

FCC PART 15.407 TEST REPORT

For

SZ DJI TECHNOLOGY CO., LTD

14th floor, West Wing, Skyworth Semiconductor Design Building NO.18 Gaoxin South 4th Ave, Nanshan, Shenzhen, Guangdong, China

FCC ID: SS3-GL300F1609

Report Type: **Product Type:** Original Report C1 **Report Number:** RDG160820014-00B **Report Date:** 2016-09-27 Deam. Law Jerry Zhang Dean Liu **Reviewed By:** RF Engineer Jerry Zhang **Approved By:** EMC Manager Test Laboratory: Bay Area Compliance Laboratories Corp. (Dongguan) No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.(Dongguan). This report may contain data or test methods that are not covered by the NVLAP accreditation scope and shall be marked with an asterisk "*" and noted.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	5
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL CABLEBLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	9
FCC §15.407 (f) & §1.1310 & §2.1093- RF EXPOSURE	10
APPLICABLE STANDARD	
Test Result	
FCC §15.203 – ANTENNA REQUIREMENT	11
APPLICABLE STANDARD	11
ANTENNA CONNECTOR CONSTRUCTION	11
§15.207 (a) – CONDUCTED EMISSIONS	12
APPLICABLE STANDARD	
Measurement Uncertainty	
EUT Setup	12
EMI TEST RECEIVER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	
FCC §15.209, §15.205 & §15.407(b) (1) (6) (7) –UNWANTED EMISSION	
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	18
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.407(a) –EMISSION BANDWIDTH	25
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	25
Test Procedure	
TEST DATA	

FCC §15.407(a) –MAXIMUM CONDUCTED OUTPUT POWER	28
APPLICABLE STANDARD	28
TEST EQUIPMENT LIST AND DETAILS.	29
TEST PROCEDURE	29
Test Data	29
FCC §15.407(a) - POWER SPECTRAL DENSITY	31
APPLICABLE STANDARD	31
TEST PROCEDURE	32
TEST EQUIPMENT LIST AND DETAILS.	32
TEST DATA	32

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The SZ DJI TECHNOLOGY CO., LTD's product, model number: GL300F (FCC ID: SS3-GL300F1609) (the "EUT") in this report was a CI, which was measured approximately: 18.2 cm (L) x17.14 cm (W) x 10.52 cm(H), rated input voltage: DC 7.4V from lithium-ion Polymer battery or DC17.5V from adapter.

Report No.:RDG160820014-00B

Adapter Information: MODEL:PH4C100 INPUT:100-240V~1.4A,50-60Hz OUTPUT:17.5V, 5.7A(Total) 17.5V, 0~2A(Output 1) 17.5V, 0~5.7A(Output 2)

* All measurement and test data in this report was gathered from production sample serial number: 160820014 (Assigned by BACL Dongguan). The EUT was received on 2016-08-31.

Objective

This type approval report is prepared on behalf of *SZ DJI TECHNOLOGY CO., LTD* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: SS3-GL300F1609.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China

Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 06, 2015.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.407 Page 4 of 35

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

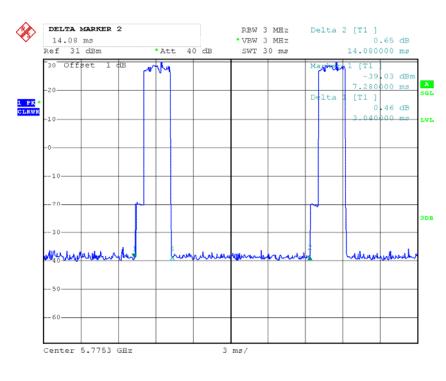
The device employed LB mode, 42 channels are provided to testing in 5.8GHz band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	5727	22	5775.3
2	5729.3	23	5777.6
•••	•••	•••	•••
	•••	•••	•••
		41	5819
21	5773	42	5821.3

EUT Exercise Software

The software "DJI-RF Certification" was used for testing, which was provided by manufacturer. The maximum power was configured by system default setting. The default setting level as below:

Antenna 0					
Test Software Version	DJI-RF Certification				
Frequency (MHz)	5727	5729.3	5731.6~5816.7	5819	5821.3
Power Level Setting	23	24	25	24	23


All test items performed at Low, Middle and High Channel, and for difference power level setting configured by software(LB mode), output power, radiation bandedge test with additional channels according to the power setting and power test results.

The software configured maximum duty cycle as below:

Mode	T _{on} (ms)	I on I on+off	
LB	3.04	14.08	21.59

The minimum transmission duration(T) is 3.02ms in LB mode

FCC Part 15.407 Page 5 of 35

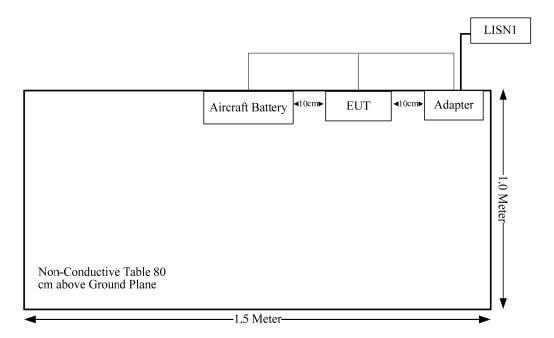
Date: 23.SEP.2016 14:17:42

Equipment Modifications

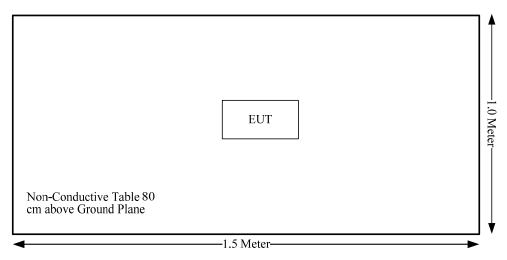
No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DJI	Aircraft Battery	PH4	/

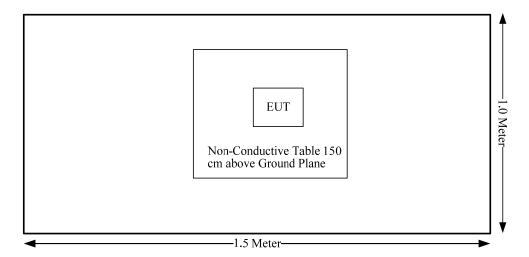

External Cable

Cable Description	Shielding Type	Ferrite Core	Length(m)	From Port	To
DC cable	Yes	Yes	1	Adapter	Battery& Remote


FCC Part 15.407 Page 6 of 35

Block Diagram of Test Setup

AC Line Conducted Test:



Radiation test below 1GHz:

FCC Part 15.407 Page 7 of 35

Radiation test above 1GHz:

FCC Part 15.407 Page 8 of 35

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.407 (f) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
\$15.205& \$15.209 &\$15.407(b) (1),(6),(7)	Undesirable Emission& Restricted Bands	Compliance
§15.407(b) (1),(2),(3),(4)	Out Of Band Emissions Compl	
§15.407(a) (1)	26 dB Bandwidth	Compliance
§15.407(a)(1),	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(5)	Power Spectral Density	Compliance

Test time: $2016-09-21 \sim 2016-09-23$.

FCC Part 15.407 Page 9 of 35

FCC §15.407 (f) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to subpart 15.407(f), §1.1310 and §2.1093.

Test Result

Compliant, please refer to the SAR report: RDG160820014-20A.

FCC Part 15.407 Page 10 of 35

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.:RDG160820014-00B

And according to FCC 47 CFR section 15.407 (a)(1),if transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 un-detachable external antenna for LB, one for Transmitting, one for receiving, the antenna gain is 3.3dBi@ 2.4GHz band, 4.48dBi @ 5.8GHz band, that fulfill the requirement of the item. Please refer to the internal photos.

Result: Compliance.

FCC Part 15.407 Page 11 of 35

§15.207 (a) – CONDUCTED EMISSIONS

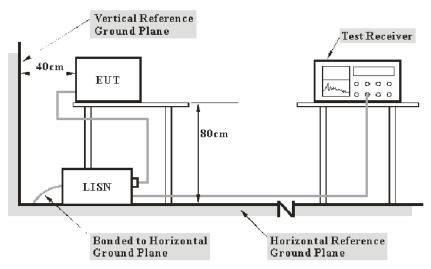
Applicable Standard

FCC §15.207(a)

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:


- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.12 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	U_{cispr}
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

FCC Part 15.407 Page 12 of 35

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 V/60 Hz AC power source

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

 V_R : reading voltage amplitude A_c : attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.407 Page 13 of 35

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2015-12-10	2016-12-09
R&S	L.I.S.N	ESH2-Z5	892107/021	2016-09-01	2017-09-01
R&S	Two-line V-network	ENV 216	3560.6550.12	2015-11-26	2016-11-25
N/A	Coaxial Cable	1.8m	N/A	2016-05-06	2017-05-06
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

Report No.:RDG160820014-00B

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

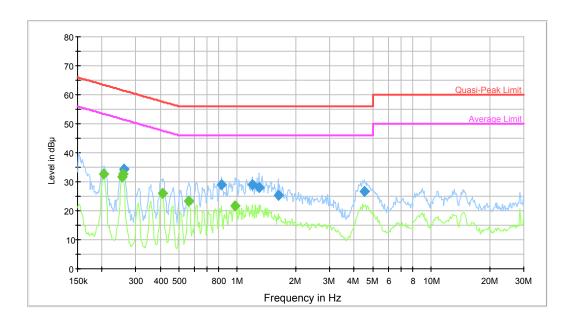
Test Data

Environmental Conditions

Temperature:	29.6 °C
Relative Humidity:	49%
ATM Pressure:	100 kPa

The testing was performed by Robin Zheng on 2016-09-22.

Test Mode: Transmitting,

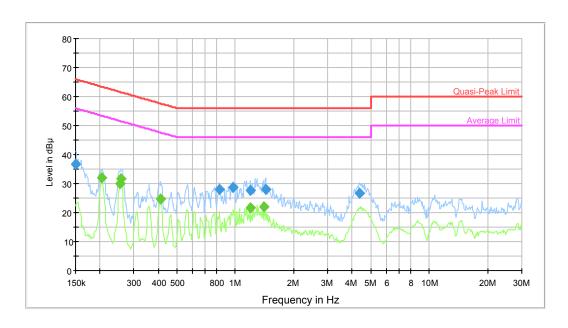

Test Result: Compliance, please refer to the below data and plots.

FCC Part 15.407 Page 14 of 35

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Mode: Charging

AC120V, 60Hz, Line:



Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.259937	34.5	9.000	L1	9.6	26.9	61.4	Compliance
0.831967	28.9	9.000	L1	9.7	27.1	56.0	Compliance
1.190776	28.9	9.000	L1	9.7	27.1	56.0	Compliance
1.289541	28.2	9.000	L1	9.7	27.8	56.0	Compliance
1.624765	25.3	9.000	L1	9.7	30.7	56.0	Compliance
4.505456	26.8	9.000	L1	9.7	29.2	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.204669	32.7	9.000	L1	9.6	20.7	53.4	Compliance
0.253797	31.7	9.000	L1	9.6	19.9	51.6	Compliance
0.255827	32.6	9.000	L1	9.6	19.0	51.6	Compliance
0.409372	25.9	9.000	L1	9.7	21.8	47.7	Compliance
0.558572	23.2	9.000	L1	9.7	22.8	46.0	Compliance
0.975701	21.7	9.000	L1	9.7	24.3	46.0	Compliance

FCC Part 15.407 Page 15 of 35

AC120V, 60Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	36.6	9.000	N	9.6	29.4	66.0	Compliance
0.831967	27.8	9.000	N	9.6	28.2	56.0	Compliance
0.975701	28.6	9.000	N	9.7	27.4	56.0	Compliance
1.190776	27.6	9.000	N	9.7	28.4	56.0	Compliance
1.430284	27.8	9.000	N	9.7	28.2	56.0	Compliance
4.364119	26.8	9.000	N	9.7	29.2	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.204669	31.9	9.000	N	9.6	21.5	53.4	Compliance
0.253797	30.2	9.000	N	9.6	21.4	51.6	Compliance
0.255827	31.6	9.000	N	9.6	20.0	51.6	Compliance
0.412647	24.6	9.000	N	9.6	23.0	47.6	Compliance
1.190776	21.7	9.000	N	9.7	24.3	46.0	Compliance
1.407671	22.1	9.000	N	9.7	23.9	46.0	Compliance

FCC Part 15.407 Page 16 of 35

Report No.:RDG160820014-00B

Applicable Standard

FCC §15.407; §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.

FCC Part 15.407 Page 17 of 35

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit;
- non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit.

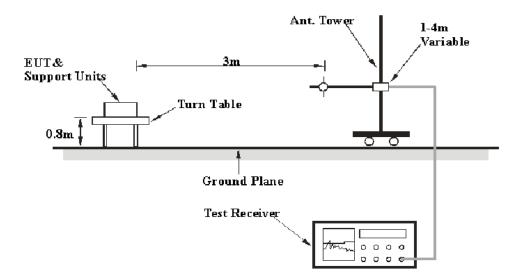
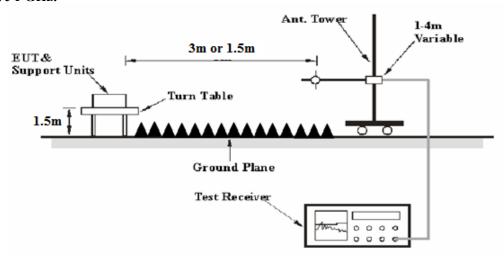

Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is: 30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical; 200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical; 1G~6GHz: 4.45 dB, 6G~18GHz: 5.23 dB.

Table 1 – Values of U_{cispr}

Measurement	$U_{ m cispr}$
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB


EUT Setup

Below 1 GHz:

FCC Part 15.407 Page 18 of 35

Above 1 GHz:

The radiated emission tests were performed in the 3 meters chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.407 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above I GHZ	1MHz	10 Hz	/	Ave.

Test Procedure

During the radiated emission test, the adapter was connected to the first AC floor outlet and the other support equipments were connected to the second AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

FCC Part 15.407 Page 19 of 35

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r02, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB

Extrapolation result = Corrected Amplitude (dBµV/m) - distance extrapolation factor (6dB)

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Extrapolation result

Test Equipment List and Details

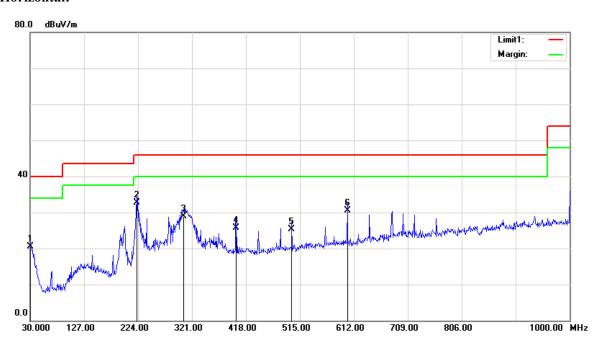
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2016-09-01	2017-09-01
Sunol Sciences	Antenna	JB3	A060611-1	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2016-09-01	2017-09-01
Agilent	Spectrum Analyzer	E4440A	SG43360054	2015-11-23	2016-11-22
N/A	Coaxial Cable	14m	N/A	2016-05-06	2017-05-06
N/A	Coaxial Cable	8m	N/A	2016-05-06	2017-05-06
Sinoscite	Bandstop Filters	BSF5150-5850MN- 0899-003	N/A	2016-05-06	2017-05-06
ETS-Lindgren	Horn Antenna	3115	9808-5557	2016-01-05	2019-01-04
Mini-Circuit	Amplifier	ZVA-213-S+	054201245	2016-02-19	2017-02-19
Agilent	Spectrum Analyzer	8564E	3943A01781	2016-05-08	2017-05-08
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-01 1304	2014-06-16	2017-06-15
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1302	2014-06-16	2017-06-15
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2015-09-06	2016-09-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.407 Page 20 of 35

Test Data

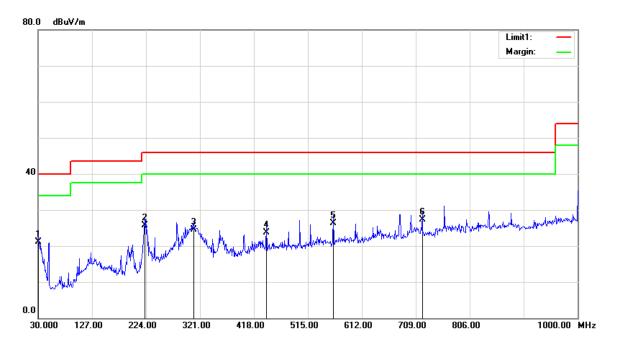
Environmental Conditions


Temperature:	26.9 °C
Relative Humidity:	39 %
ATM Pressure:	100.7 kPa

The testing was performed by Robin Zheng on 2016-09-22.

Test Mode: Transmitting

1) Below 1GHz


Horizontal:

Frequency (MHz)	Receiver Reading (dBµV)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBμV/m)	Margin (dB)
30.9700	20.23	QP	0.27	20.50	40.00	19.50
222.0600	41.46	QP	-8.76	32.70	46.00	13.30
305.4800	34.60	QP	-5.70	28.90	46.00	17.10
400.5400	29.49	QP	-3.69	25.80	46.00	20.20
500.4500	27.01	QP	-1.61	25.40	46.00	20.60
600.3600	30.93	QP	-0.33	30.60	46.00	15.40

FCC Part 15.407 Page 21 of 35

Vertical:

Frequency (MHz)	Receiver Reading (dBµV)	Detector (PK/QP/Ave)	Correction Factor (dB/m)	Cord. Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
30.0000	20.17	QP	1.03	21.20	40.00	18.80
222.0600	34.46	QP	-8.76	25.70	46.00	20.30
309.3600	30.11	QP	-5.61	24.50	46.00	21.50
440.3100	26.35	QP	-2.65	23.70	46.00	22.30
560.5900	27.29	QP	-0.89	26.40	46.00	19.60
720.6400	25.71	QP	1.69	27.40	46.00	8.60

FCC Part 15.407 Page 22 of 35

2) 1GHz-40GHz(Test performed at 3.0m distance EUT to antenna)

Frequency	Re	ceiver	Rx A	Antenna	Cable	Amplifier	Corrected	Limit	Margin
1	Reading	Detector	Polar	Factor	loss	Gain	Amplitude		
MHz	dBμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBμV/m	dB
			f	requency:	5727 ME	Iz			
5727	74.68	PK	Н	32.15	5.59	0.00	112.42	N/A	N/A
5727	61.35	AV	Н	32.15	5.59	0.00	99.09	N/A	N/A
5727	85.59	PK	V	32.15	5.59	0.00	123.33	N/A	N/A
5727	72.35	AV	V	32.15	5.59	0.00	110.09	N/A	N/A
5725	54.64	PK	V	32.15	5.60	0.00	92.39	122.20	29.81
5720	30.25	PK	V	32.14	5.61	0.00	68.00	110.80	42.80
5700	26.04	PK	V	32.14	5.68	0.00	63.86	105.20	41.34
5650	26.68	PK	V	32.13	5.28	0.00	64.09	68.20	4.11
11454	38.41	PK	V	37.85	8.89	26.17	58.98	74.00	15.02
11454	25.22	AV	V	37.85	8.89	26.17	45.79	54.00	8.21
17181	35.52	PK	V	40.59	14.00	25.58	64.53	74.00	9.47
17181	23.01	AV	V	40.59	14.00	25.58	52.02	54.00	1.98
2100	35.57	PK	V	24.86	3.27	27.39	36.31	74.00	37.69
2100	22.38	AV	V	24.86	3.27	27.39	23.12	54.00	30.88
4256	34.26	PK	V	29.85	5.10	27.02	42.19	74.00	31.81
4256	22.16	AV	V	29.85	5.10	27.02	30.09	54.00	23.91
	_		fı	requency: 5	775.3M	Hz			-
5775.3	76.38	PK	Н	32.16	5.48	0.00	114.02	N/A	N/A
5775.3	64.49	AV	Н	32.16	5.48	0.00	102.13	N/A	N/A
5775.3	87.46	PK	V	32.16	5.48	0.00	125.10	N/A	N/A
5775.3	65.12	AV	V	32.16	5.48	0.00	102.76	N/A	N/A
11550.6	35.49	PK	V	37.90	8.93	26.09	56.23	74.00	17.77
11550.6	23.34	AV	V	37.90	8.93	26.09	44.08	54.00	9.92
17325.9	33.84	PK	V	41.46	13.16	25.63	62.83	74.00	11.17
17325.9	21.06	AV	V	41.46	13.16	25.63	50.05	54.00	3.95
2538	33.05	PK	V	26.00	4.14	27.39	35.80	74.00	38.20
2538	21.42	AV	V	26.00	4.14	27.39	24.17	54.00	29.83
4620	33.54	PK	V	30.11	5.29	27.34	41.60	74.00	32.40
4620	20.75	AV	V	30.11	5.29	27.34	28.81	54.00	25.19
				equency: 5					
5821.3	75.34	PK	Н	32.16	5.71	0.00	113.21	N/A	N/A
5821.3	62.49	AV	Н	32.16	5.71	0.00	100.36	N/A	N/A
5821.3	86.94	PK	V	32.16	5.71	0.00	124.81	N/A	N/A
5821.3	73.48	AV	V	32.16	5.71	0.00	111.35	N/A	N/A
5850	25.74	PK	V	32.17	6.05	0.00	63.96	122.20	58.24
5855	25.84	PK	V	32.17	6.03	0.00	64.04	110.80	46.76
5875	25.63	PK	V	32.18	5.97	0.00	63.78	105.20	41.42
5925	26.78	PK	V	32.19	5.96	0.00	64.93	68.20	3.27
11642.6	35.72	PK	V	37.90	8.90	25.79	56.73	74.00	17.27
11642.6	23.13	AV	V	37.90	8.90	25.79	44.14	54.00	9.86
17463.9	33.59	PK	V	42.28	12.36	25.43	62.80	74.00	11.20
17463.9	21.24	AV	V	42.28	12.36	25.43	50.45	54.00	3.55
3210	33.49	PK	V	27.87	6.13	27.36	40.13	74.00	33.87
3210	21.32	AV	V	27.87	6.13	27.36	27.96	54.00	26.04
4150	33.95	PK	V	29.87	5.06	27.10	41.78	74.00	32.22
4150	20.72	AV	V	29.87	5.06	27.10	28.55	54.00	25.45

FCC Part 15.407 Page 23 of 35

Frequency	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Limit	Margin
	Reading	Detector	Polar	Factor	loss	Gain	Amplitude		
MHz	dΒμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBμV/m	dB
		A	ddition	al test frequ	iency: 57	729.3 MHz			
5729.3	86.78	PK	V	32.15	5.58	0.00	124.51	N/A	N/A
5729.3	73.46	AV	V	32.15	5.58	0.00	111.19	N/A	N/A
5725	34.30	PK	V	32.15	5.60	0.00	72.05	122.20	50.15
5720	26.13	PK	V	32.14	5.61	0.00	63.88	110.80	46.92
5700	25.36	PK	V	32.14	5.68	0.00	63.18	105.20	42.02
5650	26.29	PK	V	32.13	5.28	0.00	63.70	68.20	4.50
		Α	ddition	al test frequ	iency: 57	731.6 MHz			
5731.6	88.17	PK	V	32.15	5.57	0.00	125.89	N/A	N/A
5731.6	75.26	AV	V	32.15	5.57	0.00	112.98	N/A	N/A
5725	37.58	PK	V	32.15	5.60	0.00	75.33	122.20	46.87
5720	27.44	PK	V	32.14	5.61	0.00	65.19	110.80	45.61
5700	26.53	PK	V	32.14	5.68	0.00	64.35	105.20	40.85
5650	26.83	PK	V	32.13	5.28	0.00	64.24	68.20	3.96
		A	ddition	al test frequ	iency: 58	816.7 MHz			
5816.7	86.1	PK	V	32.16	5.65	0.00	123.91	N/A	N/A
5816.7	72.68	AV	V	32.16	5.65	0.00	110.49	N/A	N/A
5850	25.12	PK	V	32.17	6.05	0.00	63.34	122.20	58.86
5855	25.94	PK	V	32.17	6.03	0.00	64.14	110.80	46.66
5875	26.58	PK	V	32.18	5.97	0.00	64.73	105.20	40.47
5925	26.04	PK	V	32.19	5.96	0.00	64.19	68.20	4.01
			Addition	al test freq	uency: 5	819 MHz	_	_	_
5819	87.07	PK	V	32.16	5.68	0.00	124.91	N/A	N/A
5819	75.62	AV	V	32.16	5.68	0.00	113.46	N/A	N/A
5850	26.10	PK	V	32.17	6.05	0.00	64.32	122.20	57.88
5855	26.25	PK	V	32.17	6.03	0.00	64.45	110.80	46.35
5875	25.98	PK	V	32.18	5.97	0.00	64.13	105.20	41.07
5925	26.57	PK	V	32.19	5.96	0.00	64.72	68.20	3.48

FCC Part 15.407 Page 24 of 35

FCC §15.407(a) –EMISSION BANDWIDTH

Applicable Standard

15.407(a)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	DE23437	2015-11-23	2016-11-22
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r02

Test Data

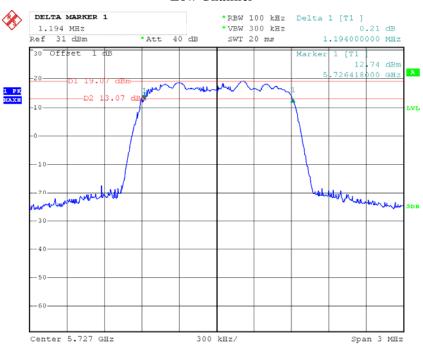
Environmental Conditions

Temperature:	25.8 °C	
Relative Humidity:	32 %	
ATM Pressure:	100.9 kPa	

The testing was performed by Robin Zheng on 2016-09-21.

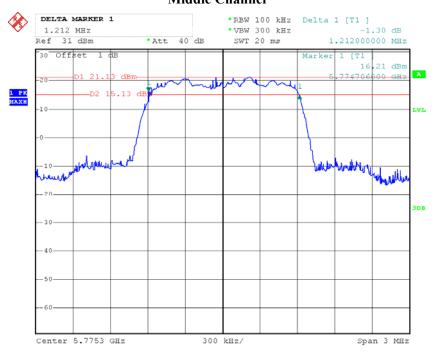
Test Result: Pass.

Please refer to the following tables and plots.


Test mode: Transmitting

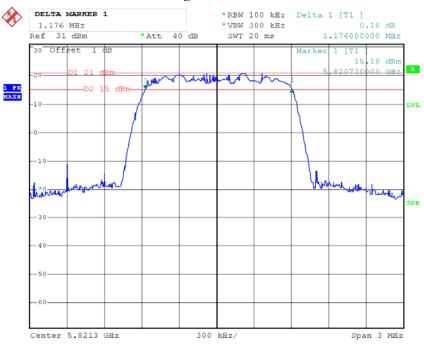
Channel	Frequency (MHz)	6dB Emission Bandwidth (MHz)	Limits (MHz)	Result
Low	5727	1.194	0.5	PASS
Middle	5775.3	1.212	0.5	PASS
High	5821.3	1.176	0.5	PASS

FCC Part 15.407 Page 25 of 35


6dB Emission Bandwidth

Low Channel

Date: 21.SEP.2016 23:10:16


Middle Channel

Date: 21.SEP.2016 23:17:49

FCC Part 15.407 Page 26 of 35

High Channel

Date: 21.SEP.2016 23:23:05

FCC Part 15.407 Page 27 of 35

FCC §15.407(a) –MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Report No.:RDG160820014-00B

- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part 15.407 Page 28 of 35

- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2015-11-03	2016-11-03
Agilent	Wideband Power Sensor	N1921A	MY54170013	2015-11-03	2016-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2015-11-03	2016-11-03
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r02

Test Data

Environmental Conditions

Temperature:	25.8 °C	
Relative Humidity:	32 %	
ATM Pressure:	100.9 kPa	

The testing was performed by Robin Zheng on 2016-09-21.

FCC Part 15.407 Page 29 of 35

Test Mode: Transmitting

Frequency (MHz)			Result
5727	20.03	30	PASS
5729.3	21.25	30	PASS
5731.6	22.34	30	PASS
5775.3	22.43	30	PASS
5819	22.12	30	PASS
5821.3	22.24	30	PASS
5821.3	22.19	30	PASS

FCC Part 15.407 Page 30 of 35

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Report No.:RDG160820014-00B

- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

FCC Part 15.407 Page 31 of 35

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r02

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSEM	DE23437	2015-11-23	2016-11-22
N/A	Coaxial Cable	0.1m	N/A	2016-05-06	2017-05-06
E-Microwave	DC Blocking	EMDCB-00036	0E01201047	2016-05-06	2017-05-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI).

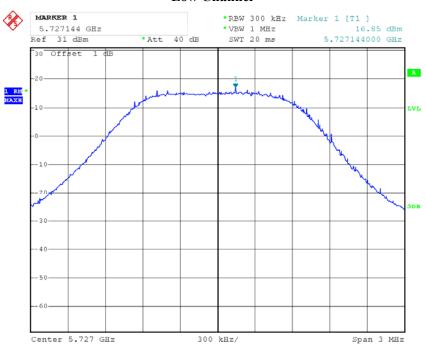
Test Data

Environmental Conditions

Temperature:	30.1 °C	
Relative Humidity:	35 %	
ATM Pressure:	100.7 kPa	

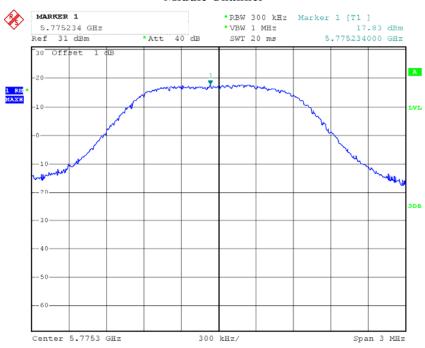
The testing was performed by Robin Zheng on 2016-09-21.

Test Mode: Transmitting


Test Result: Compliance. Please refer to the following table and plot.

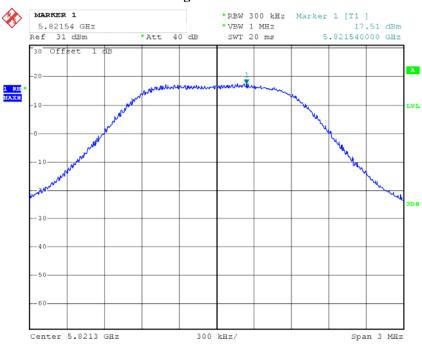
FCC Part 15.407 Page 32 of 35

Channel	Frequency MHz	PSD (dBm/300kHz)	PSD (dBm/500kHz)	Limit (dBm/ 500kHz)
Low	5727	16.85	19.07	30
Middle	5775.3	17.83	20.05	30
High	5821.3	17.51	19.73	30


FCC Part 15.407 Page 33 of 35

Low Channel

Date: 21.SEP.2016 23:12:09


Middle Channel

Date: 21.SEP.2016 23:19:27

FCC Part 15.407 Page 34 of 35

High Channel

Date: 21.SEP.2016 23:24:24

***** END OF REPORT *****

FCC Part 15.407 Page 35 of 35