

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

EUT 1 NAME: JV31

EUT 1 MODEL NUMBER: JV31

EUT 2 NAME: JV32

EUT 2 MODEL NUMBER: JV32

REPORT NUMBER: 4791262574-RF-3

ISSUE DATE: September 19, 2024

FCC ID: SS3-JV312406

Prepared for

SZ DJI Technology Co Ltd Lobby of T2, DJI Sky City, No. 53 Xianyuan Road, Xili Community, Xili Street, Nanshan District, Shenzhen, China.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Page 2 of 51

Revision History

Rev.Issue DateRevisionsRevised ByV0September 19, 2024Initial Issue

Page 3 of 51

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	1	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	fCC Part 15 207	
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1	FCC Part 15.247 (b)(3)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	Clause FCC Part 15.247 (a)(2)	
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	' F((Part 15 2/1 / (Δ))	
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.12 & Clause 11.13	FCC Part 15.247 (d) FCC Part 15.205/15.209	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Note:

^{1.} N/A: In this whole report not applicable, the EUT can't operate during charging.

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C > when <Simple Acceptance> decision rule is applied.

CONTENTS

1. ATTES	STATION OF TEST RESULTS	6
2. TEST	METHODOLOGY	7
3. FACIL	ITIES AND ACCREDITATION	7
4. CALIB	BRATION AND UNCERTAINTY	8
4.1.	MEASURING INSTRUMENT CALIBRATION	8
4.2.	MEASUREMENT UNCERTAINTY	8
5. EQUIF	PMENT UNDER TEST	9
5.1.	DESCRIPTION OF EUT	9
5.2.	CHANNEL LIST	9
5.3.	MAXIMUM POWER	9
<i>5.4.</i>	TEST CHANNEL CONFIGURATION	10
5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5.6.	WORST-CASE CONFIGURATIONS	10
5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.8.	DESCRIPTION OF TEST SETUP	11
6. MEAS	URING EQUIPMENT AND SOFTWARE USED	12
7. ANTE	NNA PORT TEST RESULTS	14
7.1.	CONDUCTED OUTPUT POWER	14
7.2.	6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	15
7.3.	POWER SPECTRAL DENSITY	17
7.4.	CONDUCTED BAND EDGE AND SPURIOUS EMISSION	18
7.5.	DUTY CYCLE	20
8. RADIA	ATED TEST RESULTS	21
8.1.	RESTRICTED BANDEDGE	29
8.2.	SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)	31
8.3.	SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)	33
<i>8.4.</i>	SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)	35
8.5.	SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)	38
8.6.	SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)	40
9. ANTE	NNA REQUIREMENT	42
10.	TEST DATA	43
10.1.	APPENDIX A: DTS BANDWIDTH	
10.1.1 10.1.2		

Page 5 of 51

10.2. 10.2.1. 10.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	44
10.3. 10.3.1. 10.3.2.	APPENDIX C: MAXIMUM PEAK CONDUCTED OUTPUT POWER Test Result Test Graphs	45
10.4. 10.4.1. 10.4.2.	APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY Test Result Test Graphs	46
10.5. 10.5.1. 10.5.2.	APPENDIX E: BAND EDGE MEASUREMENTSTest ResultTest Graphs	47
10.6. 10.6.1. 10.6.2.	APPENDIX F: CONDUCTED SPURIOUS EMISSION Test Result Test Graphs	48
10.7. 10.7.1. 10.7.2.	APPENDIX G: DUTY CYCLE Test Result Test Graphs	49

Page 6 of 51

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: SZ DJI TECHNOLOGY CO., LTD

Address: Lobby of T2, DJI Sky City, No. 53 Xianyuan Road, Xili

Community, Xili Street, Nanshan District, Shenzhen, China.

Manufacturer Information

Company Name: SZ DJI TECHNOLOGY CO., LTD

Address: Lobby of T2, DJI Sky City, No. 53 Xianyuan Road, Xili

Community, Xili Street, Nanshan District, Shenzhen, China.

EUT Information

EUT 1 Name: JV31 EUT 1 Model Number: JV31 EUT 2 Name: JV32 EUT 2 Model Number: JV32

Model Difference: Please refer to Model difference statement

Brand Name: DJI

Sample Received Date: May 9, 2024 Sample ID: 7197784

Date of Tested: May 30, 2024 to September 19, 2024

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
CFR 47 FCC PART 15 SUBPART C	Pass			

Prepared By:

Checked By:

Lamry Huang

Fanny Huang

Kebo Zhang

Engineer Project Associate

Senior Project Engineer

Approved By:

Stephen Guo

Operations Manager

Page 7 of 51

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, KDB 662911 D01 Multiple Transmitter Output v02r01, CFR 47 FCC Part 2, ANSI C63.10-2013.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)		
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.		
	has been assessed and proved to be in compliance with A2LA.		
	FCC (FCC Designation No.: CN1187)		
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.		
	Has been recognized to perform compliance testing on equipment subject		
	to the Commission's Declaration of Conformity (DoC) and Certification		
	rules		
	ISED (Company No.: 21320)		
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.		
Certificate	has been registered and fully described in a report filed with ISED.		
The Company Number is 21320 and the test lab Conformity Assessr Body Identifier (CABID) is CN0046.			
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.		
	has been assessed and proved to be in compliance with VCCI, the		
	Membership No. is 3793.		
	Facility Name:		
	Chamber D, the VCCI registration No. is G-20192 and R-20202		
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155		

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

Page 8 of 51

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
Radiated Emission	5.78 dB (1 GHz ~ 18 GHz)	
(Included Fundamental Emission) (1 GHz to 26 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
Duty Cycle	±0.028%	
DTS and 99% Occupied Bandwidth	±0.0196%	
Maximum Conducted Output Power	±0.686 dB	
Maximum Power Spectral Density Level	±0.743 dB	
Conducted Band-edge Compliance	±1.328 dB	
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)	
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 51

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT 1 Name	JV31
EUT 1 Model Number	JV31
EUT 2 Name	JV32
EUT 2 Model Number	JV32
Model Difference	Please refer to Model difference statement

Frequency Range:	2437 MHz
Radio Technology:	IEEE 802.11g
Type of Modulation:	OFDM (64-QAM, 16-QAM, QPSK, BPSK)
Battery	DC 14.76 V
Power Supply	DC 5 V

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2437	/	/	/	/	/	/

5.3. MAXIMUM POWER

IEEE Std. 802.11	Frequency	Channel Number	Maximum Peak Output Power	EIRP
IEEE Sta. 602.11	(MHz)	Charmer Number	(dBm)	(dBm)
g	2437	1[1]	29.25	31.12

Page 10 of 51

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11	Test Channel Number	Frequency
g	CH 1(Low Channel)	2437 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5 MHz Band							
Test Software DjiSdrConsole							
I Modulation	Transmit			Test Channel			
	Antenna		NCB: 20MHz NCB: 4	NCB: 40MHz			
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9
802.11g	1	/	Default	/		/	

5.6. WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11g mode: 6 Mbps

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	Maximum Antenna Gain (dBi)
1	2412-2462	FPC	1.87

Test Mode	Transmit and Receive Mode	Description				
IEEE 802.11g	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.				
Note: 1. The value of the antenna gain was declared by customer. 2. The FUT can't transmit simultaneously.						

Page 11 of 51

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42-80	/
2	Adapter Power	DJI	PD-65CN	Input: AC 100 ~ 240 V, 50/60 Hz, 2.0 A Output: DC 5 V, 5 A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	Type C	Unshielded	1.0	/

ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

Page 12 of 51

6. MEASURING EQUIPMENT AND SOFTWARE USED

, MEAGOIMA EQUI MENT AND OUT TWANE COLD										
R&S TS 8997 Test System										
Equipment		Ма	Manufacturer		Model	No.	Serial No.	Last 0	Cal.	Due. Date
Power sensor, Power M	leter		R&S	;	OSP1	20	100921	Mar.25,	2024	Mar.24,2025
Vector Signal Genera	tor		R&S)	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator			R&S	;	SMB10)0A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer			R&S)	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
					Softwa	re				
Description			N	/lanuf	acturer		Nam	е		Version
For R&S TS 8997 Test System Ro				nde 8	Schwarz EMC 32		10.60.10			
Tonsend RF Test System										
Equipment	Man	ufac	cturer	Mod	del No.	S	Serial No.	Last 0	Cal.	Due. Date
PXA Signal Analyzer	Ke	eysi	ght	N9	030A	MY	/55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysi	ght	N5	182B	MY	/56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysi	ght	N5	5172B	MY	/56200301	Oct.12,	2023	Oct.11, 2024
Attenuator	Δ	Aglie	nt	84	495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	nsc	nscend JS0		0806-2	23E	380620666	Mar.25,	2024	Mar.24,2025
					Softwa	re				
Description		Mai	Manufacturer		Name				Version	
Tonsend SRD Test Sys	tem	Т	onser	nd	JS1	120-	3 RF Test S	ystem		V3.2.22

Page 13 of 51

		Radia	ted Emission	S			
Equipment	Equipment Manufacturer Mode		Serial No.	Upper Last Cal.	Last Cal.	Due Date	
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	/	Oct.12, 2023	Oct.11, 2024	
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130960	Aug.02, 2021	June 28, 2024	June 27, 2027	
Preamplifier	HP	8447D	2944A09099	/	Oct.12, 2023	Oct.11, 2024	
EMI Measurement Receiver	R&S	ESR26	101377	/	Oct.12, 2023	Oct.11, 2024	
Horn Antenna	TDK	HRN-0118	130939	/	Apr.29, 2022	Apr.28, 2025	
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	/	Oct.12, 2023	Oct.11, 2024	
Horn Antenna Schwarzbeck		BBHA9170	697	July 20, 2021	June 30, 2024	June 29, 2027	
Preamplifier TDK	TDK	PA-02-2	TRS-307- 00003	/	Oct.12, 2023	Oct.11, 2024	
Preamplifier	Preamplifier TDK PA		TRS-308- 00002	/	Oct.12, 2023	Oct.11, 2024	
Loop antenna	Schwarzbeck	1519B	80000	/	Dec.14, 2021	Dec.13, 2024	
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	/	Oct.12, 2023	Oct.11, 2024	
High Pass Filter	Wi	WHKX10- 2700-3000- 18000- 40SS	23	_	Oct.12, 2023	Oct.11, 2024	
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5- 40SS	4	/	Oct.12, 2023	Oct.11, 2024	
			Software				
С	Description				Name	Version	
Test Software	Test Software for Radiated Emissions				Z-EMC	Ver. UL-3A1	

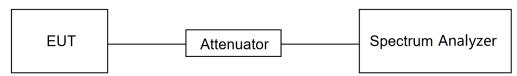
Page 14 of 51

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3)	Conducted Output Power	1 watt or 30 dBm	2400-2483.5				


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.9.1.

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq [3 \times RBW].
- c) Set span \geq [3 \times RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54.1%
Atmosphere Pressure	101 kPa	Test Voltage	DC 14.76 V

TEST RESULTS

Please refer to section "Test Data" - Appendix C

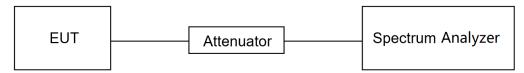
Page 15 of 51

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5				

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
IRRW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IV/B\/\/	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54.1%
Atmosphere Pressure	101 kPa	Test Voltage	DC 14.76 V

Page 16 of 51

TEST RESULTS

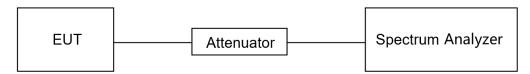
Please refer to section "Test Data" - Appendix A&B

Page 17 of 51

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC §15.247 (e)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.2.

The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 \times RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54.1%
Atmosphere Pressure	101 kPa	Test Voltage	DC 14.76 V

TEST RESULTS

Please refer to section "Test Data" - Appendix D

Page 18 of 51

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C		
Section Test Item Limit		
CFR 47 FCC §15.247 (d) Bandedge and bandwidth within the band that contains		at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

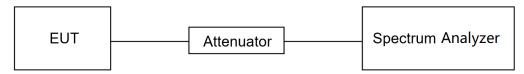
Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyzer and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:


Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

Page 19 of 51

TEST SETUP

TEST ENVIRONMENT

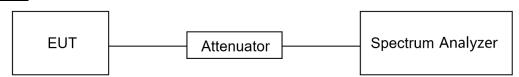
Temperature	23.2 ℃	Relative Humidity	54.1%
Atmosphere Pressure	101 kPa	Test Voltage	DC 14.76 V

TEST RESULTS

Please refer to section "Test Data" - Appendix E&F

Page 20 of 51

7.5. DUTY CYCLE


LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.2 ℃	Relative Humidity	54.1%
Atmosphere Pressure	101 kPa	Test Voltage	DC 14.76 V

TEST RESULTS

Please refer to section "Test Data" - Appendix G

Page 21 of 51

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Streng	th Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
		Quasi-P	eak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

Page 22 of 51

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Page 23 of 51

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Page 24 of 51

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.5. ON TIME AND DUTY CYCLE.

Page 25 of 51

For Restricted Bandedge:

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. PK=Peak: Peak detector.
- 4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.5.
- 6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 7. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz):

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
- 3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.
- 4. All modes have been tested, but only the worst data was recorded in the report.
- 5. $dBuA/m = dBuV/m 20Log10[120\pi] = dBuV/m 51.5$

For Radiate Spurious Emission (30 MHz ~ 1 GHz):

Note:

- 1. Result Level = Read Level + Correct Factor.
- 2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.
- 3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 3 GHz):

Note:

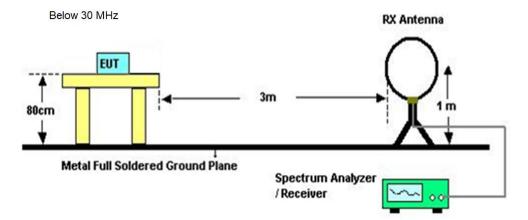
- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.5.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 8. All modes have been tested, but only the worst data was recorded in the report.

Page 26 of 51

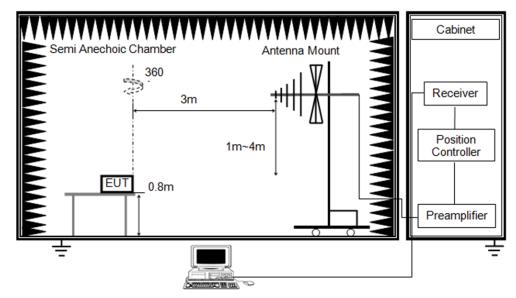
For Radiate Spurious Emission (3 GHz ~ 18 GHz):

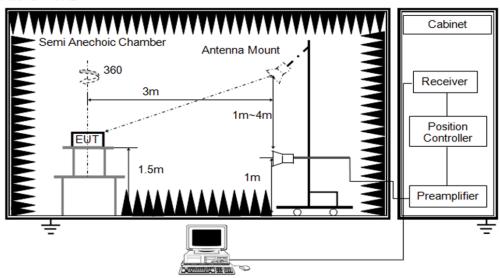
Note:

- 1. Peak Result = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.
- 5. For the transmitting duration, please refer to clause 7.5.
- 6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.
- 7. Proper operation of the transmitter prior to adding the filter to the measurement chain.
- 8. All modes have been tested, but only the worst data was recorded in the report.


For Radiate Spurious emission (18 GHz ~ 26 GHz):

Note:


- 1. Measurement = Reading Level + Correct Factor.
- 2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.
- 3. Peak: Peak detector.
- 4. All modes have been tested, but only the worst data was recorded in the report.


TEST SETUP

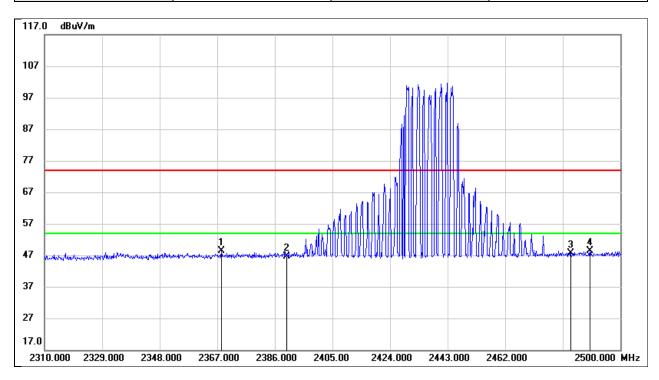
Below 1 GHz and above 30 MHz

Above 1 GHz

Page 28 of 51

TEST ENVIRONMENT

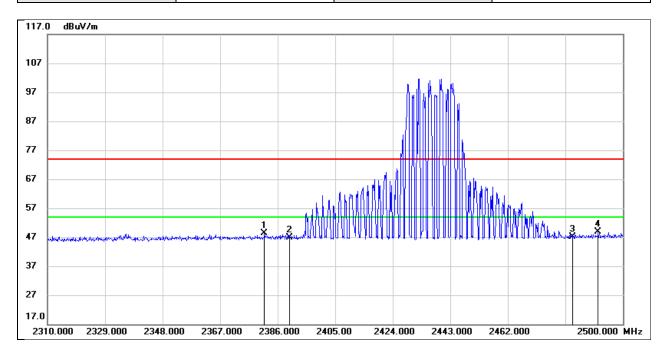
Temperature	25.1 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 14.76 V


TEST RESULTS

Page 29 of 51

8.1. RESTRICTED BANDEDGE

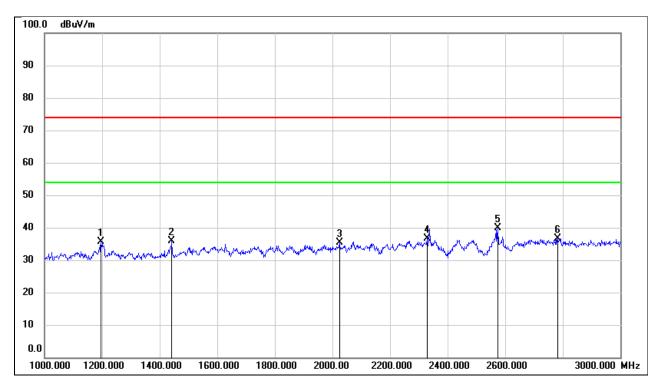
Test Mode:	802.11g PK	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2368.330	15.53	32.81	48.34	74.00	-25.66	peak
2	2390.000	13.63	32.92	46.55	74.00	-27.45	peak
3	2483.500	14.79	32.94	47.73	74.00	-26.27	peak
4	2489.930	15.52	32.93	48.45	74.00	-25.55	peak

Page 30 of 51

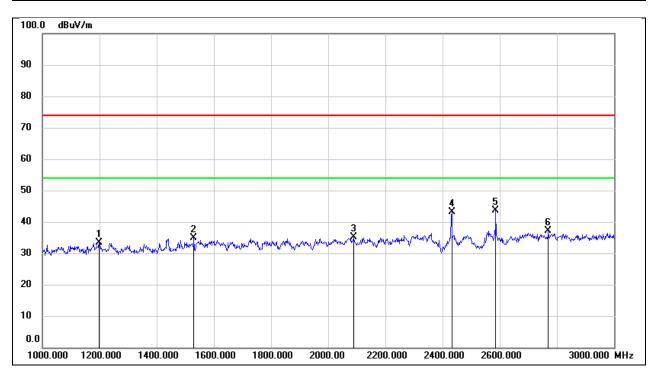
Test Mode:	802.11g PK	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	DC 14.76 V


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.630	15.47	32.88	48.35	74.00	-25.65	peak
2	2390.000	14.01	32.92	46.93	74.00	-27.07	peak
3	2483.500	14.30	32.94	47.24	74.00	-26.76	peak
4	2491.830	15.94	32.94	48.88	74.00	-25.12	peak

Page 31 of 51

8.2. SPURIOUS EMISSIONS (1 GHZ ~ 3 GHZ)

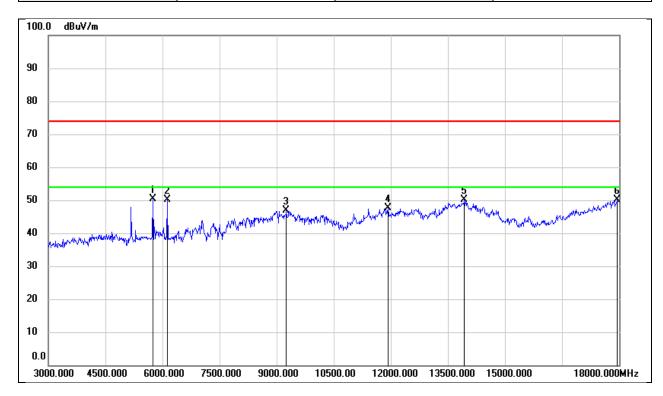
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1196.000	48.27	-12.67	35.60	74.00	-38.40	peak
2	1442.000	48.11	-12.13	35.98	74.00	-38.02	peak
3	2024.000	45.34	-9.96	35.38	74.00	-38.62	peak
4	2328.000	44.46	-7.94	36.52	74.00	-37.48	peak
5	2574.000	47.53	-7.64	39.89	74.00	-34.11	peak
6	2782.000	43.58	-6.87	36.71	74.00	-37.29	peak

Page 32 of 51

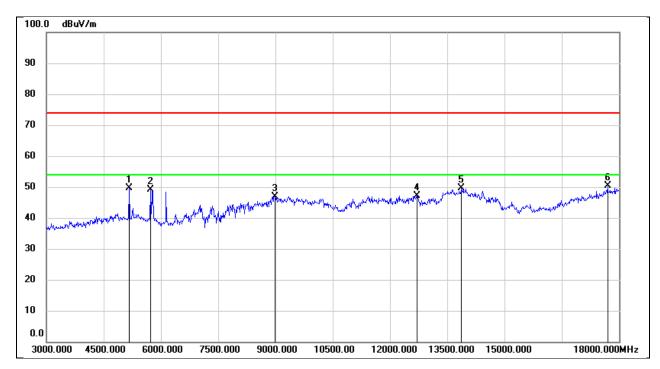
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	DC 14.76 V


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1198.000	46.02	-12.66	33.36	74.00	-40.64	peak
2	1530.000	46.38	-11.57	34.81	74.00	-39.19	peak
3	2090.000	44.69	-9.56	35.13	74.00	-38.87	peak
4	2437.000	50.62	-7.44	43.18	/	/	Fundamental
5	2586.000	51.21	-7.66	43.55	74.00	-30.45	peak
6	2770.000	44.12	-6.93	37.19	74.00	-36.81	peak

Page 33 of 51

8.3. SPURIOUS EMISSIONS (3 GHZ ~ 18 GHZ)

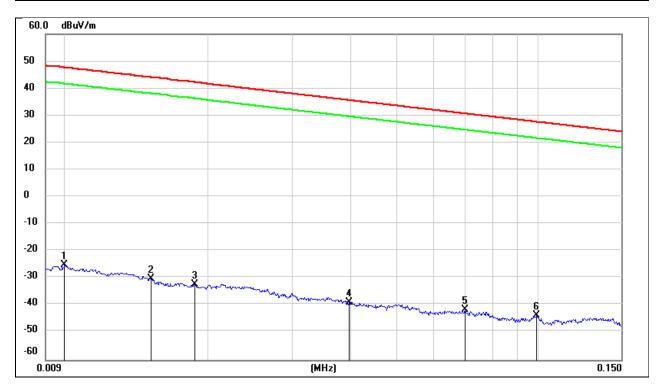
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5745.000	47.93	2.42	50.35	74.00	-23.65	peak
2	6120.000	47.21	2.88	50.09	74.00	-23.91	peak
3	9255.000	36.84	10.14	46.98	74.00	-27.02	peak
4	11925.000	29.57	18.17	47.74	74.00	-26.26	peak
5	13935.000	27.36	22.72	50.08	74.00	-23.92	peak
6	17955.000	23.43	26.66	50.09	74.00	-23.91	peak

Page 34 of 51

Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	DC 14.76 V

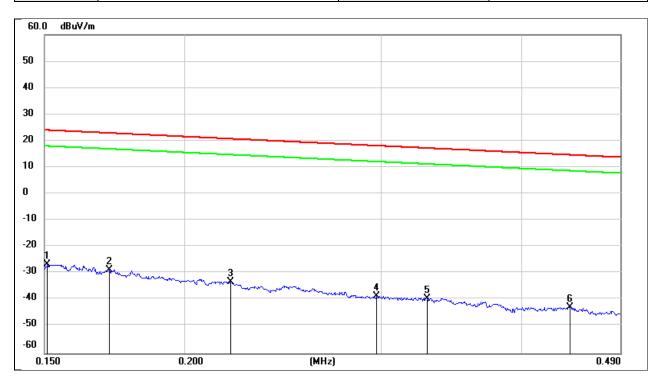


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5175.000	48.35	1.38	49.73	74.00	-24.27	peak
2	5730.000	46.71	2.46	49.17	74.00	-24.83	peak
3	8985.000	36.01	10.97	46.98	74.00	-27.02	peak
4	12705.000	28.56	18.66	47.22	74.00	-26.78	peak
5	13875.000	26.86	22.68	49.54	74.00	-24.46	peak
6	17700.000	25.11	25.17	50.28	74.00	-23.72	peak

Page 35 of 51

8.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)

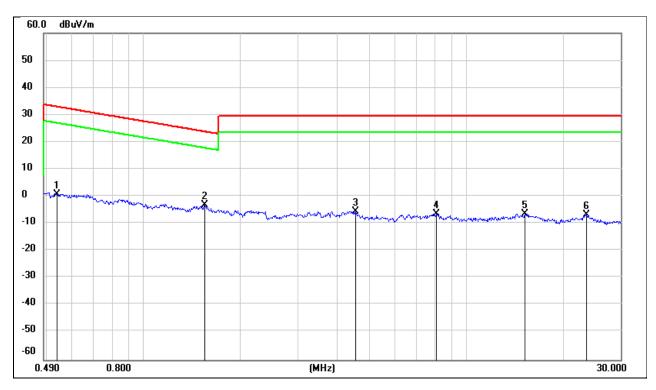
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.01	76.22	-101.4	-25.18	-76.68	47.6	-3.9	-72.78	peak
2	0.0151	71.11	-101.37	-30.26	-81.76	44.02	-7.48	-74.28	peak
3	0.0187	69.2	-101.35	-32.15	-83.65	42.16	-9.34	-74.31	peak
4	0.0396	62.61	-101.43	-38.82	-90.32	35.65	-15.85	-74.47	peak
5	0.07	59.91	-101.57	-41.66	-93.16	30.7	-20.8	-72.36	peak
6	0.0994	58.2	-101.8	-43.6	-95.10	27.65	-23.85	-71.25	peak

Page 36 of 51

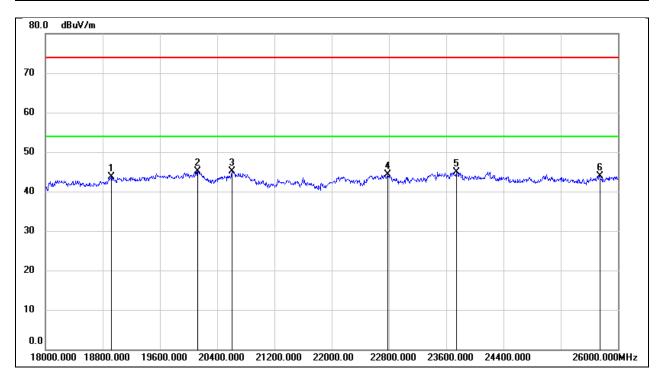
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1508	75.11	-101.63	-26.52	-78.02	24.03	-27.47	-50.55	peak
2	0.1715	73.11	-101.67	-28.56	-80.06	22.92	-28.58	-51.48	peak
3	0.22	68.74	-101.75	-33.01	-84.51	20.75	-30.75	-53.76	peak
4	0.2968	63.33	-101.85	-38.52	-90.02	18.15	-33.35	-56.67	peak
5	0.33	62.47	-101.88	-39.41	-90.91	17.23	-34.27	-56.64	peak
6	0.4415	59.35	-102.01	-42.66	-94.16	14.7	-36.8	-57.36	peak

Page 37 of 51

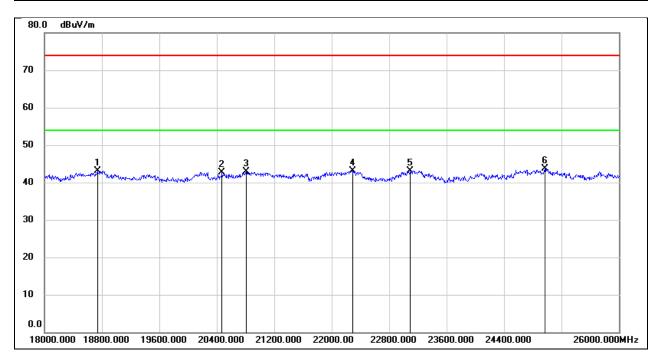
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 14.76 V


No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.5383	62.94	-62.08	0.86	-50.64	32.98	-18.52	-32.12	peak
2	1.5443	58.85	-62.03	-3.18	-54.68	23.83	-27.67	-27.01	peak
3	4.5327	55.82	-61.42	-5.6	-57.10	29.54	-21.96	-35.14	peak
4	8.0739	54.75	-61.07	-6.32	-57.82	29.54	-21.96	-35.86	peak
5	15.1859	54.55	-61.01	-6.46	-57.96	29.54	-21.96	-36.00	peak
6	23.4783	53.74	-60.56	-6.82	-58.32	29.54	-21.96	-36.36	peak

Page 38 of 51

8.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)

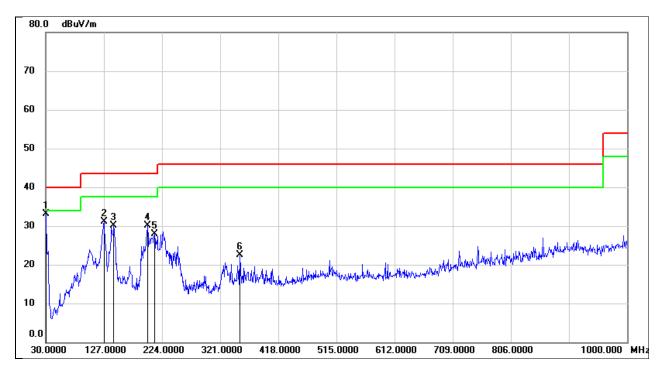
Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18920.000	48.93	-5.29	43.64	74.00	-30.36	peak
2	20128.000	50.62	-5.53	45.09	74.00	-28.91	peak
3	20608.000	50.26	-5.25	45.01	74.00	-28.99	peak
4	22784.000	47.98	-3.65	44.33	74.00	-29.67	peak
5	23744.000	48.15	-3.20	44.95	74.00	-29.05	peak
6	25744.000	44.50	-0.64	43.86	74.00	-30.14	peak

Page 39 of 51

Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	DC 14.76 V


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18736.000	48.51	-5.41	43.10	74.00	-30.90	peak
2	20472.000	48.07	-5.39	42.68	74.00	-31.32	peak
3	20808.000	47.88	-5.07	42.81	74.00	-31.19	peak
4	22288.000	47.29	-4.17	43.12	74.00	-30.88	peak
5	23096.000	46.58	-3.41	43.17	74.00	-30.83	peak
6	24968.000	45.76	-2.14	43.62	74.00	-30.38	peak

Page 40 of 51

8.6. SPURIOUS EMISSIONS (30 MHZ \sim 1 GHZ)

Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Horizontal	Test Voltage:	DC 14.76 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	46.62	-13.49	33.13	40.00	-6.87	QP
2	127.0000	45.78	-14.72	31.06	43.50	-12.44	QP
3	143.4900	43.90	-13.89	30.01	43.50	-13.49	QP
4	199.7500	42.14	-12.10	30.04	43.50	-13.46	QP
5	211.3900	40.50	-12.64	27.86	43.50	-15.64	QP
6	353.9800	31.98	-9.57	22.41	46.00	-23.59	QP

Page 41 of 51

Test Mode:	802.11g	Frequency(MHz):	2437
Polarity:	Vertical	Test Voltage:	DC 14.76 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	41.77	-13.34	28.43	40.00	-11.57	QP
2	78.5000	35.38	-16.19	19.19	40.00	-20.81	QP
3	127.0000	36.27	-14.72	21.55	43.50	-21.95	QP
4	199.7500	31.40	-12.10	19.30	43.50	-24.20	QP
5	620.7300	31.16	-6.39	24.77	46.00	-21.23	QP
6	868.0800	27.73	-2.10	25.63	46.00	-20.37	QP

Page 42 of 51

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

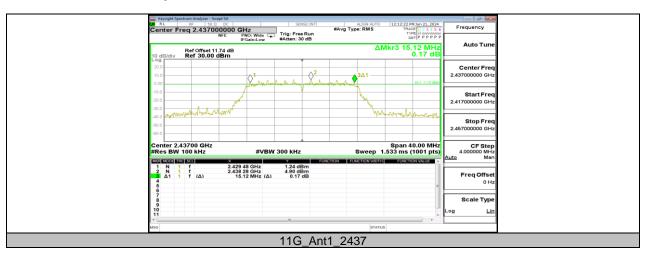
Please refer to FCC part 15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

Pass

Page 43 of 51

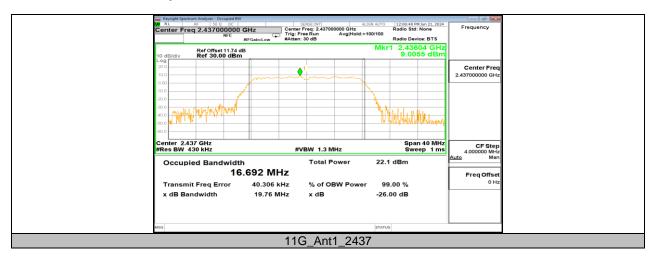

10. TEST DATA

10.1. APPENDIX A: DTS BANDWIDTH

10.1.1. Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11G	Ant1	2437	15.120	2429.480	2444.600	≥0.5	PASS

10.1.2. Test Graphs

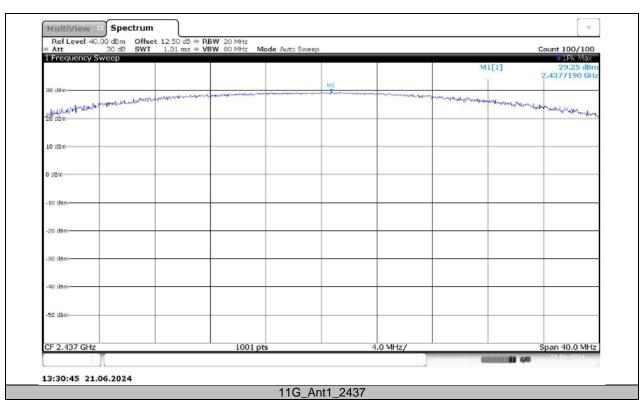


Page 44 of 51

10.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 10.2.1. Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]
11G	Ant1	2437	16.692	2428.6958	2445.3878

10.2.2. Test Graphs

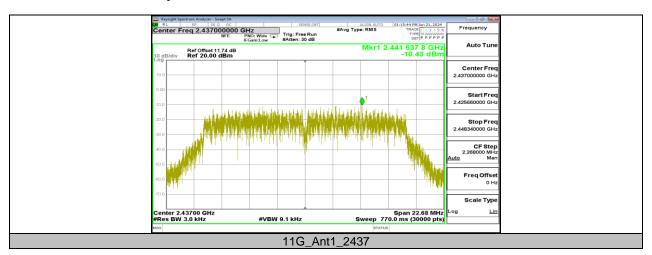


Page 45 of 51

10.3. APPENDIX C: MAXIMUM PEAK CONDUCTED OUTPUT POWER 10.3.1. Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm]	Limit[dBm]	EIRP[dBm]	Verdict
11G	Ant1	2437	29.25	≤30.00	31.12	PASS

10.3.2. Test Graphs



Page 46 of 51

10.4. APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY 10.4.1. Test Result

Test Mode Antenna		Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict	
11G	Ant1	2437	-10.43	≤8.00	PASS	

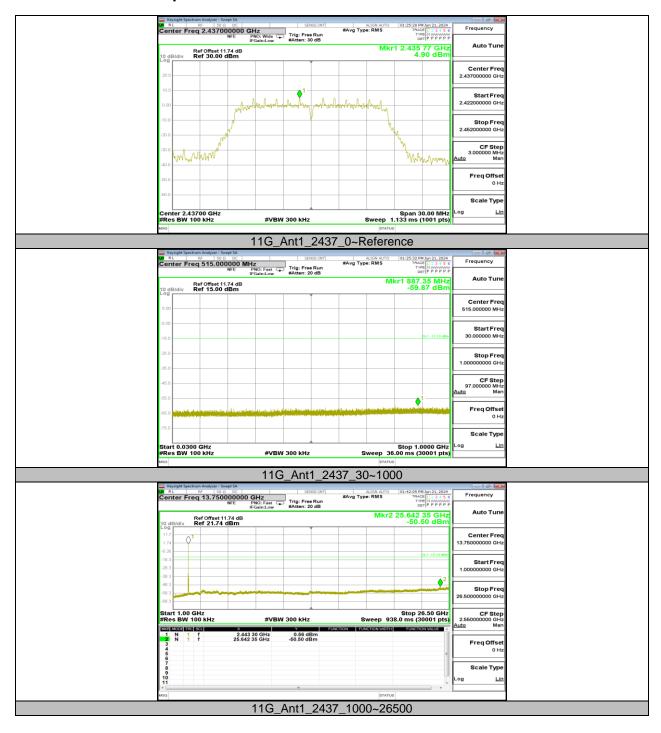
10.4.2. Test Graphs

Page 47 of 51

10.5. APPENDIX E: BAND EDGE MEASUREMENTS 10.5.1. Test Result

Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
11G	A not 1	Low	2412	2.93	-37.31	≤-17.07	PASS
116	Ant1	High	2462	1.32	-38.21	≤-18.68	PASS

10.5.2. Test Graphs



Page 48 of 51

10.6. APPENDIX F: CONDUCTED SPURIOUS EMISSION 10.6.1. Test Result

	Test Mode	Antenna	Frequency[MHz]	FreqRange [Mhz]	Result [dBm]	Limit [dBm]	Verdict
	11G Ant1		Ant1 2437	Reference	4.90		PASS
		Ant1		30~1000	-59.88	≤-15.1	PASS
				1000~26500	-50.5	≤-15.1	PASS

10.6.2. Test Graphs

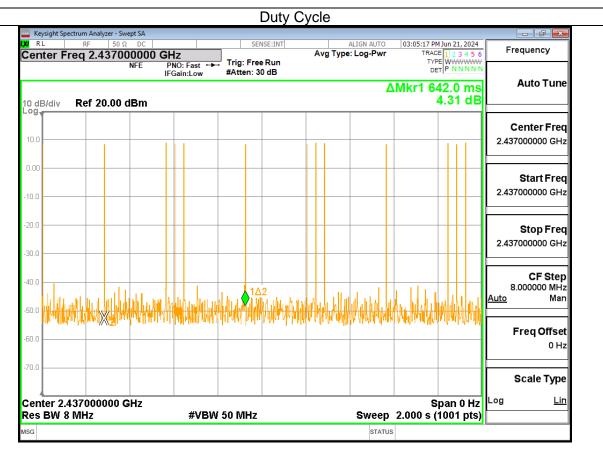
Page 49 of 51

10.7. APPENDIX G: DUTY CYCLE 10.7.1. Test Result

Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11G	3.2	642	0.005	0.5%	23.03	0.31	0.5

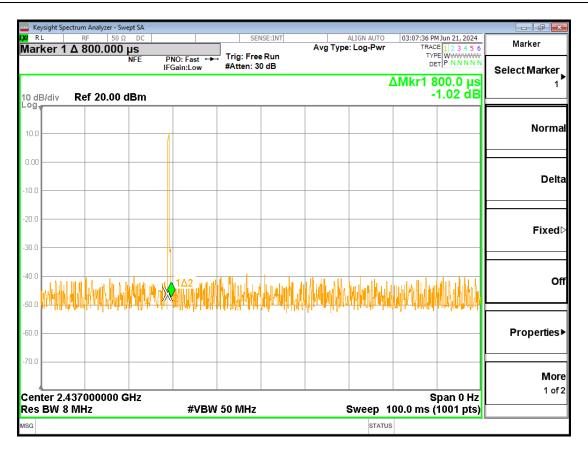
Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)


Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.



10.7.2. Test Graphs

END OF REPORT