density, Antenna 4 Low Channel



Date: 3.JUL.2015 15:28:19

FCC Part 15.247 Page 46 of 47


Power Spectral Density, Antenna 4 Middle Channel

Report No.: RDG150703008-00A

Date: 3.JUL.2015 15:26:12

Power Spectral Density, Antenna 4 High Channel

Date: 3.JUL.2015 15:25:29
*****END OF REPORT*****

FCC Part 15.247 Page 47 of 47