

CFR 47 FCC PART 15 SUBPART E

TEST REPORT

For

DJI Neo

MODEL NUMBER: DN1A0626

REPORT NUMBER: 4791309859-RF-2

ISSUE DATE: May 28, 2024

FCC ID: SS3-DN1A062624

Prepared for

SZ DJI TECHNOLOGY CO., LTD Lobby of T2, DJI Sky City, No. 53 Xianyuan Road, Xili Community, Xili Street, Nanshan District, Shenzhen, China.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 28, 2024	Initial Issue	

Summary of Test Results

Test Item Clause		Limit/Requirement	Result
On Time And Duty Cycle	ANSI C63.10-2013, Clause 12.2	None; for reporting purposes only.	Pass
6db AND 26db EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	KDB 789033 D02 v02r01 Section C.1 FCC Part 15.407 (a)/(e),		Pass
Conducted Output Power	KDB 789033 D02 v02r01 Section E.3.a (Method PM)/KDB 789033 D02 v02r01 Section E.3.a (Method PM) Section E.2.d (Method SA-2)	FCC 15.407 (a)	Pass
Power Spectral Density	KDB 789033 D02 v02r01 Section F	FCC 15.407 (a)	Pass
Ac Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2.	FCC 15.207	Pass
Radiated Emissions And Band Edge Measurement	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	FCC 15.407 (b) FCC 15.209 FCC 15.205	Pass
Frequency Stability	ANSI C63.10-2013,Clause 6.8	FCC 15.407 (g)	Pass
Antenna Requirement	/	FCC 47 CFR Part 15.203/ 15.407(a)(1) (2),	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART E > when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	.6
2.	TEST N	IETHODOLOGY	.7
3.	FACILI	TIES AND ACCREDITATION	.7
4.	CALIBI	RATION AND UNCERTAINTY	.8
4	^l .1.	MEASURING INSTRUMENT CALIBRATION	.8
4	¹ .2.	MEASUREMENT UNCERTAINTY	.8
5.	EQUIP	MENT UNDER TEST	.9
5	5.1.	DESCRIPTION OF EUT	.9
5	5.2.	CHANNEL LIST	.9
5	5.3.	MAXIMUM POWER	10
5	5.4.	TEST CHANNEL CONFIGURATION	10
5	i.5.	THE WORSE CASE POWER SETTING PARAMETER	11
5	5.6.	WORSE CASE CONFIGURATIONS	12
5	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	12
5	5.8.	DESCRIPTION OF TEST SETUP	13
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	14
7.	ANTEN	INA PORT TEST RESULTS	16
7	7.1 .	ON TIME AND DUTY CYCLE	16
7	.2.	6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17
7	.3.	CONDUCTED OUTPUT POWER	19
7	.4.	POWER SPECTRAL DENSITY	21
7	<i>.</i> .5.	FREQUENCY STABILITY	23
8.	RADIA	TED TEST RESULTS	25
8	8.1.	RESTRICTED BANDEDGE	34
8	8.2.	SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ)	55
8	8.3.	SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ)	67
8	8.4.	SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)10)3
8	8.5.	SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)10	26
8	8.6.	SPURIOUS EMISSIONS (26 GHZ ~ 40 GHZ)10	28
8	8.7.	SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)1	10
9.	AC PO	WER LINE CONDUCTED EMISSION1	12
10.		ANTENNA REQUIREMENT17	15
11.		TEST DATA17	16

<i>11.1.</i> 11.1.1. 11.1.2.	APPENDIX A: EMISSION BANDWIDTH Test Result Test Graphs	116
<i>11.2.</i> 11.2.1. 11.2.2.	APPENDIX B: OCCUPIED CHANNEL BANDWIDTH Test Result Test Graphs	123
<i>11.3</i> . 11.3.1. 11.3.2.	APPENDIX C: MIN EMISSION BANDWIDTH Test Result Test Graphs	130
<i>11.4.</i> 11.4.1.	APPENDIX D: MAXIMUM AVERAGE CONDUCTED OUTPUT POWER Test Result	
<i>11.5.</i> 11.5.1. 11.5.2.	APPENDIX E: MAXIMUM POWER SPECTRAL DENSITY Test Result Test Graphs	135
<i>11.6.</i> 11.6.1.	APPENDIX F: FREQUENCY STABILITY Test Result	
<i>11.7.</i> 11.7.1. 11.7.2.	APPENDIX G: DUTY CYCLE Test Result Test Graphs	143

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	SZ DJI TECHNOLOGY CO., LTD
Address:	Lobby of T2, DJI Sky City, No. 53 Xianyuan Road, Xili
	Community, Xili Street, Nanshan District, Shenzhen, China.

Manufacturer Information

Company Name:	SZ DJI TECHNOLOGY CO., LTD
Address:	Lobby of T2, DJI Sky City, No. 53 Xianyuan Road, Xili
	Community, Xili Street, Nanshan District, Shenzhen, China.

EUT Information

EUT Name:	DJI Neo
Model:	DN1A0626
Brand Name:	DJI
Sample Received Date:	May 9, 2024
Sample ID:	7195485
Date of Tested:	May 10, 2024 to May 24, 2024

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART E

Pass

Prepared By:

Bucu Donny

Denny Huang Senior Project Engineer

Approved By:

Stephen Guo Operations Manager

Checked By:

Kebo Zhang Senior Project Engineer

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART E, ANSI C63.10-2013, CFR 47 FCC Part 2, KDB 789033 D02 v02r01, KDB414788 D01 Radiated Test Site v01.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	· · · · · · · · · · · · · · · · · · ·
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20192 and R-20202
	Shielding Room B, the VCCI registration No. is C-20153 and T-20155

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Conduction emission	3.62 dB	
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB	
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB	
	5.78 dB (1 GHz ~ 18 GHz)	
Radiated Emission (Included Fundamental Emission) (1 GHz to 40 GHz)	5.23 dB (18 GHz ~ 26 GHz)	
	5.37 dB (26 GHz ~ 40 GHz)	
Duty Cycle	±0.028%	
Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%	
Maximum Conducted Output Power	±0.766 dB	
Maximum Power Spectral Density Level	±1.22 dB	
Frequency Stability	±2.76%	
Conducted Band-edge Compliance	±1.328 dB	
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)	
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.		

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	DJI Neo
Model	DN1A0626

Frequency Range:	5180 MHz to 5240 MHz (U-NII-1) 5745 MHz to 5825 MHz (U-NII-3)
Type of Modulation:	IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM (256QAM, 64QAM, 16QAM, QPSK, BPSK)
Radio Technology:	IEEE802.11a/n HT20/n HT40/ac VHT20/ac VHT40/ac VHT80
Battery	DC 7.3 V
Power Supply	DC 5 V

5.2. CHANNEL LIST

UNII-1		UNII-1		UNII-1	
(For Bandwidth=20MHz)		(For Bandwidth=40MHz)		(For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

	UNII-3 (For Bandwidth=20MHz)		UNII-3 (For Bandwidth=40MHz)		UNII-3 (For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel Frequency (MHz)		Channel	Frequency (MHz)	
149	5745	151	5755	155	5775	
153	5765	159	5795			
157	5785					
161	5805					
165	5825					

5.3. MAXIMUM POWER

UNII-1 BAND

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)		
а		17.40		
n HT20	5150 ~ 5250	17.64		
n HT40	5150 ~ 5250	15.25		
ac VHT80		13.35		

UNII-3 BAND

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)
а		14.46
n HT20	5725 ~ 5850	13.72
n HT40		13.41
ac VHT80		11.55

5.4. TEST CHANNEL CONFIGURATION

	UNII-1 Test Channel Configuration					
IEEE Std.	Test Channel Number	Frequency				
802.11a	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz				
802.11n HT20	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz				
802.11n HT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz				
802.11ac VHT80	CH 42(Low Channel)	5210 MHz				

	UNII-3 Test Channel Configuration					
IEEE Std.	Test Channel Number	Frequency				
802.11a	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz				
802.11n HT20	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz				
802.11n HT40	CH 151(Low Channel), CH 159(High Channel)	5755MHz, 5795MHz				
802.11ac VHT80	CH 155(Low Channel)	5775 MHz				

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.5. THE WORSE CASE POWER SETTING PARAMETER

	The Worse Case Power Setting Parameter						
Test Software	Test Software DjiSdrConsole						
	UNII-1						
Mode	Rate	Channel	Soft set value				
Wode	Rale	Channel	ANT 1				
		36	18				
11a	6M	40	18				
		48	18				
		36	16				
11n HT20	MCS0	40	17				
		48	18				
11n HT40	MCS0	38	12				
11111140	MC30	46	12				
		36					
11ac VHT20	MCS0	40	Cover by 11n HT20				
		48					
11ac VHT40	MCS0	38	Cover by 11n HT40				
		46					
11ac VHT80	MCS0	42	12				

UNII-3

Mada	Dete	Channel	Soft set value
Mode	Rate	Channel	ANT1
		149	13
11a	6M	157	13
		165	13
		149	12
11n HT20	MCS0	157	12
		165	12
11n HT40	MCS0	151	10
11111140	NIC30	159	11
		149	
11ac VHT20	MCS0	157	Cover by 11n HT20
		165	
11ac VHT40	MCS0	151	Cover by 11n HT40
		159	-
11ac VHT80	MCS0	155	8

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.6. WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst case Data Rates declared by the customer:

802.11a 20 mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11ac VHT20 mode: MCS0 802.11ac VHT40 mode: MCS0 802.11ac VHT80 mode: MCS0

802.11ac VHT20 and VHT40 mode are different from 802.11nHT20 and HT40 only in control messages, so for these 4 modes, only 802.11n HT20 and 802.11n HT40 worst case power modes radiated emission test data are recorded in the report.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Antenna No.	Frequency Band	Antenna Type	Maximum Antenna Gain (dBi)
1	5150-5250	FPC antenna	1.03
1	5725-5850	FPC antenna	3.24

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

IEE Std. 802.11	Transmit and Receive Mode	Description			
802.11a	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.			
802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.			
802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.			
802.11ac VHT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.			
802.11ac VHT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.			
802.11ac VHT80 XITX, 1RX ANT 1 can be used as transmitting/receiving antenna.					
	Note: 1. The value of the antenna gain was declared by customer. 2. Only SRD 2.4 GHz and 5 GHz WiFi can transmit simultaneously.				

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

5.8. DESCRIPTION OF TEST SETUP

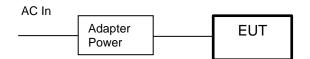
SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remarks
1	Laptop	Lenovo	E42-80	/
2	Adapter Power	DJI	PD-65CN	Input: AC 100 ~ 240 V, 50/60 Hz, 2.0 A Output: DC 5 V, 5 A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	Туре С	Unshielded	1.0	/

ACCESSORIES


Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a laptop.

SETUP DIAGRAM FOR TESTS

For AC Power Line Conducted Emission Test:

For Others Test:

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System									
Equipment	Equipment Manufacturer		Model	No.	Serial No.	Last (Cal.	Due. Date	
Power sensor, Power M	leter	R&S	6	OSP1	20	100921	Mar.25	,2024	Mar.24,2025
Vector Signal Genera	tor	R&S	5	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R&S	5	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&S	6	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
				Softwa	re				
Description		I	Manuf	acturer		Nam	е		Version
For R&S TS 8997 Test	Syste	em Ro	hde 8	Schwa	arz EMC		32 1		10.60.10
		То	nsen	d RF Te	st S	ystem			
Equipment	Man	ufacturer	Мос	del No.	S	Serial No.	Last (Cal.	Due. Date
PXA Signal Analyzer	Ke	eysight	N9	030A	ΜY	′55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	182B	MΥ	′56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	5172B	ΜY	⁄56200301	Oct.12,	2023	Oct.11, 2024
Attenuator	A	Aglient 84		495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	onscend JS0		806-2	23E	380620666	Mar.25	,2024	Mar.24,2025
Software									
Description		Manufact	turer	Name		Version			
Tonsend SRD Test Sys	tem	Tonser	nd	JS1	120-3	3 RF Test S	ystem		V3.2.22

	Conducted Emissions				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024
	Software				
Description			Manufacturer	Name	Version
Test Software for Conducted Emissions		Emissions	Farad	EZ-EMC	Ver. UL-3A1

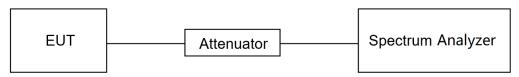
		Radiated	d Emissions		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV20- 5120-5150- 5350-5380- 60SS	2	Oct.12, 2023	Oct.11, 2024
		So	ftware		
[Description		Manufacturer	Name	Version
Test Software	Test Software for Radiated Emissions			EZ-EMC	Ver. UL-3A1

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS


None; for reporting purposes only.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B.

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix G

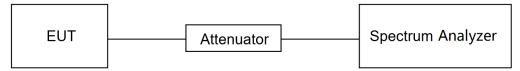
7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

	CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)			
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250			
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850			
99 % Occupied Bandwidth	For reporting purposes only.	5150 ~ 5825 (For ISED)			

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW. For 99 % Occupied Bandwidth: approximately 1 % ~ 5 % of the OBW.
VBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >3*RBW For 99 % Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix A&B&C

7.3. CONDUCTED OUTPUT POWER

LIMITS

	CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)			
Conducted Output Power	 Outdoor Access Point: 1 W (30 dBm) Indoor Access Point: 1 W (30 dBm) Fixed Point-To-Point Access Points: 1 W (30 dBm) Client Devices: 250 mW (24 dBm) 	5150 ~ 5250			
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850			

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-2 (trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction.):

(a) Measure the duty cycle D of the transmitter output signal.

(b) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.

(c) Set RBW = 1 MHz.

(d) Set VBW \geq 3 MHz.

(e) Number of points in sweep \ge [2 \times span / RBW]. (This gives bin-to-bin spacing \le RBW / 2, so that narrowband signals are not lost between frequency bins.)

(f) Sweep time = auto.

(g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (h) Do not use sweep triggering. Allow the sweep to "free run."

(i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.

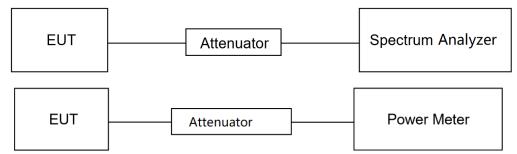
j) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1 / 0.25)] = 6 dB if the duty cycle is 25%.

Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.


c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix D

7.4. POWER SPECTRAL DENSITY

LIMITS

	CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)			
Power Spectral Density	 Outdoor Access Point: 17 dBm/MHz Indoor Access Point: 17 dBm/MHz Fixed Point-To-Point Access Points: 17 dBm/MHz Client Devices: 11 dBm/MHz 	5150 ~ 5250			
	30 dBm/500kHz	5725 ~ 5850			

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

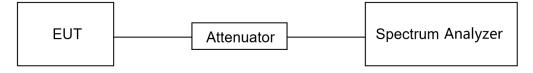
Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test		
Detector	RMS		
RBW	1 MHz		
VBW	≥3 × RBW		
Span	Encompass the entire emissions bandwidth (EBW) of the signal		
Trace	Average		
Sweep time	Auto		

For U-NII-1, U-NII-2A and U-NII-2C band:

For U-NII-3:


Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Average
Sweep time	Auto

Allow trace to fully stabilize and use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix E

7.5. FREQUENCY STABILITY

<u>LIMITS</u>

The frequency of the carrier signal shall be maintained within band of operation.

TEST PROCEDURE

1. The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between 0 $^{\circ}$ C ~ 40 $^{\circ}$ C (declared by customer).

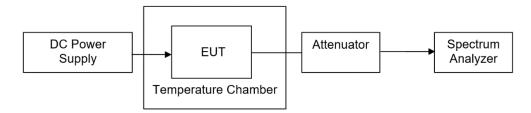
2. The temperature was incremented by 10 °C intervals and the unit allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.

3. The primary supply voltage is varied from 85 % to 115 % of the nominal value for non handcarried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	10 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Connect the EUT to the spectrum analyzer and use the following settings:

4. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5minutes, and 10 minutes after the EUT is energized.


5. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

TEST ENVIRONMENT

	Normal Test Conditions	Extreme Test Conditions	
Relative Humidity	20 % ~ 75 %	/	
Atmospheric Pressure	100 kPa ~ 102 kPa	/	
Temperature	T _N (Normal Temperature): 25.1 °C	T _L (Low Temperature): 0 °C	
		T _H (High Temperature): 40 °C	
Supply Voltage	V _N (Normal Voltage): DC 7.3 V	V _L (Low Voltage): DC 6.222 V	
		V _H (High Voltage): DC 8.481 V	

TEST SETUP

TEST ENVIRONMENT

Temperature	25.5 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.3 V

TEST RESULTS

Please refer to section "Test Data" - Appendix F

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b).

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Stren (dBuV/m)	
		Quasi-I	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b) and ISED RSS-247 6.2.

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)			
	Field Strength Limit		
	(dBuV/m) at 3 m		
PK: -27 (dBm/MHz)	PK:68.2(dBµV/m)		
PK: -27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1		
PK: 10 (dBm/MHz) *2	PK: 105.2 (dBµV/m) *2		
PK: 15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3		
PK: 27 (dBm/MHz) *4	PK: 122.2 (dBµV/m) *4		
	EIRP Limit PK: -27 (dBm/MHz) PK: -27 (dBm/MHz) *1 PK: 10 (dBm/MHz) *2 PK: 15.6 (dBm/MHz) *3		

Note:

*1 beyond 75 MHz or more above of the band edge.

*2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1. ON TIME AND DUTY CYCLE.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 7 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27 dBm/MHz (68.2 dBuV/m) limit.

9. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (7 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27 dBm/MHz (68.2 dBuV/m) limit.

9. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

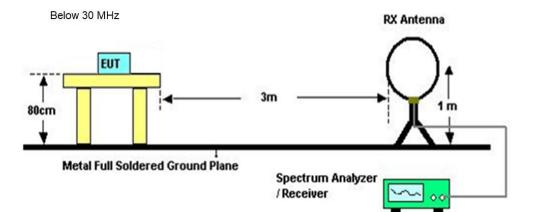
3. Peak: Peak detector.

4. All modes have been tested, but only the worst data was recorded in the report.

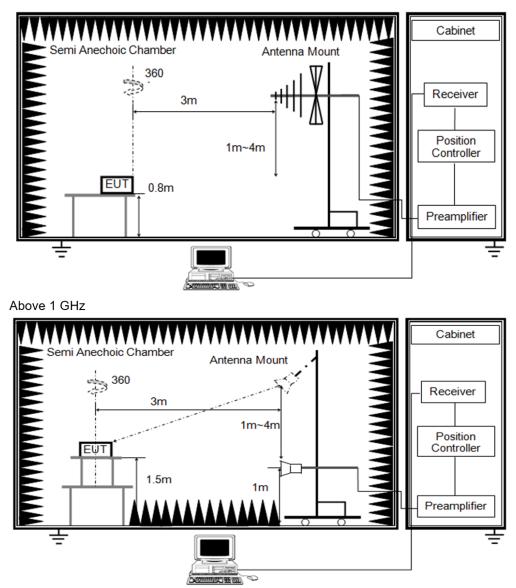
For Radiate Spurious emission (26 GHz ~ 40 GHz):

Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

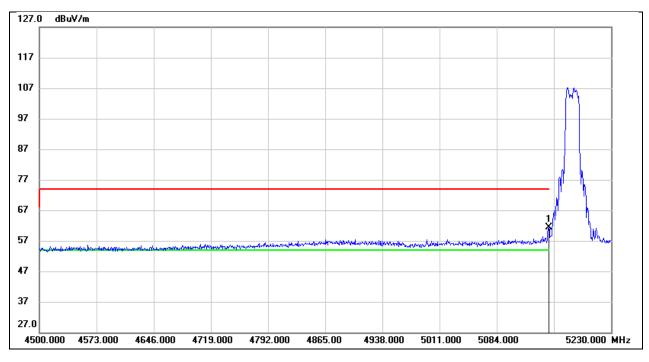

4. All modes have been tested, but only the worst data was recorded in the report.

TEST SETUP

Below 1 GHz and above 30 MHz

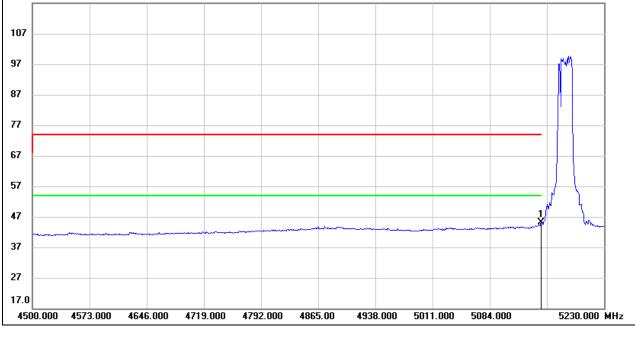
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST ENVIRONMENT

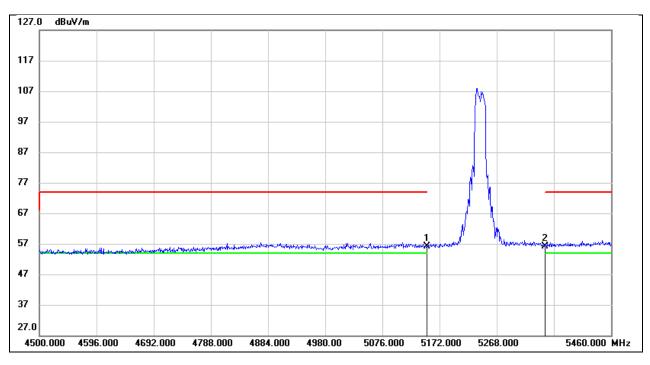

Temperature	25.5 ℃	Relative Humidity	50.5%
Atmosphere Pressure	101 kPa	Test Voltage	DC 7.3 V

TEST RESULTS

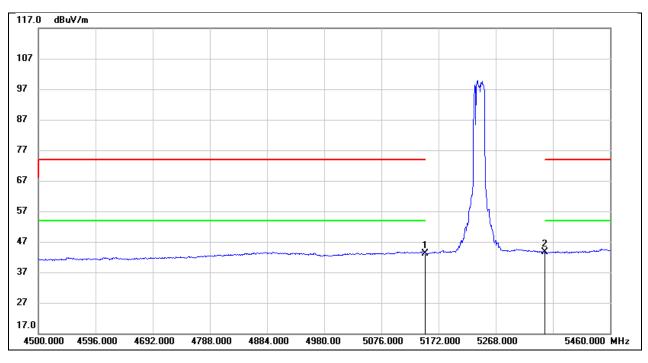
8.1. RESTRICTED BANDEDGE


Test Mode:	802.11a 20 PK	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

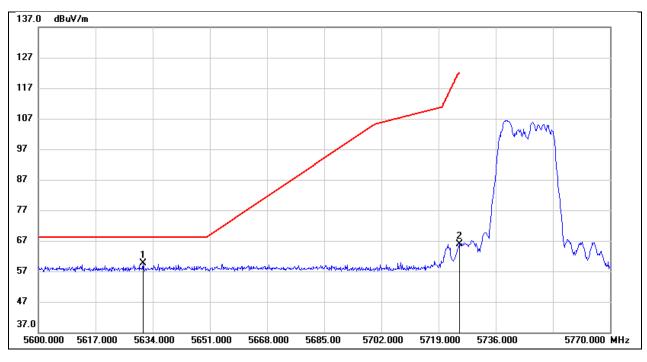
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	21.05	40.21	61.26	74.00	-12.74	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5180	
Polarity:	Horizontal	Test Voltage:	DC 7.3 V	
117.0 dBuV/m				
117.0 dBuV/m				

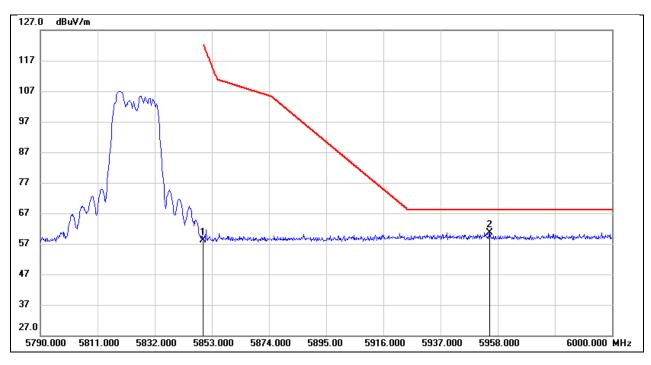
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.84	40.21	45.05	54.00	-8.95	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.91	40.21	56.12	74.00	-17.88	peak
2	5350.000	15.75	40.46	56.21	74.00	-17.79	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.00	40.21	43.21	54.00	-10.79	AVG
2	5350.000	3.09	40.46	43.55	54.00	-10.45	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5631.110	18.31	41.35	59.66	68.20	-8.54	peak
2	5725.000	24.75	41.24	65.99	122.20	-56.21	peak

Test Mode:	802.11a 20 PK	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	16.68	41.37	58.05	122.20	-64.15	peak
2	5955.060	18.72	41.85	60.57	68.20	-7.63	peak

Test Mode:	802.11n HT20 PK	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 7.3 V
127.0 dBuV/m			
117 107 97			
87			
67			
57 	and and a second s	perfordet men men hall be been met all be been and a second	man and a second s
37			
27.0 4500.000 4573.000 4	646.000 4719.000 4792.000 4	1865.00 4938.000 5011.000	5084.000 5230.000 MH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5146.780	21.76	40.20	61.96	74.00	-12.04	peak
2	5150.000	21.93	40.21	62.14	74.00	-11.86	peak

Fest Mode:	802.11n HT20 AV	Frequency(MHz):	5180	
Polarity:	Horizontal	Test Voltage:	DC 7.3 V	
117.0 dBu∀/m				
107				
97				
87				
57				
57				
27				
17.0 4500.000 4573.000 4646.	000 4719.000 4792.000	4865.00 4938.000 5011.000	5084.000 5230.000 MHz	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5146.780	3.77	40.20	43.97	54.00	-10.03	AVG
2	5150.000	4.42	40.21	44.63	54.00	-9.37	AVG

Test	Mode:			802.1	1n H	T20 PK	Fre	quency(N	ЛHz):	5240			
Polar	ity:			Horizo	ontal		Tes	t Voltage):	DC 7.3 \	DC 7.3 V		
127.0	dBu∀/m												
117													
107 -										~			
97 -													
B7 -										/ \			
77									_ [
57									. /	N.	2		
57		وسطيوا هيروجي المراجع والمراجع	t tan shire to	tan an the state of the state o	-	udaataa ahaanda ahahaan ka	mandh, and have been been a	nternetranterarrativ	en manager and the	hamily-suith	2		
47													
37 27.0													
27.0 4500	.000 45	96.000	4692.0	00 478	8.000	4884.000	4980.00	5076.000	5172.000	5268.000	5460.000 M		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.50	40.21	55.71	74.00	-18.29	peak
2	5350.000	15.47	40.46	55.93	74.00	-18.07	peak

Test Mode:	802.11n HT20 AV	Frequency(MHz):	5240		
Polarity:	Horizontal	Test Voltage:	DC 7.3 V		
117					
107					
97			<u></u>		
87					
77					
67					
57					
47			¥		
37					
27.0 4500.000 4596.000	4692.000 4788.000 4884.000	4980.00 5076.000 5172.000	5268.000 5460.000 MHz		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.07	40.21	43.28	54.00	-10.72	AVG
2	5350.000	2.92	40.46	43.38	54.00	-10.62	AVG

5617.000

5634.000

5651.000

57

47

37 27.0 5600.000

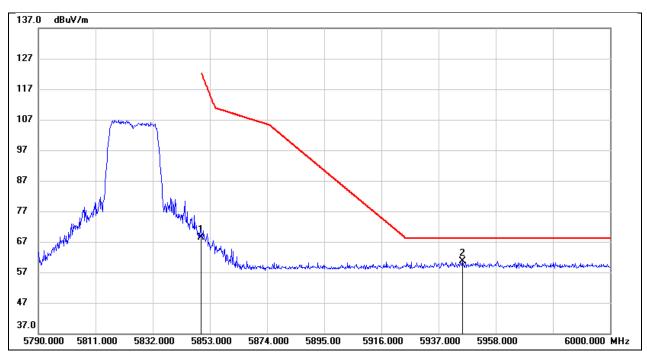
Test Mode:	802.11n HT20 PK	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V
127.0 dBuV/m			
117		1	
107			
97			
87			
77		2	Jata Addin 1
67			Munua Allanda Allanda

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5613.600	18.41	41.37	59.78	68.20	-8.42	peak
2	5725.000	28.06	41.24	69.30	122.20	-52.90	peak

5685.00

5702.000

5719.000


5736.000

5770.000 MHz

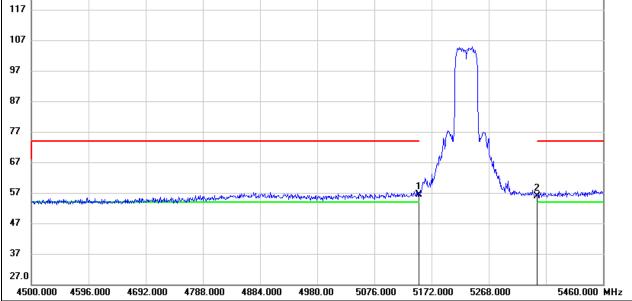
5668.000

Test Mode:	802.11n HT20 PK	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	27.02	41.37	68.39	122.20	-53.81	peak
2	5945.820	18.76	41.81	60.57	68.20	-7.63	peak

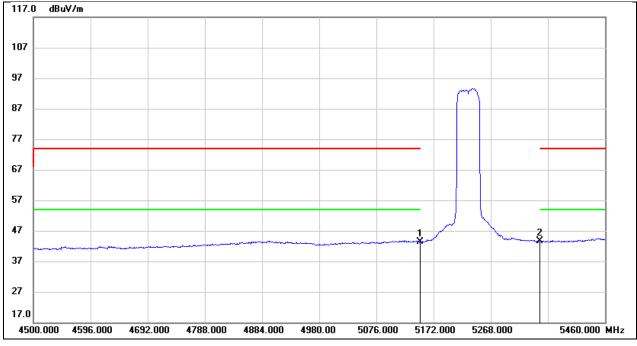
Test Mode:	802.11n HT40 PK	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 7.3 V
127.0 dBuV/m			
117			
107			
97			
87			
<i>m</i>			
67			
57	man periodepakanet departer was weller was shown the	hand the second	August abrows to the the
47			
37			
	4646.000 4719.000 4792.000	4865.00 4938.000 5011.000	5084.000 5230.000 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5147.510	28.67	40.21	68.88	74.00	-5.12	peak
2	5150.000	27.20	40.21	67.41	74.00	-6.59	peak

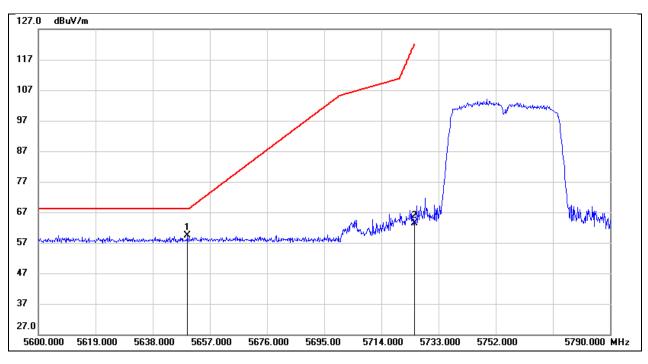


Test Mode:	802.11n HT	Γ40 AV	Frequency(MHz): Test Voltage:		Hz):	5190	
Polarity:	Horizontal				1	DC 7.3 V	
117.0 dBuV/m			·				
107							
97							
87							m
77							
67							-
57							
47							- g
							1
37							
27							
17.0 4500.000 4573.000	4646.000 4719.000	4792.000	4865.00	4938.000	5011.000	5084.000	5230.000 MHz

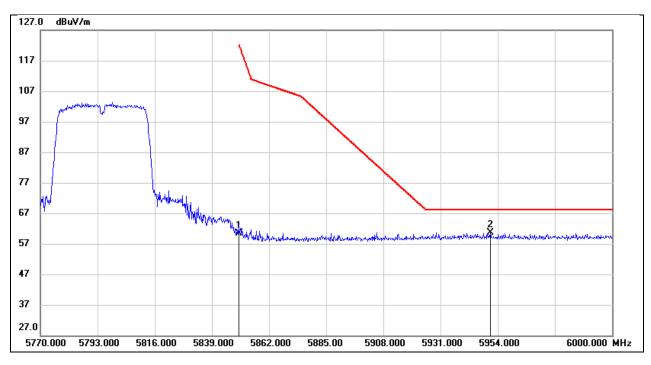
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5147.510	5.20	40.21	45.41	54.00	-8.59	AVG
2	5150.000	5.42	40.21	45.63	54.00	-8.37	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5230
Polarity:	Horizontal	Test Voltage:	DC 7.3 V
127.0 dBuV/m			

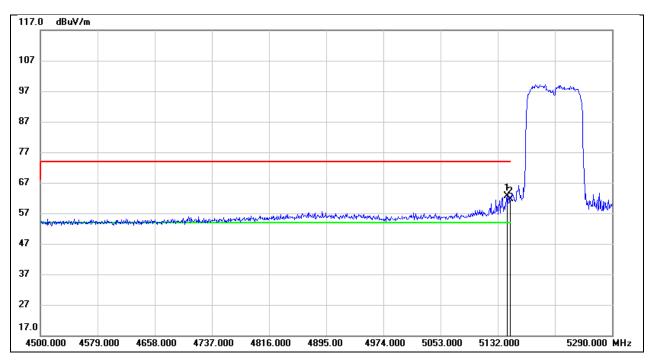
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.15	40.21	56.36	74.00	-17.64	peak
2	5350.000	15.38	40.46	55.84	74.00	-18.16	peak


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5230
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

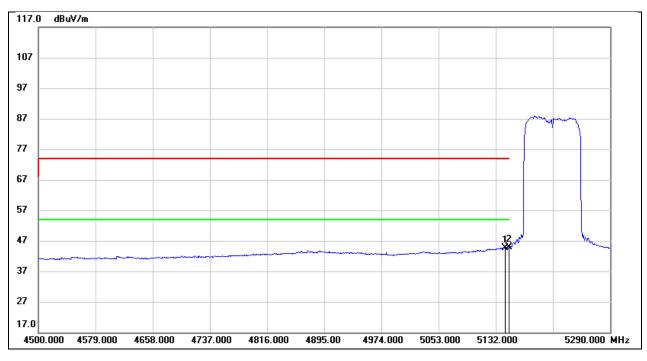
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.09	40.21	43.30	54.00	-10.70	AVG
2	5350.000	3.06	40.46	43.52	54.00	-10.48	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

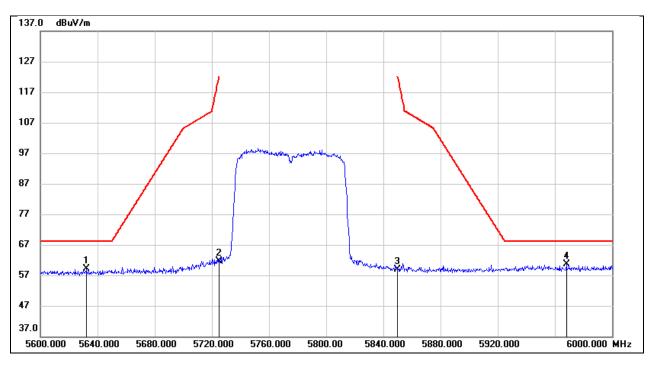
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5649.590	18.01	41.33	59.34	68.20	-8.86	peak
2	5725.000	22.23	41.24	63.47	122.20	-58.73	peak


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	18.98	41.37	60.35	122.20	-61.85	peak
2	5951.010	18.74	41.83	60.57	68.20	-7.63	peak

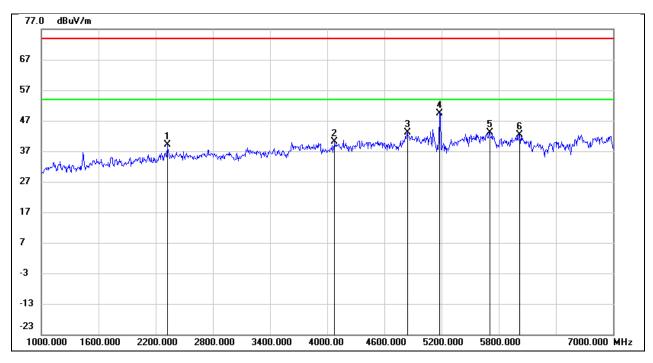

Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5210
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5145.430	22.34	40.19	62.53	74.00	-11.47	peak
2	5150.000	21.45	40.21	61.66	74.00	-12.34	peak


Test Mode:	802.11ac VHT80 AV	Frequency(MHz):	5210
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

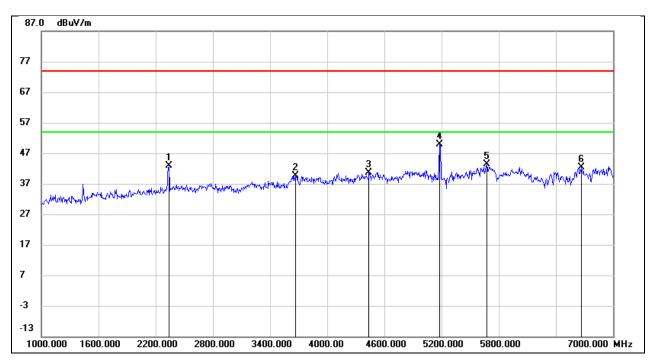
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5145.430	4.38	40.19	44.57	54.00	-9.43	AVG
2	5150.000	4.65	40.21	44.86	54.00	-9.14	AVG

Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5775
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

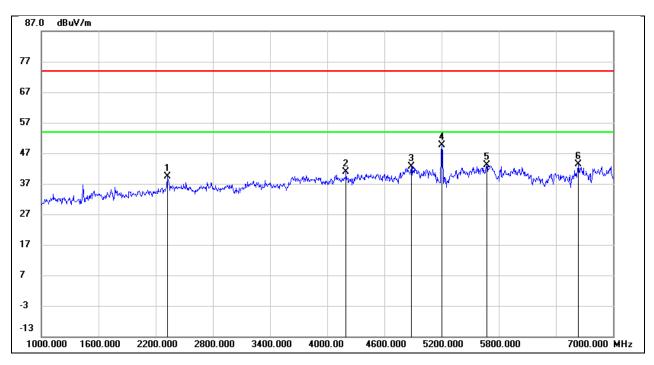


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5632.400	17.84	41.35	59.19	68.20	-9.01	peak
2	5725.000	20.40	41.24	61.64	122.20	-60.56	peak
3	5850.000	17.39	41.37	58.76	122.20	-63.44	peak
4	5968.000	18.66	41.91	60.57	68.20	-7.63	peak

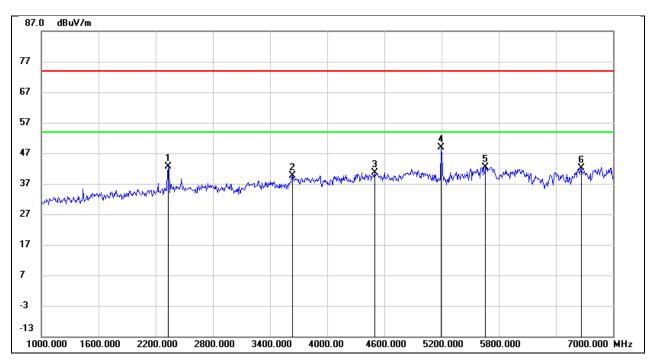
8.2. SPURIOUS EMISSIONS (1 GHZ ~ 7 GHZ)


Test Mode:	802.11a	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

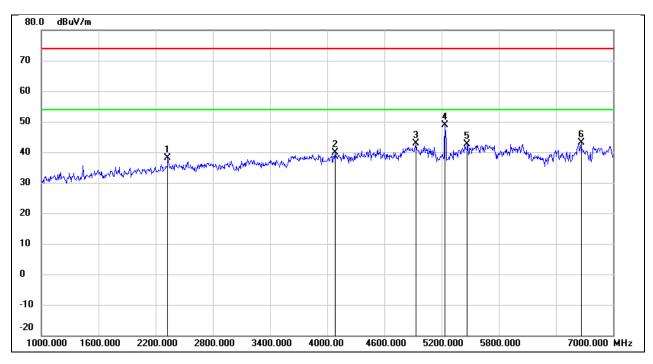
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2320.000	47.10	-8.00	39.10	74.00	-34.90	peak
2	4078.000	42.61	-2.45	40.16	74.00	-33.84	peak
3	4840.000	42.81	0.20	43.01	74.00	-30.99	peak
4	5180.000	48.13	1.31	49.44	/	/	Fundamental
5	5704.000	40.43	2.74	43.17	74.00	-30.83	peak
6	6022.000	39.27	3.22	42.49	74.00	-31.51	peak


Test Mode:	802.11a	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 7.3 V

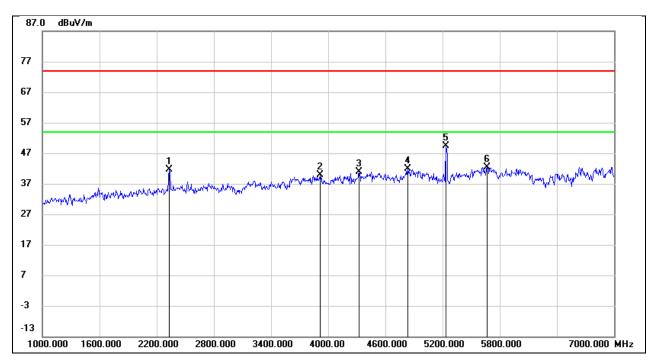
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2338.000	50.79	-7.85	42.94	74.00	-31.06	peak
2	3664.000	43.00	-3.45	39.55	74.00	-34.45	peak
3	4438.000	41.99	-1.37	40.62	74.00	-33.38	peak
4	5180.000	48.59	1.29	49.88	/	/	Fundamental
5	5674.000	40.56	2.87	43.43	74.00	-30.57	peak
6	6664.000	37.48	4.78	42.26	74.00	-31.74	peak


Test Mode:	802.11a	Frequency(MHz):	5200
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

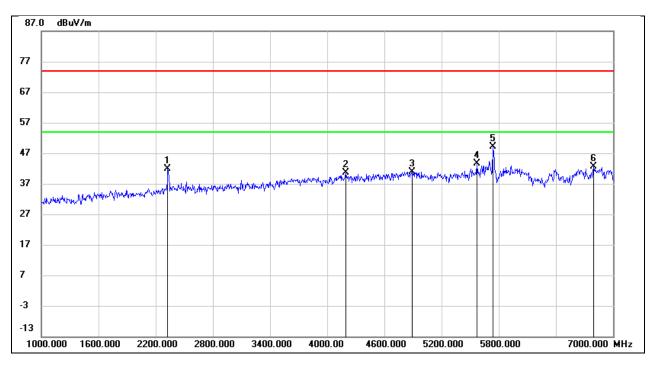
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2320.000	47.39	-8.00	39.39	74.00	-34.61	peak
2	4198.000	42.42	-1.46	40.96	74.00	-33.04	peak
3	4882.000	42.33	0.34	42.67	74.00	-31.33	peak
4	5200.000	48.26	1.37	49.63	/	/	Fundamental
5	5674.000	40.29	2.87	43.16	74.00	-30.84	peak
6	6634.000	38.58	4.69	43.27	74.00	-30.73	peak


Test Mode:	802.11a	Frequency(MHz):	5200
Polarity:	Vertical	Test Voltage:	DC 7.3 V

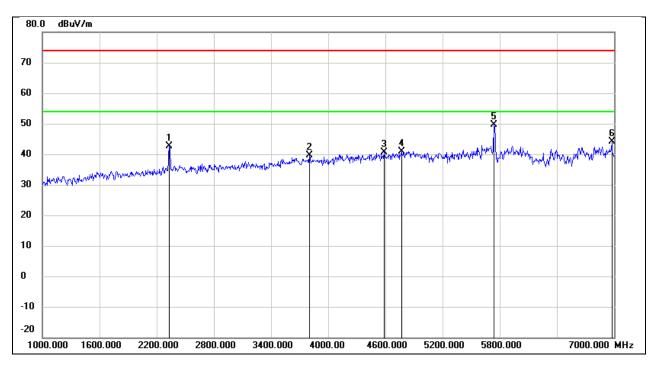
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.000	50.56	-7.91	42.65	74.00	-31.35	peak
2	3634.000	43.30	-3.60	39.70	74.00	-34.30	peak
3	4498.000	41.88	-1.20	40.68	74.00	-33.32	peak
4	5200.000	47.41	1.35	48.76	/	/	Fundamental
5	5662.000	39.58	2.92	42.50	74.00	-31.50	peak
6	6664.000	37.28	4.78	42.06	74.00	-31.94	peak


Test Mode:	802.11a	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

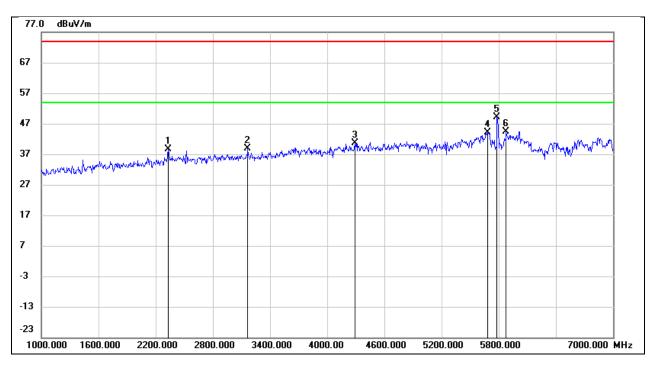
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2326.000	46.08	-7.94	38.14	74.00	-35.86	peak
2	4084.000	42.39	-2.40	39.99	74.00	-34.01	peak
3	4930.000	42.40	0.52	42.92	74.00	-31.08	peak
4	5240.000	47.40	1.43	48.83	/	/	Fundamental
5	5470.000	40.24	2.30	42.54	74.00	-31.46	peak
6	6664.000	38.35	4.78	43.13	74.00	-30.87	peak


Test Mode:	802.11a	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 7.3 V

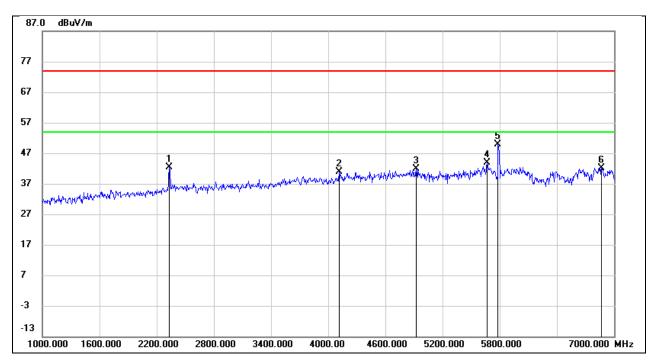
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.000	49.64	-7.91	41.73	74.00	-32.27	peak
2	3916.000	42.81	-2.97	39.84	74.00	-34.16	peak
3	4324.000	42.33	-1.47	40.86	74.00	-33.14	peak
4	4834.000	41.77	0.17	41.94	74.00	-32.06	peak
5	5240.000	47.83	1.43	49.26	/	/	Fundamental
6	5668.000	39.54	2.90	42.44	74.00	-31.56	peak


Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

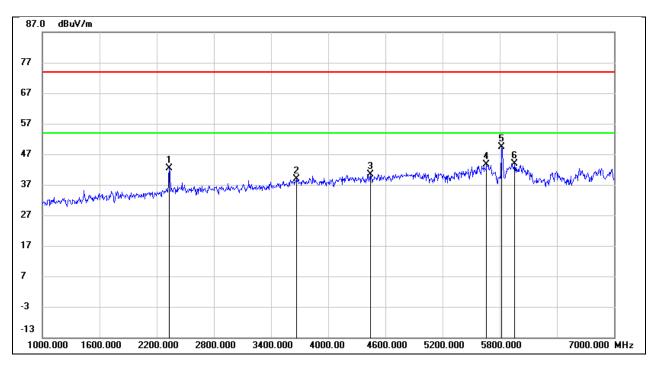
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2326.000	49.71	-7.94	41.77	74.00	-32.23	peak
2	4192.000	42.11	-1.52	40.59	74.00	-33.41	peak
3	4888.000	40.57	0.37	40.94	74.00	-33.06	peak
4	5572.000	40.74	3.00	43.74	74.00	-30.26	peak
5	5745.000	46.49	2.59	49.08	/	/	Fundamental
6	6796.000	37.49	5.13	42.62	74.00	-31.38	peak


Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 7.3 V

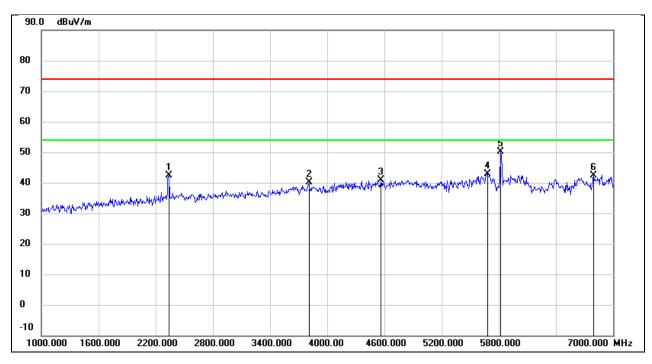
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.000	50.62	-7.91	42.71	74.00	-31.29	peak
2	3802.000	42.34	-2.79	39.55	74.00	-34.45	peak
3	4588.000	41.55	-0.99	40.56	74.00	-33.44	peak
4	4768.000	40.98	-0.10	40.88	74.00	-33.12	peak
5	5745.000	47.16	2.59	49.75	/	/	Fundamental
6	6976.000	37.25	6.80	44.05	74.00	-29.95	peak


Test Mode:	802.11a	Frequency(MHz):	5785
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.000	46.62	-7.91	38.71	74.00	-35.29	peak
2	3166.000	44.18	-5.39	38.79	74.00	-35.21	peak
3	4288.000	41.98	-1.46	40.52	74.00	-33.48	peak
4	5680.000	41.37	2.85	44.22	74.00	-29.78	peak
5	5785.000	46.76	2.42	49.18	/	/	Fundamental
6	5878.000	41.79	2.71	44.50	74.00	-29.50	peak

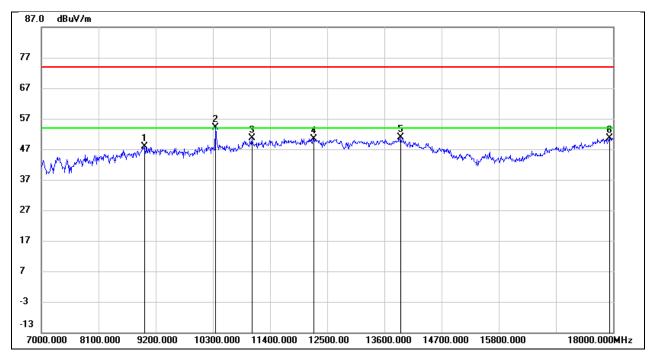

Test Mode:	802.11a	Frequency(MHz):	5785
Polarity:	Vertical	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.000	50.22	-7.91	42.31	74.00	-31.69	peak
2	4114.000	43.03	-2.15	40.88	74.00	-33.12	peak
3	4924.000	41.38	0.50	41.88	74.00	-32.12	peak
4	5668.000	41.05	2.90	43.95	74.00	-30.05	peak
5	5785.000	47.47	2.42	49.89	/	/	Fundamental
6	6868.000	36.37	5.78	42.15	74.00	-31.85	peak


Test Mode:	802.11a	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

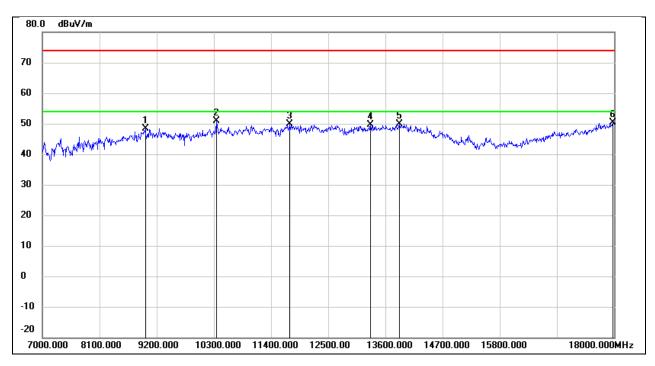
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2332.000	50.34	-7.91	42.43	74.00	-31.57	peak
2	3664.000	42.23	-3.45	38.78	74.00	-35.22	peak
3	4444.000	41.83	-1.36	40.47	74.00	-33.53	peak
4	5662.000	40.81	2.92	43.73	74.00	-30.27	peak
5	5825.000	46.95	2.42	49.37	/	/	Fundamental
6	5956.000	40.83	3.08	43.91	74.00	-30.09	peak

Test Mode:	802.11a	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 7.3 V

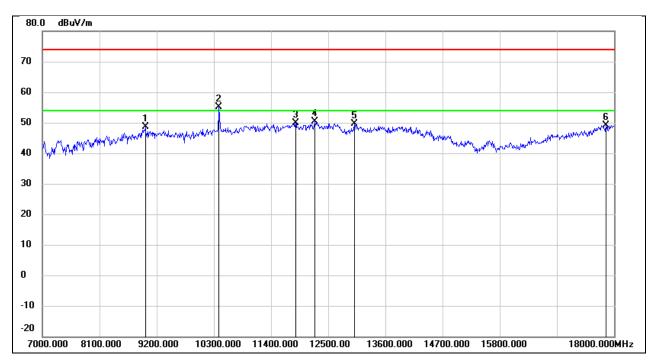


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2338.000	50.11	-7.85	42.26	74.00	-31.74	peak
2	3808.000	42.90	-2.79	40.11	74.00	-33.89	peak
3	4564.000	41.84	-1.04	40.80	74.00	-33.20	peak
4	5680.000	40.02	2.85	42.87	74.00	-31.13	peak
5	5825.000	47.63	2.42	50.05	/	/	Fundamental
6	6796.000	37.27	5.13	42.40	74.00	-31.60	peak

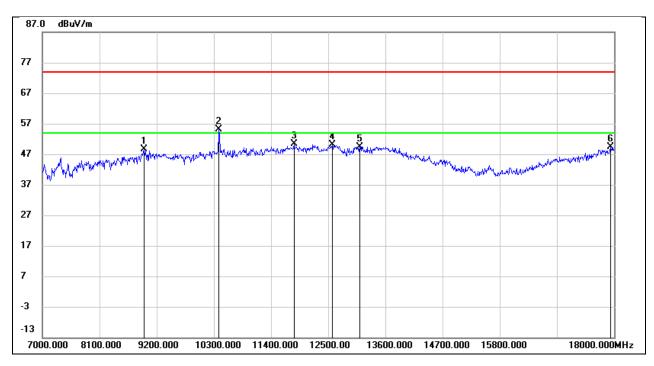
8.3. SPURIOUS EMISSIONS (7 GHZ ~ 18 GHZ)


Test Mode:	802.11a 20	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

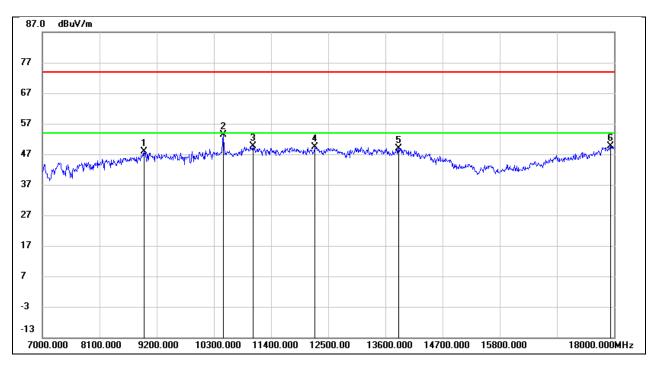
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.30	11.57	47.87	74.00	-26.13	peak
2	10355.000	41.16	13.03	54.19	68.20	-14.01	peak
3	11048.000	35.75	14.99	50.74	74.00	-23.26	peak
4	12247.000	31.81	18.68	50.49	74.00	-23.51	peak
5	13919.000	28.44	22.49	50.93	74.00	-23.07	peak
6	17934.000	24.01	26.69	50.70	74.00	-23.30	peak


Test Mode:	802.11a 20	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 7.3 V

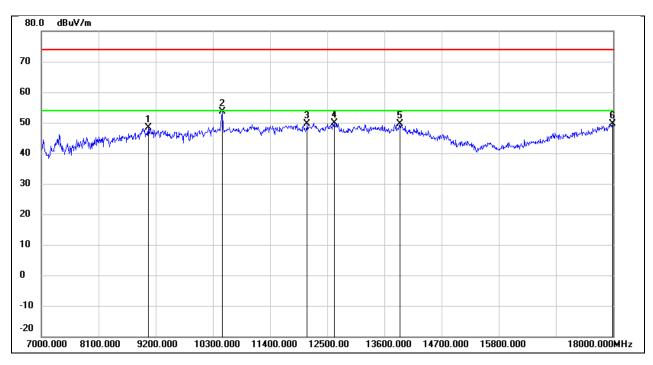
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.78	11.57	48.35	74.00	-25.65	peak
2	10344.000	37.78	12.98	50.76	74.00	-23.24	peak
3	11763.000	32.38	17.46	49.84	74.00	-24.16	peak
4	13314.000	29.10	20.64	49.74	74.00	-24.26	peak
5	13864.000	27.50	22.45	49.95	74.00	-24.05	peak
6	17978.000	23.55	26.88	50.43	74.00	-23.57	peak


Test Mode:	802.11a 20	Frequency(MHz):	5200
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

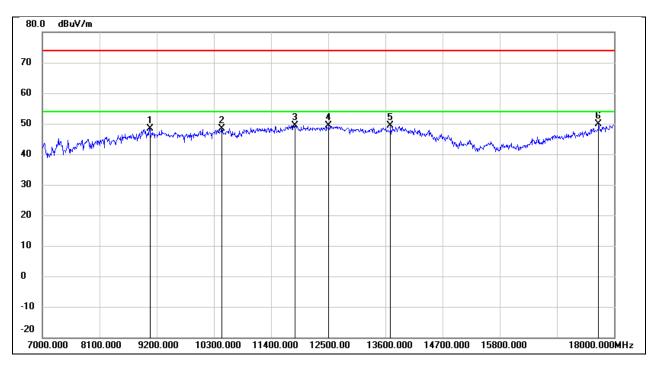
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	37.09	11.57	48.66	74.00	-25.34	peak
2	10399.000	41.92	13.23	55.15	68.20	-13.05	peak
3	11873.000	31.83	17.94	49.77	74.00	-24.23	peak
4	12247.000	31.61	18.68	50.29	74.00	-23.71	peak
5	13006.000	30.57	19.12	49.69	74.00	-24.31	peak
6	17846.000	22.87	26.32	49.19	74.00	-24.81	peak


Test Mode:	802.11a 20	Frequency(MHz):	5200
Polarity:	Vertical	Test Voltage:	DC 7.3 V

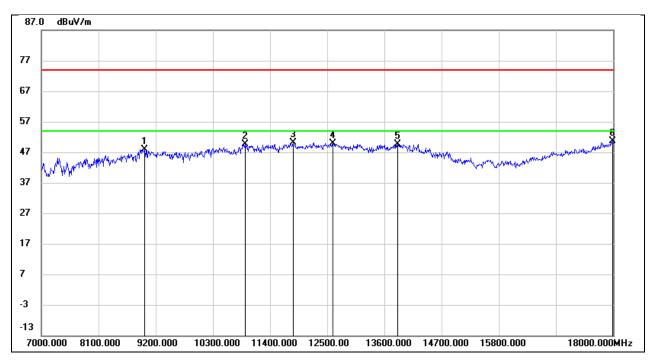
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	37.37	11.24	48.61	74.00	-25.39	peak
2	10399.000	41.88	13.23	55.11	68.20	-13.09	peak
3	11840.000	32.70	17.76	50.46	74.00	-23.54	peak
4	12577.000	31.76	18.37	50.13	74.00	-23.87	peak
5	13105.000	29.89	19.58	49.47	74.00	-24.53	peak
6	17934.000	22.75	26.69	49.44	74.00	-24.56	peak


Test Mode:	802.11a 20	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

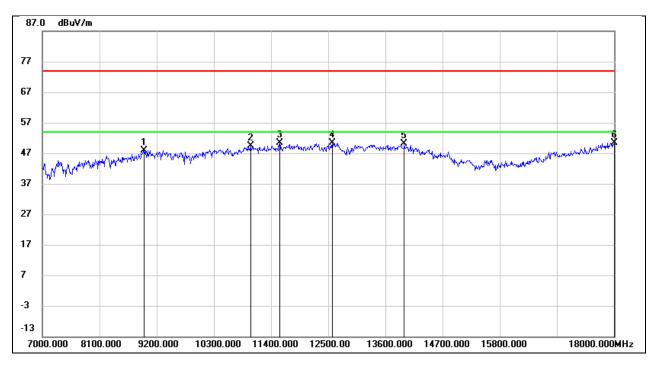
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.75	11.24	47.99	74.00	-26.01	peak
2	10476.000	40.03	13.44	53.47	74.00	-20.53	peak
3	11059.000	34.67	15.02	49.69	74.00	-24.31	peak
4	12247.000	30.62	18.68	49.30	74.00	-24.70	peak
5	13853.000	26.40	22.46	48.86	74.00	-25.14	peak
6	17934.000	22.85	26.69	49.54	74.00	-24.46	peak


Test Mode:	802.11a 20	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 7.3 V

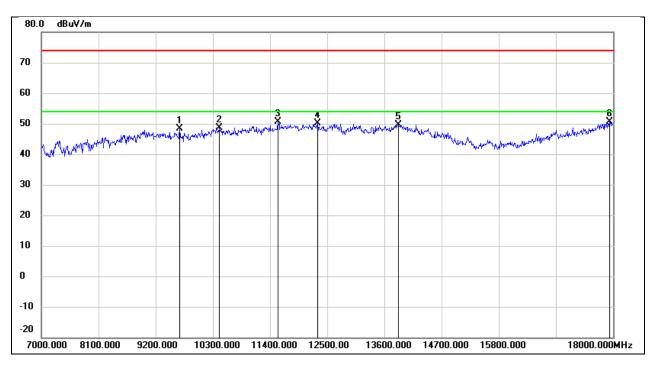
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9057.000	37.08	11.35	48.43	74.00	-25.57	peak
2	10476.000	40.25	13.44	53.69	74.00	-20.31	peak
3	12115.000	31.07	18.59	49.66	74.00	-24.34	peak
4	12632.000	31.37	18.40	49.77	74.00	-24.23	peak
5	13897.000	27.11	22.47	49.58	74.00	-24.42	peak
6	17989.000	22.65	26.92	49.57	74.00	-24.43	peak


Test Mode:	802.11a 20	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

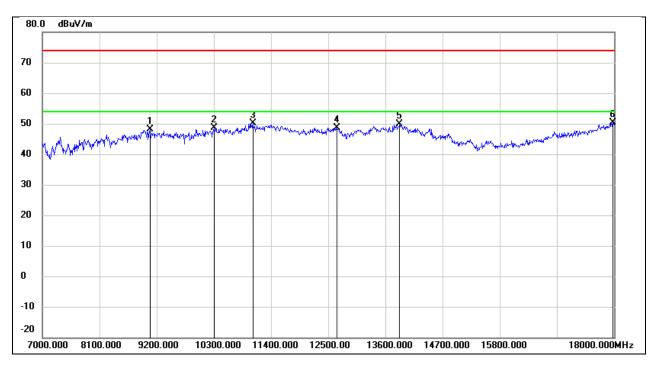
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9068.000	37.13	11.25	48.38	74.00	-25.62	peak
2	10454.000	35.07	13.38	48.45	74.00	-25.55	peak
3	11862.000	31.55	17.88	49.43	74.00	-24.57	peak
4	12511.000	30.81	18.54	49.35	74.00	-24.65	peak
5	13699.000	27.35	21.92	49.27	74.00	-24.73	peak
6	17703.000	24.81	25.01	49.82	74.00	-24.18	peak


Test Mode:	802.11a 20	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 7.3 V

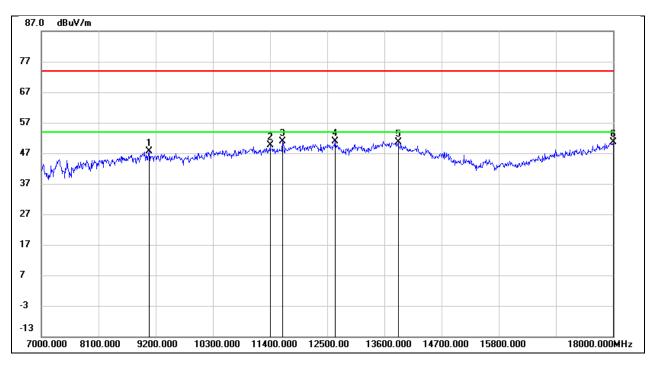
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.27	11.73	48.00	74.00	-26.00	peak
2	10916.000	35.15	14.45	49.60	74.00	-24.40	peak
3	11840.000	32.25	17.76	50.01	74.00	-23.99	peak
4	12610.000	31.62	18.34	49.96	74.00	-24.04	peak
5	13853.000	27.09	22.46	49.55	74.00	-24.45	peak
6	17989.000	23.81	26.92	50.73	74.00	-23.27	peak


Test Mode:	802.11a 20	Frequency(MHz):	5785
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

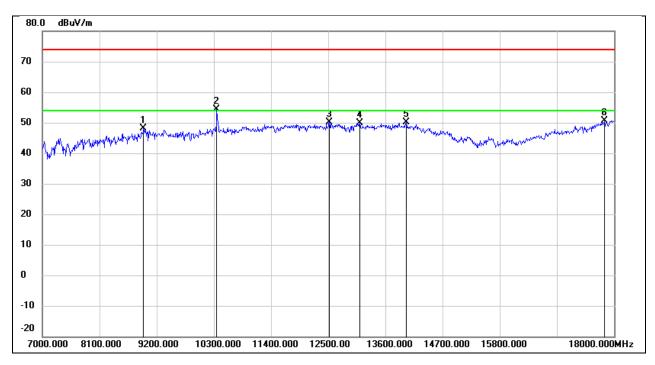
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.74	11.24	47.98	74.00	-26.02	peak
2	11004.000	34.46	14.90	49.36	74.00	-24.64	peak
3	11565.000	33.53	16.97	50.50	74.00	-23.50	peak
4	12577.000	32.12	18.37	50.49	74.00	-23.51	peak
5	13963.000	27.58	22.51	50.09	74.00	-23.91	peak
6	18000.000	23.49	26.97	50.46	74.00	-23.54	peak


Test Mode:	802.11a 20	Frequency(MHz):	5785
Polarity:	Vertical	Test Voltage:	DC 7.3 V

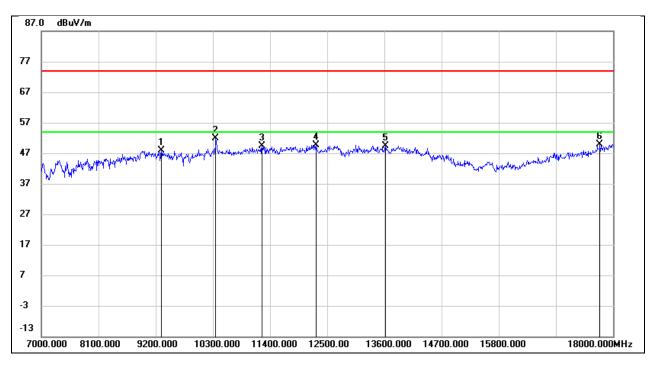
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9662.000	37.18	11.15	48.33	74.00	-25.67	peak
2	10421.000	35.40	13.29	48.69	74.00	-25.31	peak
3	11554.000	33.65	16.95	50.60	74.00	-23.40	peak
4	12313.000	31.26	18.81	50.07	74.00	-23.93	peak
5	13864.000	27.29	22.45	49.74	74.00	-24.26	peak
6	17934.000	24.02	26.69	50.71	74.00	-23.29	peak


Test Mode:	802.11a 20	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

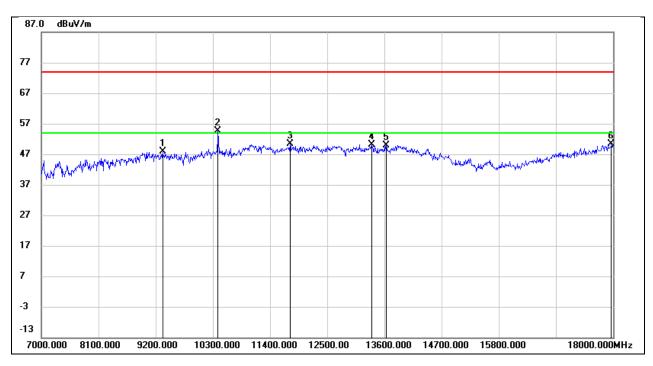
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9068.000	36.81	11.25	48.06	74.00	-25.94	peak
2	10300.000	35.86	12.78	48.64	74.00	-25.36	peak
3	11048.000	35.19	14.99	50.18	74.00	-23.82	peak
4	12665.000	30.22	18.48	48.70	74.00	-25.30	peak
5	13875.000	27.43	22.46	49.89	74.00	-24.11	peak
6	17978.000	23.47	26.88	50.35	74.00	-23.65	peak


Test Mode:	802.11a 20	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 7.3 V

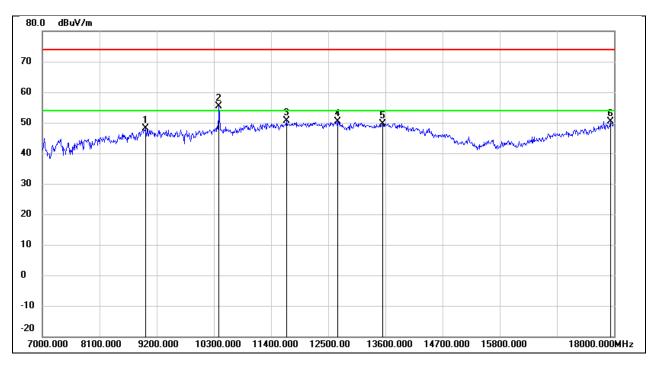
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9079.000	36.40	11.15	47.55	74.00	-26.45	peak
2	11400.000	33.15	16.57	49.72	74.00	-24.28	peak
3	11642.000	33.67	17.13	50.80	74.00	-23.20	peak
4	12654.000	32.42	18.44	50.86	74.00	-23.14	peak
5	13864.000	28.19	22.45	50.64	74.00	-23.36	peak
6	18000.000	23.62	26.97	50.59	74.00	-23.41	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

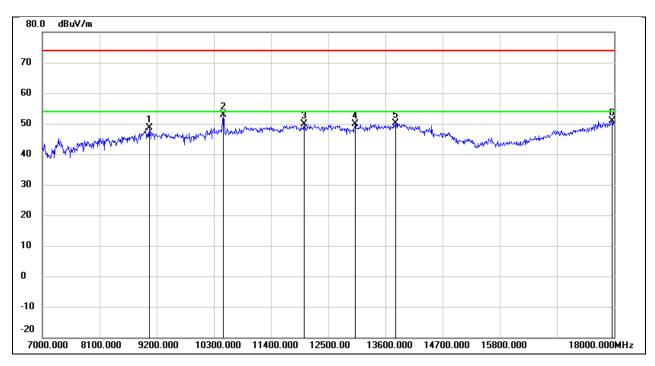
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8947.000	36.96	11.08	48.04	74.00	-25.96	peak
2	10355.000	41.36	13.03	54.39	68.20	-13.81	peak
3	12522.000	31.49	18.52	50.01	74.00	-23.99	peak
4	13105.000	30.33	19.58	49.91	74.00	-24.09	peak
5	14007.000	27.63	22.53	50.16	74.00	-23.84	peak
6	17813.000	24.47	26.18	50.65	74.00	-23.35	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5180
Polarity:	Vertical	Test Voltage:	DC 7.3 V

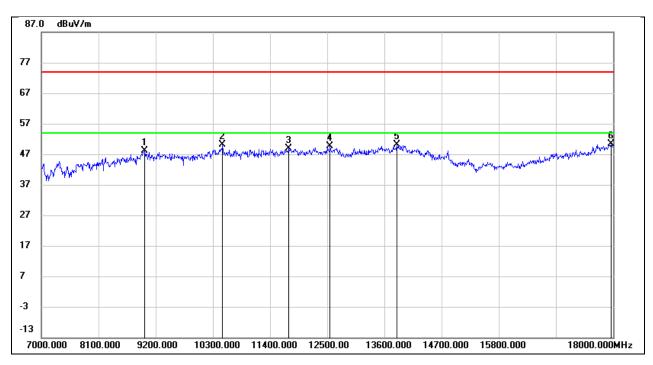
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9310.000	37.45	10.39	47.84	74.00	-26.16	peak
2	10355.000	38.89	13.03	51.92	74.00	-22.08	peak
3	11246.000	33.73	15.62	49.35	74.00	-24.65	peak
4	12291.000	30.96	18.77	49.73	74.00	-24.27	peak
5	13622.000	27.84	21.53	49.37	74.00	-24.63	peak
6	17747.000	24.48	25.52	50.00	74.00	-24.00	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5200
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

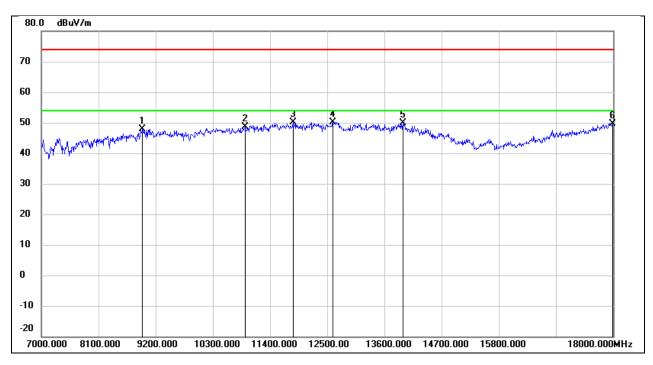
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9332.000	37.47	10.45	47.92	74.00	-26.08	peak
2	10399.000	41.51	13.23	54.74	68.20	-13.46	peak
3	11785.000	32.88	17.52	50.40	74.00	-23.60	peak
4	13358.000	29.25	20.89	50.14	74.00	-23.86	peak
5	13633.000	28.41	21.59	50.00	74.00	-24.00	peak
6	17967.000	23.58	26.83	50.41	74.00	-23.59	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5200
Polarity:	Vertical	Test Voltage:	DC 7.3 V

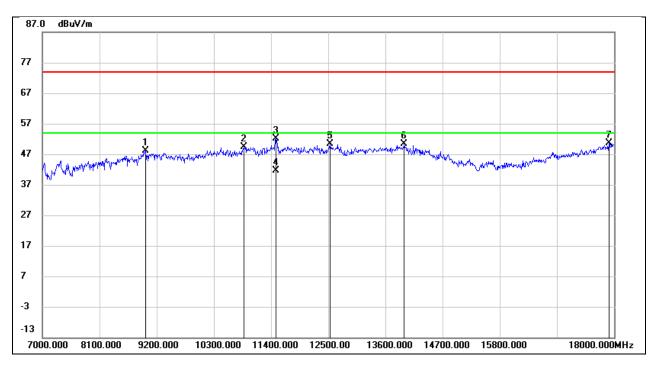
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.59	11.57	48.16	74.00	-25.84	peak
2	10399.000	42.06	13.23	55.29	68.20	-12.91	peak
3	11697.000	33.44	17.29	50.73	74.00	-23.27	peak
4	12687.000	31.73	18.53	50.26	74.00	-23.74	peak
5	13545.000	28.25	21.41	49.66	74.00	-24.34	peak
6	17934.000	23.78	26.69	50.47	74.00	-23.53	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

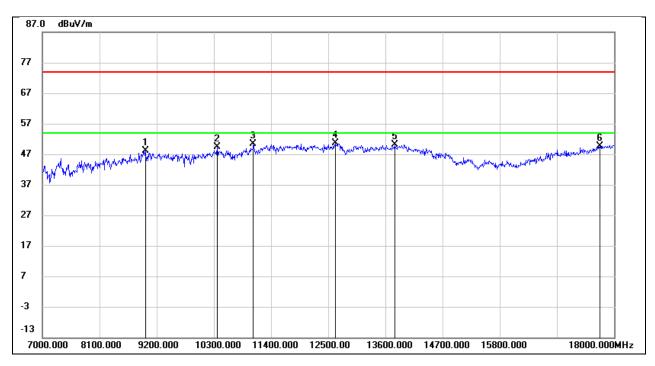
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9057.000	37.23	11.35	48.58	74.00	-25.42	peak
2	10487.000	39.34	13.46	52.80	74.00	-21.20	peak
3	12038.000	31.35	18.60	49.95	74.00	-24.05	peak
4	13017.000	30.72	19.18	49.90	74.00	-24.10	peak
5	13798.000	27.77	22.41	50.18	74.00	-23.82	peak
6	17967.000	24.04	26.83	50.87	74.00	-23.13	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5240
Polarity:	Vertical	Test Voltage:	DC 7.3 V

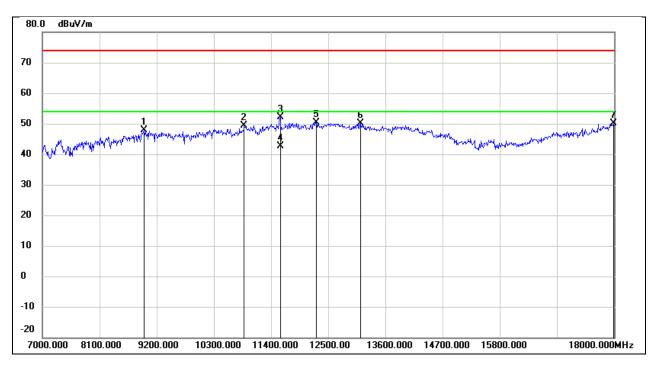
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.30	11.73	48.03	74.00	-25.97	peak
2	10487.000	36.73	13.46	50.19	74.00	-23.81	peak
3	11763.000	31.33	17.46	48.79	74.00	-25.21	peak
4	12555.000	31.18	18.43	49.61	74.00	-24.39	peak
5	13842.000	27.75	22.44	50.19	74.00	-23.81	peak
6	17967.000	23.49	26.83	50.32	74.00	-23.68	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

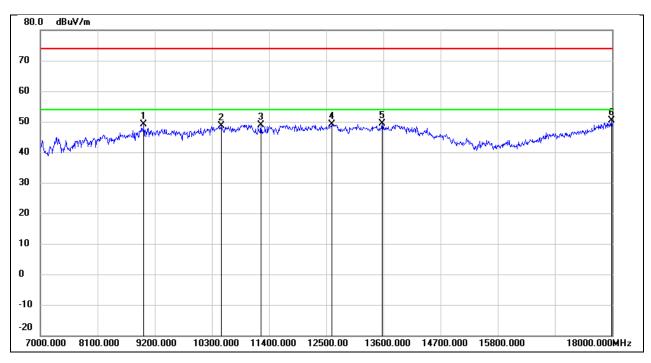
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8947.000	36.84	11.08	47.92	74.00	-26.08	peak
2	10916.000	34.08	14.45	48.53	74.00	-25.47	peak
3	11840.000	32.30	17.76	50.06	74.00	-23.94	peak
4	12610.000	31.83	18.34	50.17	74.00	-23.83	peak
5	13952.000	27.33	22.51	49.84	74.00	-24.16	peak
6	17989.000	22.80	26.92	49.72	74.00	-24.28	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 7.3 V

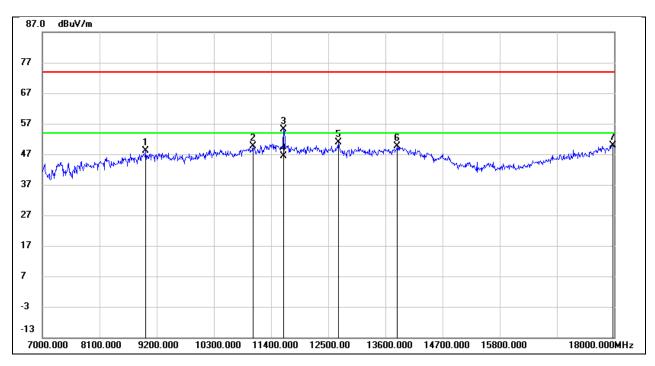
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.59	11.57	48.16	74.00	-25.84	peak
2	10883.000	34.98	14.28	49.26	74.00	-24.74	peak
3	11488.000	35.37	16.84	52.21	74.00	-21.79	peak
4	11488.000	24.86	16.84	41.70	54.00	-12.30	AVG
5	12533.000	31.81	18.49	50.30	74.00	-23.70	peak
6	13963.000	27.96	22.51	50.47	74.00	-23.53	peak
7	17901.000	24.15	26.55	50.70	74.00	-23.30	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5785
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

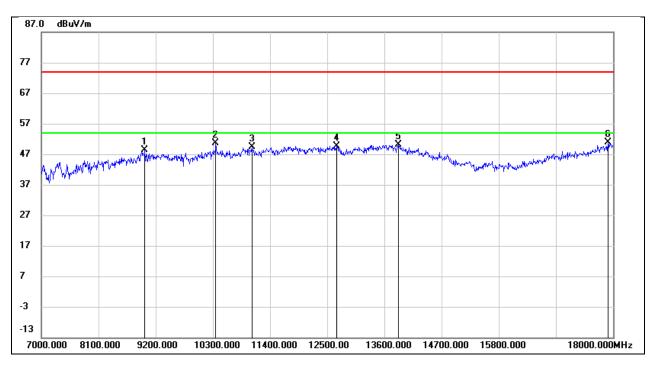
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.67	11.57	48.24	74.00	-25.76	peak
2	10366.000	36.23	13.08	49.31	74.00	-24.69	peak
3	11059.000	35.28	15.02	50.30	74.00	-23.70	peak
4	12632.000	32.34	18.40	50.74	74.00	-23.26	peak
5	13776.000	27.93	22.30	50.23	74.00	-23.77	peak
6	17725.000	24.46	25.26	49.72	74.00	-24.28	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5785
Polarity:	Vertical	Test Voltage:	DC 7.3 V

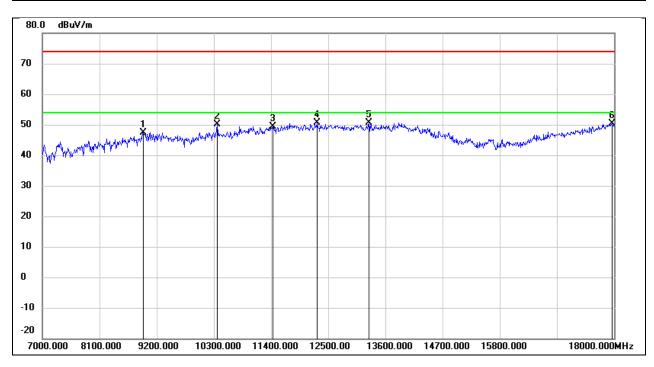
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.56	11.24	47.80	74.00	-26.20	peak
2	10883.000	35.11	14.28	49.39	74.00	-24.61	peak
3	11576.000	35.09	16.99	52.08	74.00	-21.92	peak
4	11576.000	25.61	16.99	42.60	54.00	-11.40	AVG
5	12269.000	31.59	18.72	50.31	74.00	-23.69	peak
6	13116.000	30.59	19.64	50.23	74.00	-23.77	peak
7	17989.000	23.13	26.92	50.05	74.00	-23.95	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

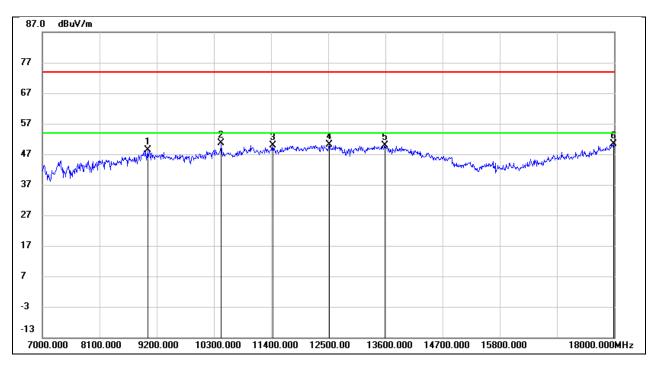
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	37.52	11.73	49.25	74.00	-24.75	peak
2	10487.000	35.12	13.46	48.58	74.00	-25.42	peak
3	11246.000	33.33	15.62	48.95	74.00	-25.05	peak
4	12610.000	30.89	18.34	49.23	74.00	-24.77	peak
5	13578.000	27.94	21.42	49.36	74.00	-24.64	peak
6	17989.000	23.53	26.92	50.45	74.00	-23.55	peak


Test Mode:	802.11n HT20	Frequency(MHz):	5825
Polarity:	Vertical	Test Voltage:	DC 7.3 V

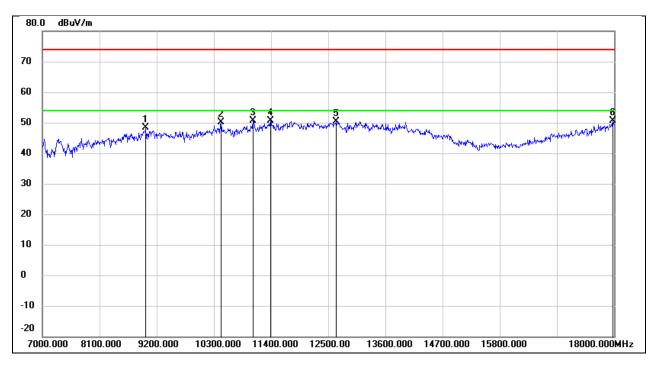
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.38	11.73	48.11	74.00	-25.89	peak
2	11048.000	34.56	14.99	49.55	74.00	-24.45	peak
3	11642.000	37.94	17.13	55.07	74.00	-18.93	peak
4	11642.000	29.37	17.13	46.50	54.00	-7.50	AVG
5	12698.000	32.28	18.56	50.84	74.00	-23.16	peak
6	13831.000	27.16	22.44	49.60	74.00	-24.40	peak
7	17978.000	23.05	26.88	49.93	74.00	-24.07	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

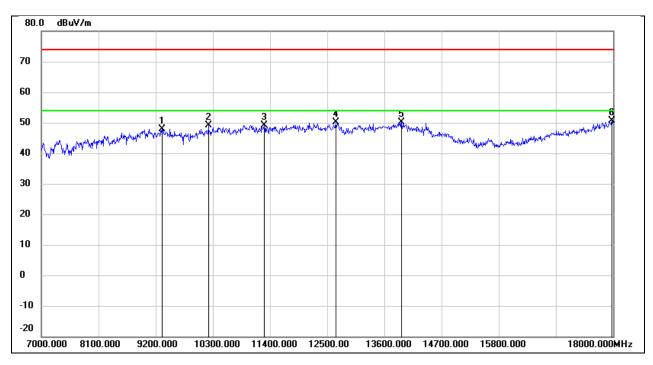
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.66	11.73	48.39	74.00	-25.61	peak
2	10355.000	37.55	13.03	50.58	74.00	-23.42	peak
3	11048.000	34.46	14.99	49.45	74.00	-24.55	peak
4	12687.000	31.20	18.53	49.73	74.00	-24.27	peak
5	13875.000	27.59	22.46	50.05	74.00	-23.95	peak
6	17901.000	24.29	26.55	50.84	74.00	-23.16	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5190
Polarity:	Vertical	Test Voltage:	DC 7.3 V

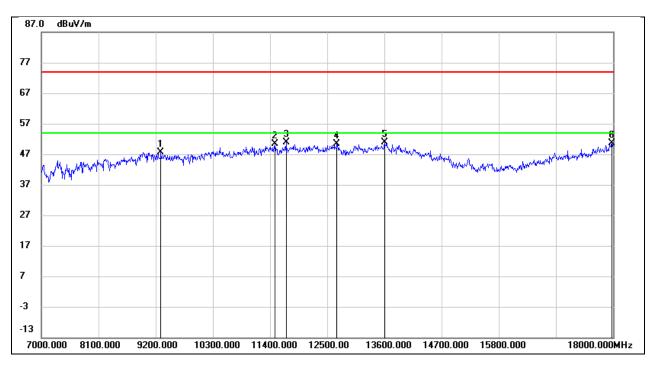
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8947.000	36.30	11.08	47.38	74.00	-26.62	peak
2	10366.000	37.00	13.08	50.08	74.00	-23.92	peak
3	11433.000	32.79	16.68	49.47	74.00	-24.53	peak
4	12280.000	31.98	18.74	50.72	74.00	-23.28	peak
5	13281.000	30.15	20.46	50.61	74.00	-23.39	peak
6	17956.000	23.52	26.78	50.30	74.00	-23.70	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5230
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

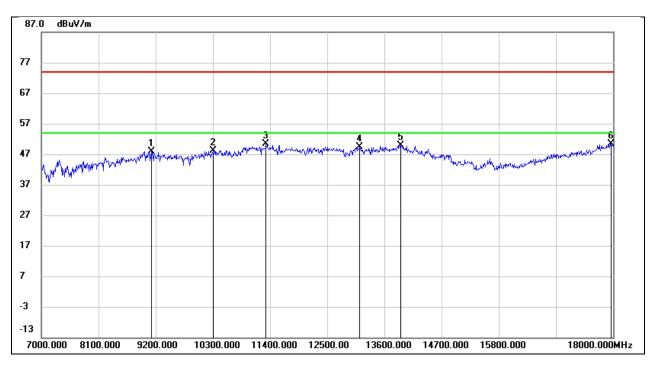
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9024.000	36.69	11.65	48.34	74.00	-25.66	peak
2	10443.000	37.37	13.35	50.72	74.00	-23.28	peak
3	11433.000	33.19	16.68	49.87	74.00	-24.13	peak
4	12522.000	31.62	18.52	50.14	74.00	-23.86	peak
5	13589.000	28.37	21.41	49.78	74.00	-24.22	peak
6	17989.000	23.34	26.92	50.26	74.00	-23.74	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5230
Polarity:	Vertical	Test Voltage:	DC 7.3 V

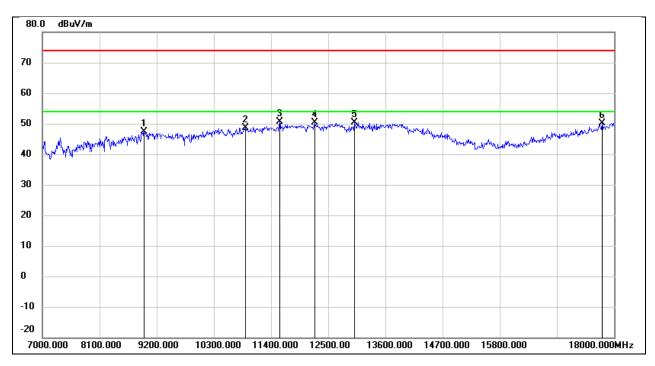
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.70	11.73	48.43	74.00	-25.57	peak
2	10432.000	36.73	13.31	50.04	74.00	-23.96	peak
3	11048.000	35.73	14.99	50.72	74.00	-23.28	peak
4	11389.000	34.08	16.51	50.59	74.00	-23.41	peak
5	12654.000	32.05	18.44	50.49	74.00	-23.51	peak
6	17978.000	23.80	26.88	50.68	74.00	-23.32	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

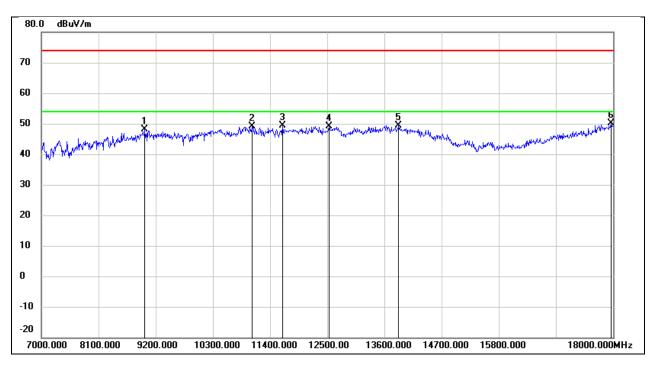
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9321.000	37.53	10.42	47.95	74.00	-26.05	peak
2	10212.000	36.86	12.39	49.25	74.00	-24.75	peak
3	11290.000	33.20	15.89	49.09	74.00	-24.91	peak
4	12665.000	31.56	18.48	50.04	74.00	-23.96	peak
5	13930.000	27.61	22.50	50.11	74.00	-23.89	peak
6	17978.000	23.69	26.88	50.57	74.00	-23.43	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5755
Polarity:	Vertical	Test Voltage:	DC 7.3 V

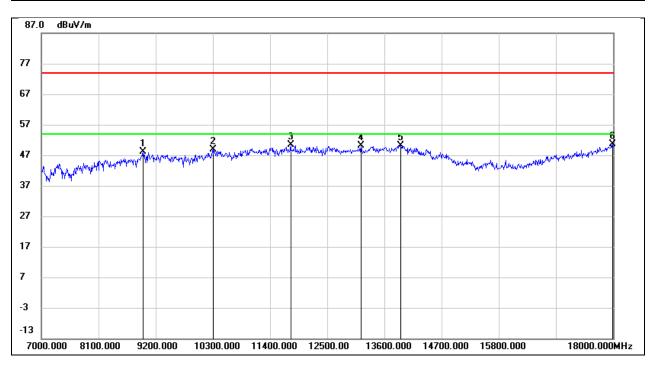
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9299.000	37.21	10.35	47.56	74.00	-26.44	peak
2	11499.000	33.43	16.89	50.32	74.00	-23.68	peak
3	11708.000	33.62	17.31	50.93	74.00	-23.07	peak
4	12687.000	31.86	18.53	50.39	74.00	-23.61	peak
5	13600.000	29.41	21.42	50.83	74.00	-23.17	peak
6	17978.000	23.87	26.88	50.75	74.00	-23.25	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

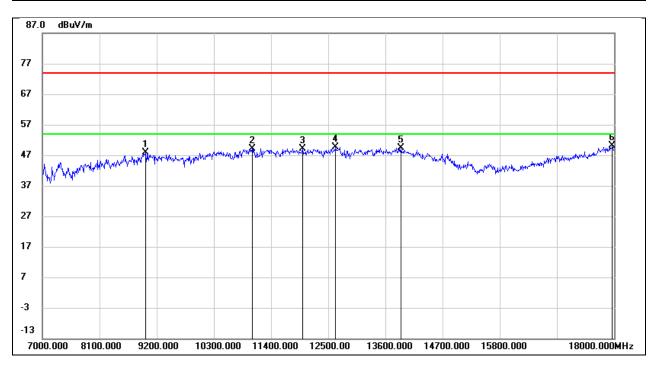
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	9112.000	37.10	10.85	47.95	74.00	-26.05	peak
2	10300.000	35.35	12.78	48.13	74.00	-25.87	peak
3	11323.000	34.21	16.10	50.31	74.00	-23.69	peak
4	13116.000	29.83	19.64	49.47	74.00	-24.53	peak
5	13908.000	27.32	22.49	49.81	74.00	-24.19	peak
6	17967.000	23.61	26.83	50.44	74.00	-23.56	peak


Test Mode:	802.11n HT40	Frequency(MHz):	5795
Polarity:	Vertical	Test Voltage:	DC 7.3 V

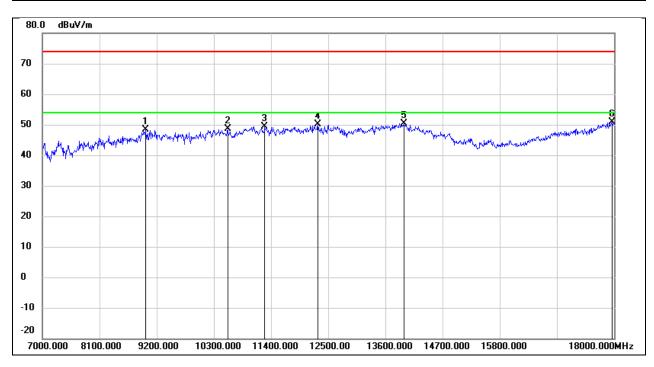
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.21	11.24	47.45	74.00	-26.55	peak
2	10905.000	34.20	14.39	48.59	74.00	-25.41	peak
3	11565.000	33.60	16.97	50.57	74.00	-23.43	peak
4	12236.000	31.64	18.66	50.30	74.00	-23.70	peak
5	13006.000	31.26	19.12	50.38	74.00	-23.62	peak
6	17769.000	24.49	25.76	50.25	74.00	-23.75	peak


Test Mode:	802.11ac VHT80	Frequency(MHz):	5210
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.37	11.73	48.10	74.00	-25.90	peak
2	11059.000	34.10	15.02	49.12	74.00	-24.88	peak
3	11642.000	32.19	17.13	49.32	74.00	-24.68	peak
4	12533.000	30.60	18.49	49.09	74.00	-24.91	peak
5	13875.000	27.04	22.46	49.50	74.00	-24.50	peak
6	17967.000	23.33	26.83	50.16	74.00	-23.84	peak

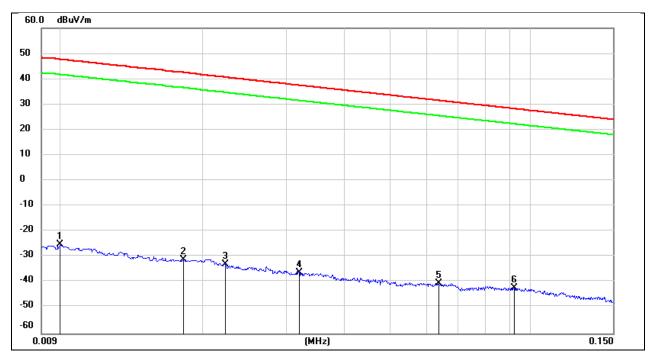

Test Mode:	802.11ac VHT80	Frequency(MHz):	5210
Polarity:	Vertical	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8958.000	36.80	11.24	48.04	74.00	-25.96	peak
2	10300.000	36.04	12.78	48.82	74.00	-25.18	peak
3	11796.000	32.83	17.55	50.38	74.00	-23.62	peak
4	13149.000	30.32	19.79	50.11	74.00	-23.89	peak
5	13919.000	27.73	22.49	50.22	74.00	-23.78	peak
6	17989.000	23.63	26.92	50.55	74.00	-23.45	peak


Test Mode:	802.11ac VHT80	Frequency(MHz):	5775
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8980.000	36.27	11.57	47.84	74.00	-26.16	peak
2	11037.000	34.26	14.98	49.24	74.00	-24.76	peak
3	12005.000	30.65	18.60	49.25	74.00	-24.75	peak
4	12643.000	31.15	18.43	49.58	74.00	-24.42	peak
5	13897.000	26.91	22.47	49.38	74.00	-24.62	peak
6	17967.000	23.22	26.83	50.05	74.00	-23.95	peak

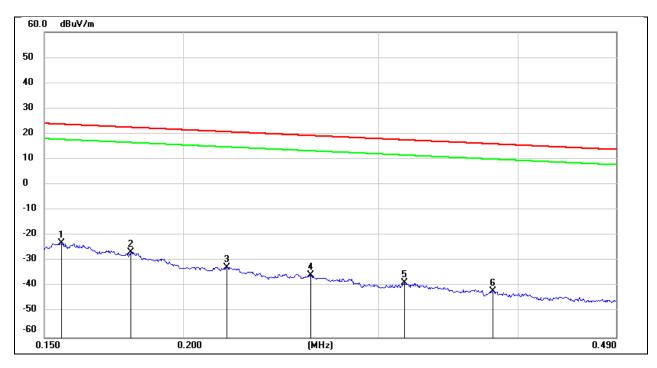
Test Mode:	802.11ac VHT80	Frequency(MHz):	5775
Polarity:	Vertical	Test Voltage:	DC 7.3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	8991.000	36.75	11.73	48.48	74.00	-25.52	peak
2	10564.000	35.05	13.68	48.73	74.00	-25.27	peak
3	11279.000	33.58	15.83	49.41	74.00	-24.59	peak
4	12302.000	31.44	18.79	50.23	74.00	-23.77	peak
5	13952.000	27.81	22.51	50.32	74.00	-23.68	peak
6	17956.000	24.03	26.78	50.81	74.00	-23.19	peak

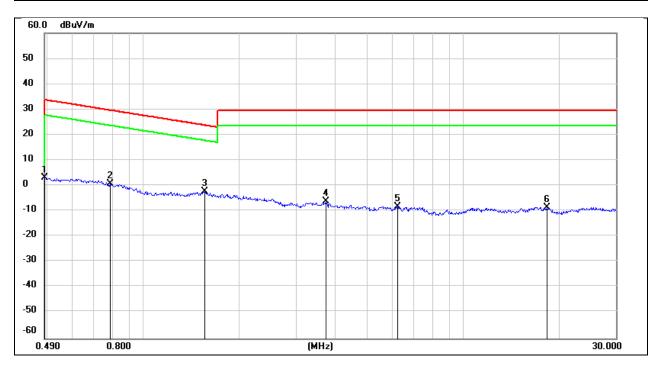
8.4. SPURIOUS EMISSIONS (9 KHZ ~ 30 MHZ)

Test Mode:	802.11n HT20	Frequency(MHz):	5200
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 7.3 V



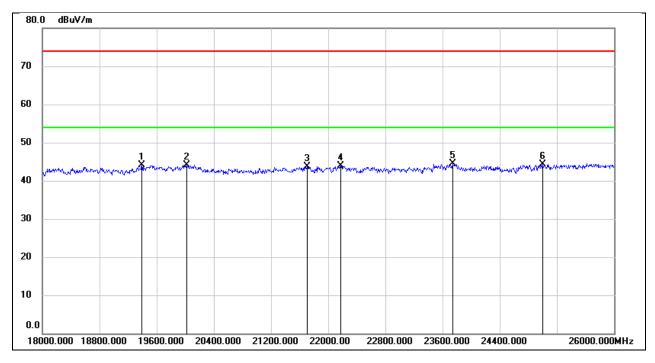
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.01	76.22	-101.4	-25.18	-76.68	47.6	-3.9	-72.78	peak
2	0.0181	70.35	-101.36	-31.01	-82.51	42.45	-9.05	-73.46	peak
3	0.0223	68.36	-101.35	-32.99	-84.49	40.63	-10.87	-73.62	peak
4	0.032	65.34	-101.4	-36.06	-87.56	37.5	-14	-73.56	peak
5	0.0636	61.31	-101.54	-40.23	-91.73	31.53	-19.97	-71.76	peak
6	0.0922	59.51	-101.74	-42.23	-93.73	28.31	-23.19	-70.54	peak

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


Test Mode:	802.11n HT20	Frequency(MHz):	5200
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 7.3 V

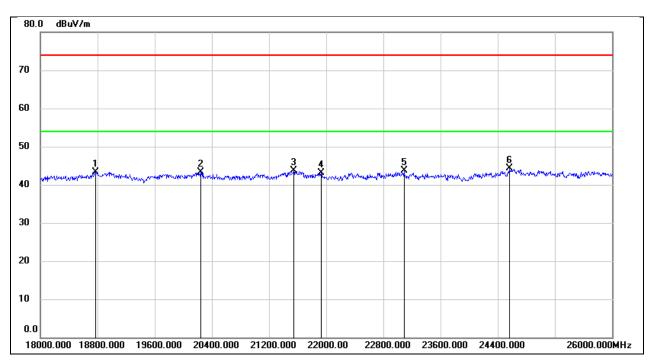
No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.1554	78.77	-101.65	-22.88	-74.38	23.77	-27.73	-46.65	peak
2	0.1794	75.27	-101.68	-26.41	-77.91	22.53	-28.97	-48.94	peak
3	0.219	69.27	-101.75	-32.48	-83.98	20.79	-30.71	-53.27	peak
4	0.2605	66.14	-101.81	-35.67	-87.17	19.28	-32.22	-54.95	peak
5	0.3163	63.2	-101.87	-38.67	-90.17	17.6	-33.9	-56.27	peak
6	0.38	60.02	-101.94	-41.92	-93.42	16.01	-35.49	-57.93	peak

Test Mode:	802.11n HT20	Frequency(MHz):	5200
Polarity:	Loop Antenna Face On To The EUT	Test Voltage:	DC 7.3 V


No.	Frequency	Reading	Correct	Result	Result	Limit	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuA/m)	(dBuV/m)	(dBuA/m)	(dB)	
1	0.49	65.22	-62.06	3.16	-48.34	13.8	-37.7	-10.64	peak
2	0.7861	62.83	-62.14	0.69	-50.81	29.69	-21.81	-29.00	peak
3	1.5564	59.68	-62.02	-2.34	-53.84	23.76	-27.74	-26.10	peak
4	3.71	55.2	-61.41	-6.21	-57.71	29.54	-21.96	-35.75	peak
5	6.2445	53.13	-61.32	-8.19	-59.69	29.54	-21.96	-37.73	peak
6	18.2545	52.43	-60.9	-8.47	-59.97	29.54	-21.96	-38.01	peak

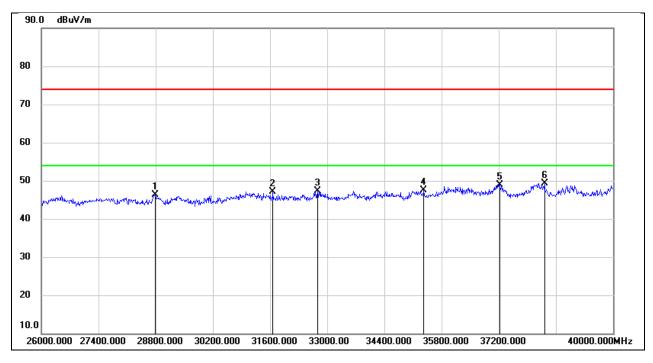
UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

8.5. SPURIOUS EMISSIONS (18 GHZ ~ 26 GHZ)


Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

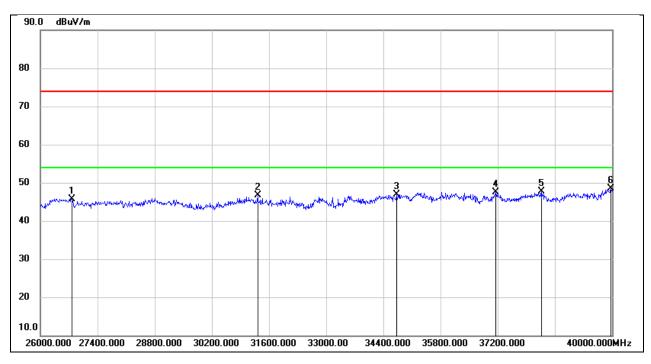
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	19392.000	49.62	-5.57	44.05	74.00	-29.95	peak
2	20016.000	49.56	-5.47	44.09	74.00	-29.91	peak
3	21704.000	48.17	-4.39	43.78	74.00	-30.22	peak
4	22176.000	48.26	-4.29	43.97	74.00	-30.03	peak
5	23744.000	47.65	-3.20	44.45	74.00	-29.55	peak
6	25000.000	46.36	-2.10	44.26	74.00	-29.74	peak

Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 7.3 V



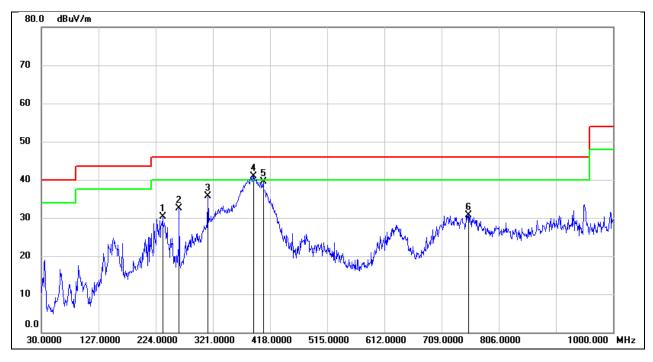
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	18768.000	48.81	-5.41	43.40	74.00	-30.60	peak
2	20240.000	48.82	-5.61	43.21	74.00	-30.79	peak
3	21544.000	48.26	-4.63	43.63	74.00	-30.37	peak
4	21928.000	47.55	-4.43	43.12	74.00	-30.88	peak
5	23088.000	47.02	-3.41	43.61	74.00	-30.39	peak
6	24568.000	46.60	-2.33	44.27	74.00	-29.73	peak

8.6. SPURIOUS EMISSIONS (26 GHZ ~ 40 GHZ)


Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

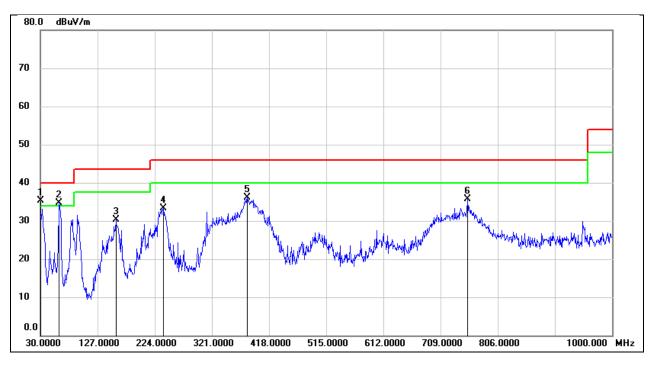
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	28786.000	46.99	-0.64	46.35	74.00	-27.65	peak
2	31670.000	48.36	-1.21	47.15	74.00	-26.85	peak
3	32762.000	48.45	-1.21	47.24	74.00	-26.76	peak
4	35366.000	44.90	2.59	47.49	74.00	-26.51	peak
5	37228.000	45.73	3.14	48.87	74.00	-25.13	peak
6	38320.000	45.56	3.77	49.33	74.00	-24.67	peak

Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 7.3 V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	26770.000	50.61	-4.83	45.78	74.00	-28.22	peak
2	31320.000	47.61	-0.93	46.68	74.00	-27.32	peak
3	34722.000	45.44	1.48	46.92	74.00	-27.08	peak
4	37158.000	44.34	3.17	47.51	74.00	-26.49	peak
5	38278.000	43.82	3.82	47.64	74.00	-26.36	peak
6	39972.000	43.45	5.13	48.58	74.00	-25.42	peak

8.7. SPURIOUS EMISSIONS (30 MHZ ~ 1 GHZ)


Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 7.3 V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	235.6400	44.10	-13.89	30.21	46.00	-15.79	QP
2	263.7700	46.38	-13.94	32.44	46.00	-13.56	QP
3	312.2700	46.88	-11.19	35.69	46.00	-10.31	QP
4	389.8700	50.67	-9.70	40.97	46.00	-5.03	QP
5	406.3599	49.18	-9.58	39.60	46.00	-6.40	QP
6	754.5900	34.19	-3.41	30.78	46.00	-15.22	QP

Test Mode:	802.11a	Frequency(MHz):	5745
Polarity:	Vertical	Test Voltage:	DC 7.3 V

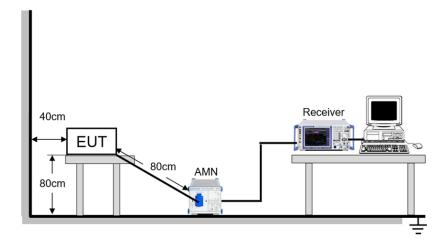
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	48.58	-13.34	35.24	40.00	-4.76	QP
2	62.0100	50.07	-15.28	34.79	40.00	-5.21	QP
3	158.0399	43.34	-12.94	30.40	43.50	-13.10	QP
4	238.5500	47.34	-14.08	33.26	46.00	-12.74	QP
5	381.1400	45.75	-9.71	36.04	46.00	-9.96	QP
6	754.5900	39.21	-3.41	35.80	46.00	-10.20	QP

9. AC POWER LINE CONDUCTED EMISSION

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

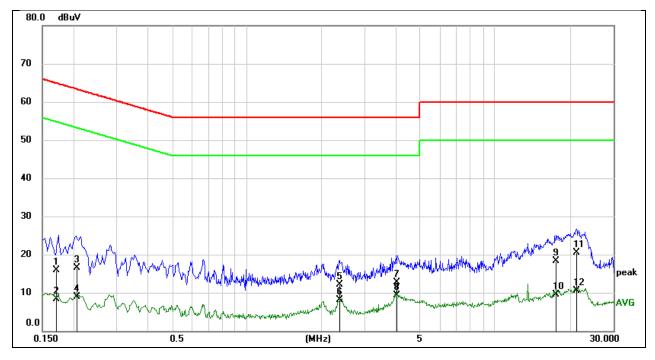

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP


TEST ENVIRONMENT

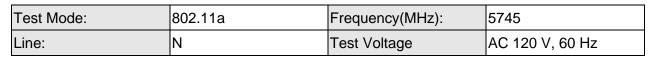
Temperature	25.4 ℃	Relative Humidity	59.5%
Atmosphere Pressure	101 kPa	Test Voltage	AC 120 V, 60 Hz

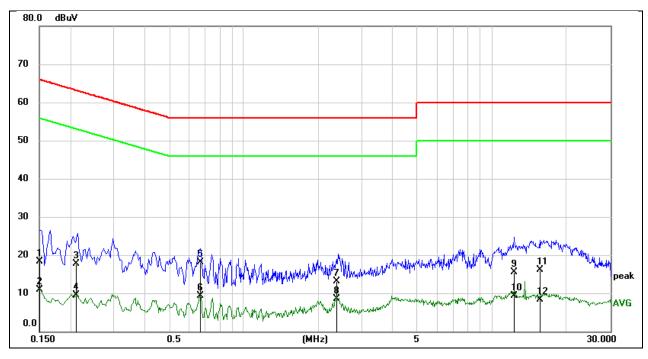
TEST RESULTS

Test Mode:	802.11a	Frequency(MHz):	5745
Line:	L1	Test Voltage	AC 120 V, 60 Hz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1705	5.65	10.30	15.95	64.94	-48.99	QP
2	0.1705	-2.03	10.30	8.27	54.94	-46.67	AVG
3	0.2061	6.27	10.24	16.51	63.36	-46.85	QP
4	0.2061	-1.24	10.24	9.00	53.36	-44.36	AVG
5	2.3874	2.20	10.00	12.20	56.00	-43.80	QP
6	2.3874	-1.98	10.00	8.02	46.00	-37.98	AVG
7	4.0367	2.57	10.23	12.80	56.00	-43.20	QP
8	4.0367	-0.90	10.23	9.33	46.00	-36.67	AVG
9	17.5834	7.53	10.70	18.23	60.00	-41.77	QP
10	17.5834	-1.21	10.70	9.49	50.00	-40.51	AVG
11	21.3321	9.66	10.84	20.50	60.00	-39.50	QP
12	21.3321	-0.40	10.84	10.44	50.00	-39.56	AVG

Note:


1. Result = Reading + Correct Factor.


2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1505	8.10	10.24	18.34	65.97	-47.63	QP
2	0.1505	0.72	10.24	10.96	55.97	-45.01	AVG
3	0.2106	7.61	10.14	17.75	63.18	-45.43	QP
4	0.2106	-0.67	10.14	9.47	53.18	-43.71	AVG
5	0.6705	7.99	10.03	18.02	56.00	-37.98	QP
6	0.6705	-0.70	10.03	9.33	46.00	-36.67	AVG
7	2.3639	3.05	10.09	13.14	56.00	-42.86	QP
8	2.3639	-1.49	10.09	8.60	46.00	-37.40	AVG
9	12.2103	5.05	10.52	15.57	60.00	-44.43	QP
10	12.2103	-1.14	10.52	9.38	50.00	-40.62	AVG
11	15.5916	5.36	10.68	16.04	60.00	-43.96	QP
12	15.5916	-2.45	10.68	8.23	50.00	-41.77	AVG

Note:

1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

10. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC part 15.203

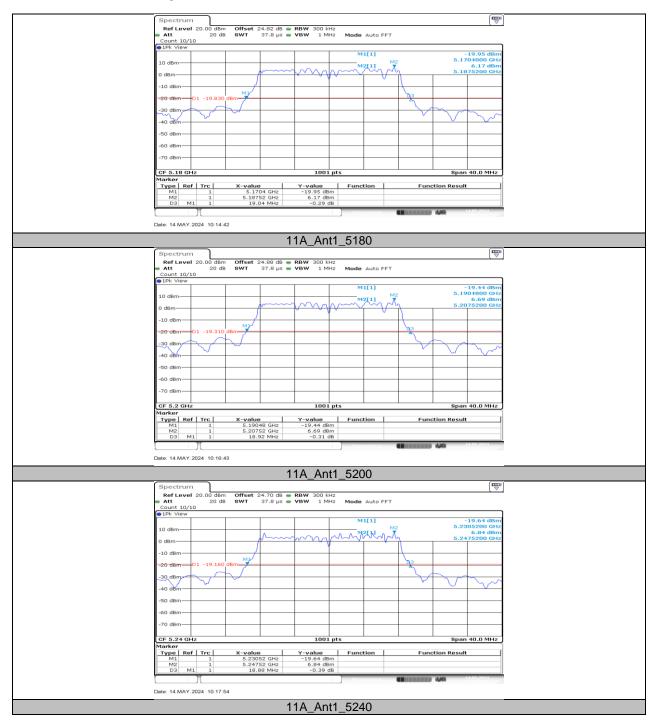
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC part 15.407(a)

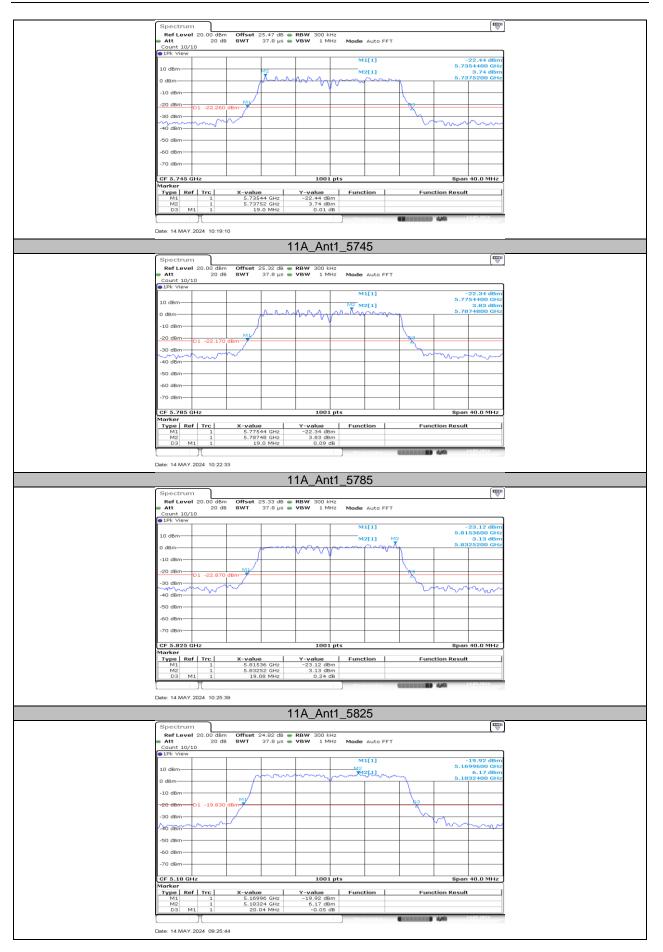
For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

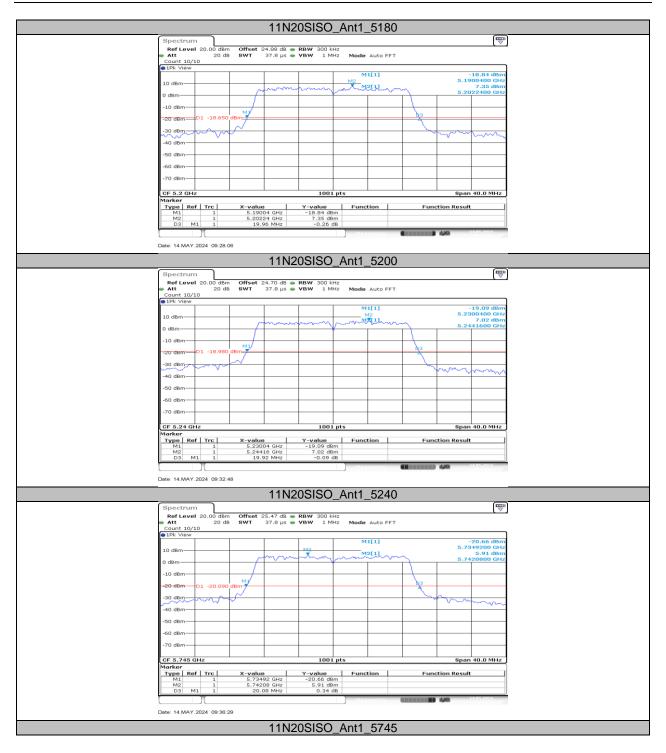
DESCRIPTION

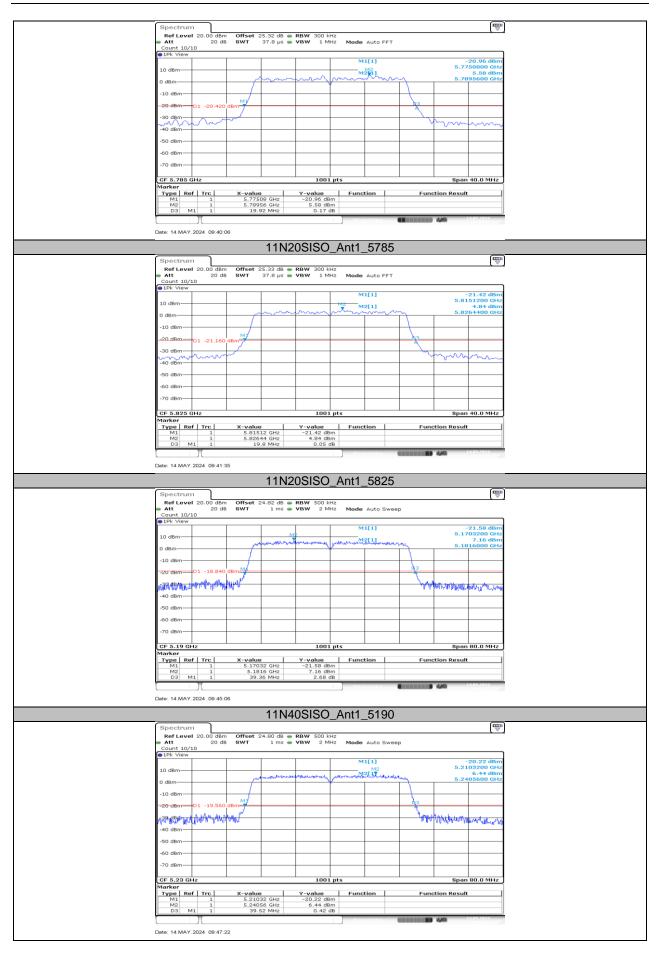
Pass

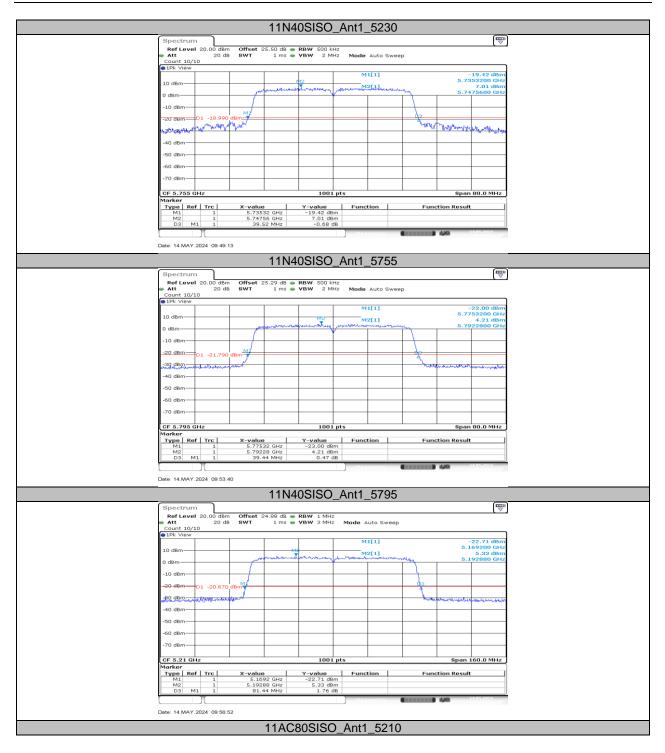

11. TEST DATA

11.1. APPENDIX A: EMISSION BANDWIDTH 11.1.1. Test Result

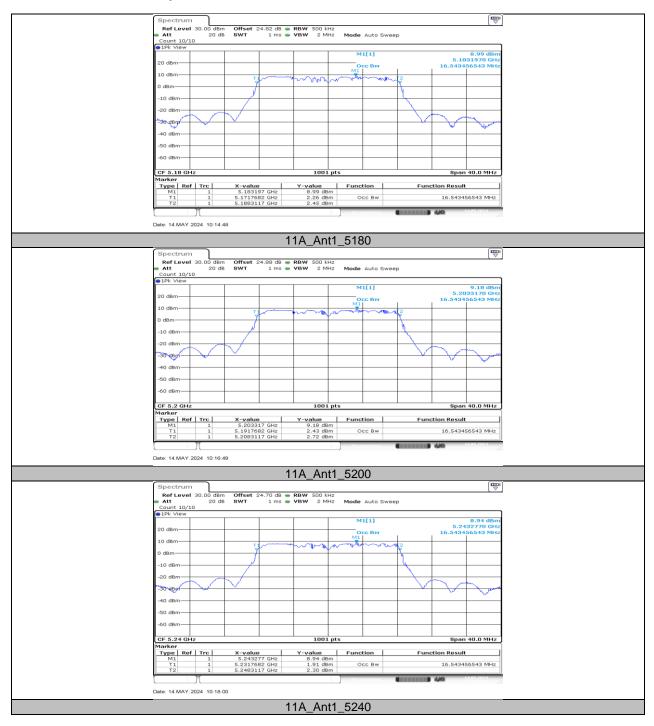

Test Mode	Antenna	Frequency[MHz]	26db EBW [MHz]	FL[MHz]	FH[MHz]
		5180	19.04	5170.40	5189.44
		5200	18.92	5190.48	5209.40
11A	A n+1	5240	18.88	5230.52	5249.40
IIA	Ant1	5745	19.00	5735.44	5754.44
		5785	19.00	5775.44	5794.44
		5825	19.08	5815.36	5834.44
	Ant1	5180	20.04	5169.96	5190.00
		5200	19.96	5190.04	5210.00
11N20SISO		5240	19.92	5230.04	5249.96
1111203130	Anti	5745	20.08	5734.92	5755.00
		5785	19.92	5775.08	5795.00
		5825	19.80	5815.12	5834.92
		5190	39.36	5170.32	5209.68
11N40SISO	Ant1	5230	39.52	5210.32	5249.84
111403130	AIIU	5755	39.52	5735.32	5774.84
		5795	39.44	5775.32	5814.76
11AC80SISO	Ant1	5210	81.44	5169.20	5250.64
1140005150	Anti	5775	80.80	5734.52	5815.32


11.1.2. Test Graphs



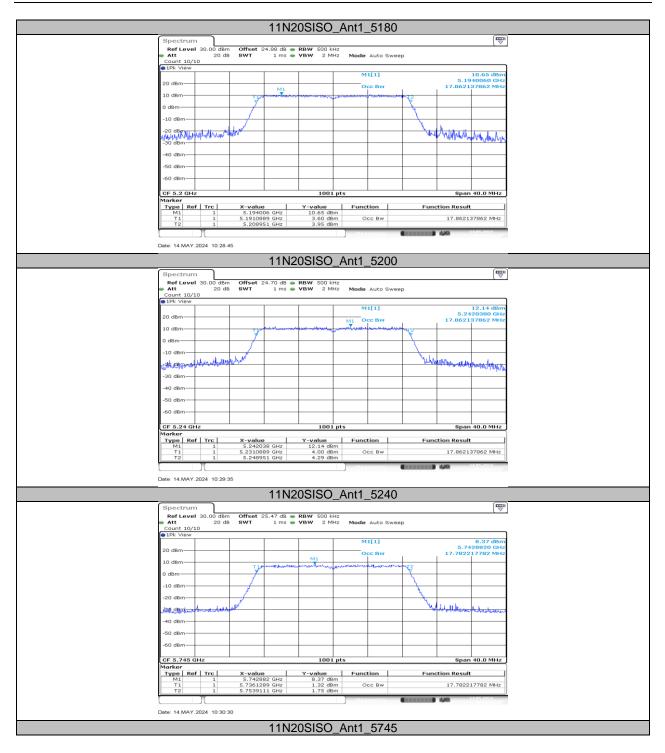


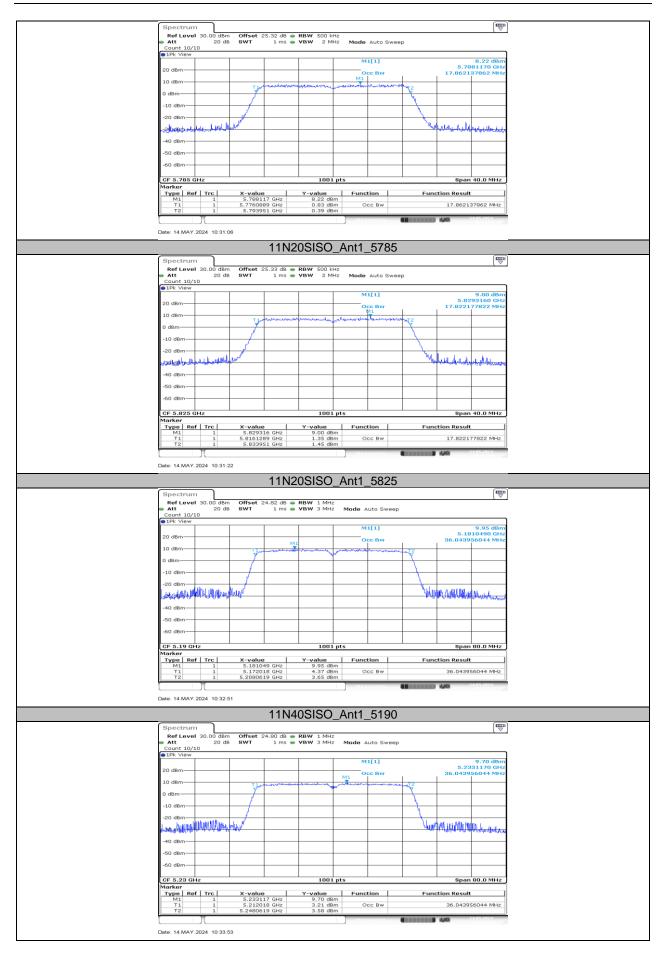
Spectrum	
Ref Level 20.00 dBm Offset 25.32 dB = R	
Att 20 dB SWT 1 ms V	BW 3 MHz Mode Auto Sweep
Count 10/10	
• 1Pk View	M1[1] -20.58 dBm
10 dBm	
0 dBm	5.799480 GHz
-10 dBm	
-20-dBm D1 -20.300 dBm	
~ Bardeore while the rolling of the	Where and the state of the stat
-40 dBm	
-+o ubiii	
-50 dBm	
-60 dBm	
-00 dbiii	
-70 dBm	
CF 5.775 GHz	1001 pts Span 160.0 MHz
Marker	
	Y-value Function Function Result
M2 1 5.79948 GHz	5.70 dBm
D3 M1 1 80.8 MHz	-0.27 dB
	No assering 11.05/2024
Date: 14.MAY.2024 10:10:57	
44400	
TIACO	0SISO_Ant1_5775

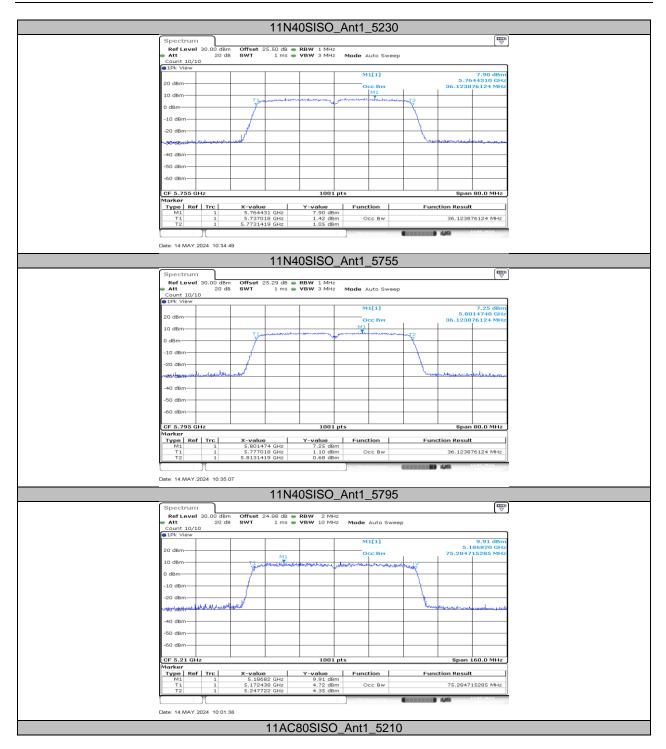


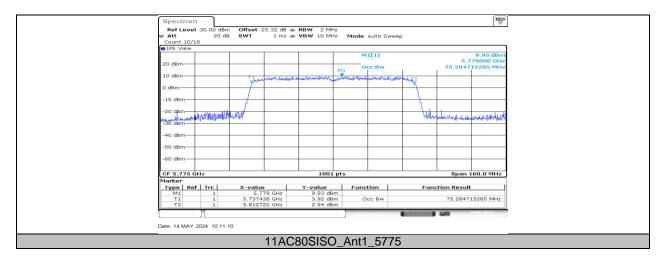
11.2. APPENDIX B: OCCUPIED CHANNEL BANDWIDTH 11.2.1. Test Result

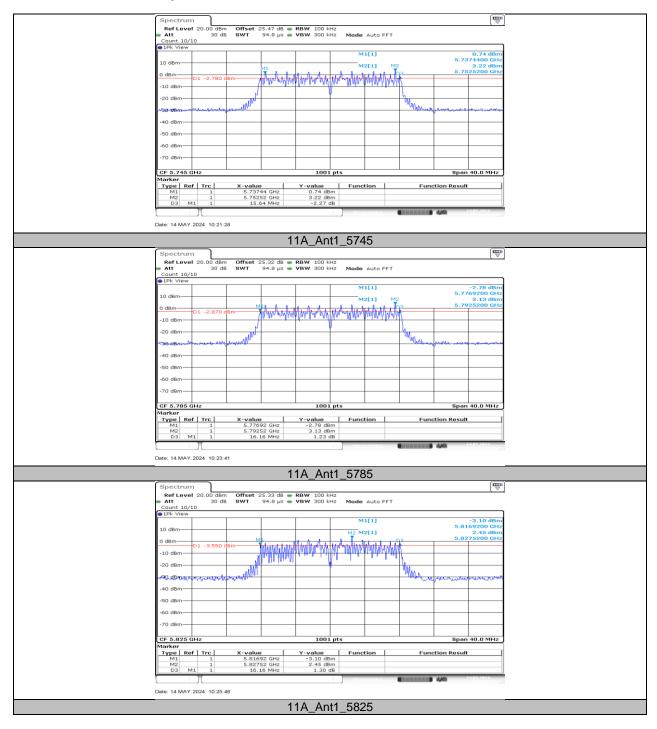

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]
		5180	16.543	5171.7682	5188.3117
		5200	16.543	5191.7682	5208.3117
11A	Ant1	5240	16.543	5231.7682	5248.3117
	Anti	5745	16.543	5736.7682	5753.3117
		5785	16.543	5776.7682	5793.3117
		5825	16.583	5816.7283	5833.3117
	Ant1	5180	17.822	5171.1289	5188.9510
		5200	17.862	5191.0889	5208.9510
11N20SISO		5240	17.862	5231.0889	5248.9510
1111203130		5745	17.782	5736.1289	5753.9111
		5785	17.862	5776.0889	5793.9510
		5825	17.822	5816.1289	5833.9510
	0.514	5190	36.044	5172.0180	5208.0619
11N40SISO		5230	36.044	5212.0180	5248.0619
1111405150	Ant1	5755	36.124	5737.0180	5773.1419
		5795	36.124	5777.0180	5813.1419
1140000100	A set 1	5210	75.285	5172.4376	5247.7223
11AC80SISO	Ant1	5775	75.285	5737.4376	5812.7223


11.2.2. Test Graphs

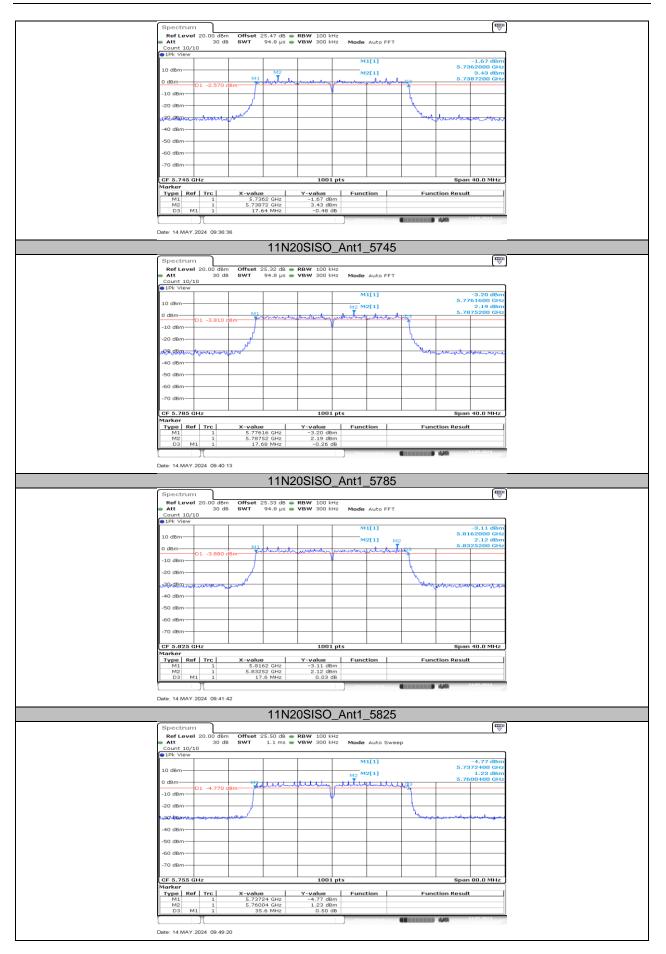


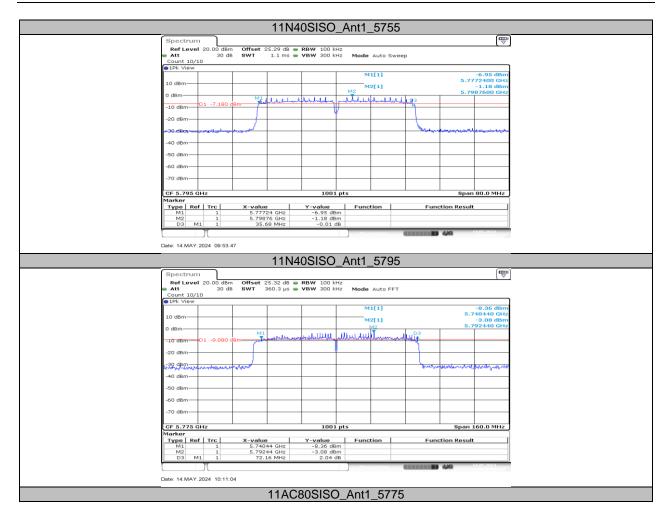






11.3. APPENDIX C: MIN EMISSION BANDWIDTH 11.3.1. Test Result


Test Mode	Antenna	Frequency[MHz]	6db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		5745	15.64	5737.44	5753.08	≥0.5	PASS
11A	Ant1	5785	16.16	5776.92	5793.08	≥0.5	PASS
		5825	16.16	5816.92	5833.08	≥0.5	PASS
	Ant1	5745	17.64	5736.20	5753.84	≥0.5	PASS
11N20SISO		5785	17.68	5776.16	5793.84	≥0.5	PASS
			5825	17.60	5816.20	5833.80	≥0.5
11N40SISO	Ant1	5755	35.60	5737.24	5772.84	≥0.5	PASS
		5795	35.68	5777.24	5812.92	≥0.5	PASS
11AC80SISO	Ant1	5775	72.16	5740.44	5812.60	≥0.5	PASS

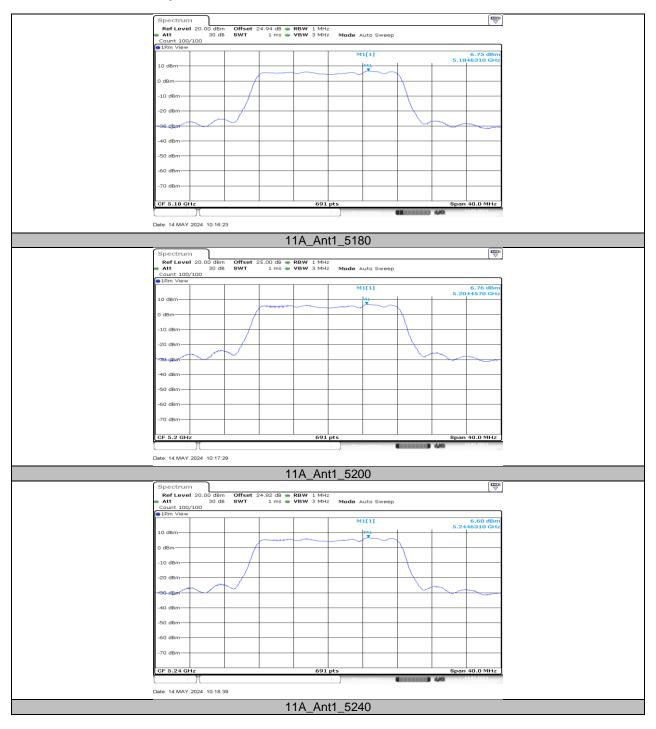

11.3.2. Test Graphs

11.4. APPENDIX D: MAXIMUM AVERAGE CONDUCTED OUTPUT POWER 11.4.1. Test Result

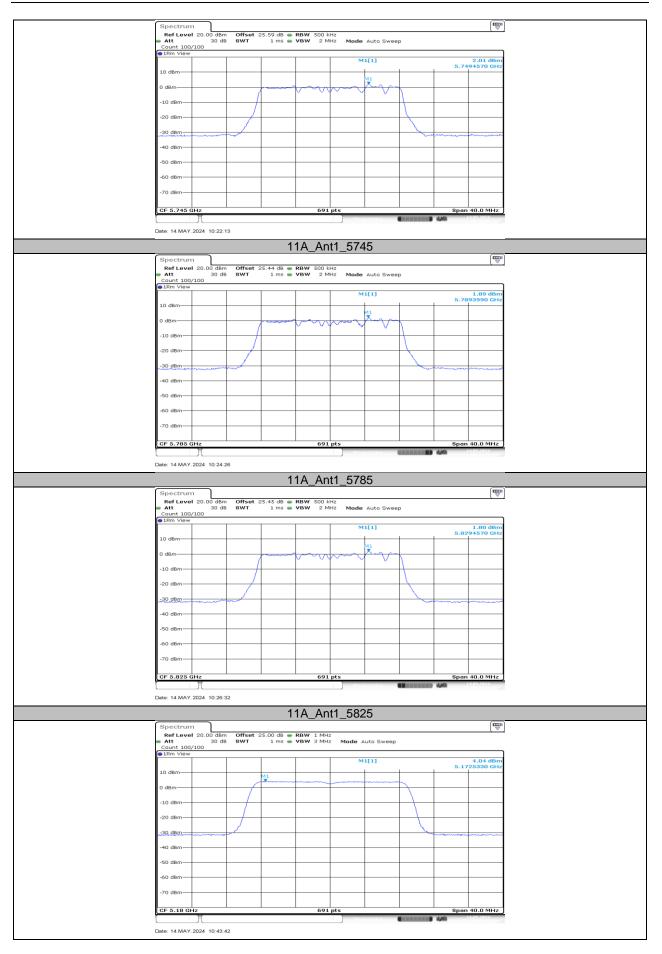
Test Mode	Antenna	Frequency[MHz]	Power [dBm]	Limit [dBm]	Verdict
		5180	17.39	≤23.98	PASS
		5200	17.40	≤23.98	PASS
11A	A == 11	5240	17.14	≤23.98	PASS
ПА	Ant1	5745	14.46	≤30.00	PASS
		5785	14.34	≤30.00	PASS
		5825	14.25	≤30.00	PASS
	Ant1	5180	15.89	≤23.98	PASS
		5200	17.64	≤23.98	PASS
11N20SISO		5240	17.34	≤23.98	PASS
111203130		5745	13.72	≤30.00	PASS
		5785	13.70	≤30.00	PASS
		5825	13.67	≤30.00	PASS
	Ant1	5190	15.25	≤23.98	PASS
11N40SISO		5230	15.02	≤23.98	PASS
1111405150		5755	13.41	≤30.00	PASS
		5795	13.20	≤30.00	PASS
11AC80SISO	A pt1	5210	13.35	≤23.98	PASS
1140003130	Ant1	5775	11.55	≤30.00	PASS

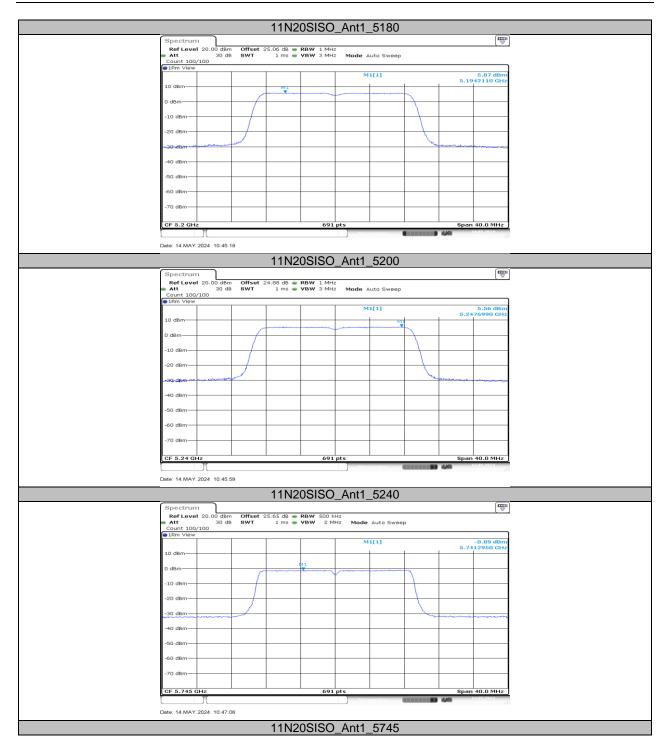
Note: The Duty Cycle Factor is compensated in the graph.

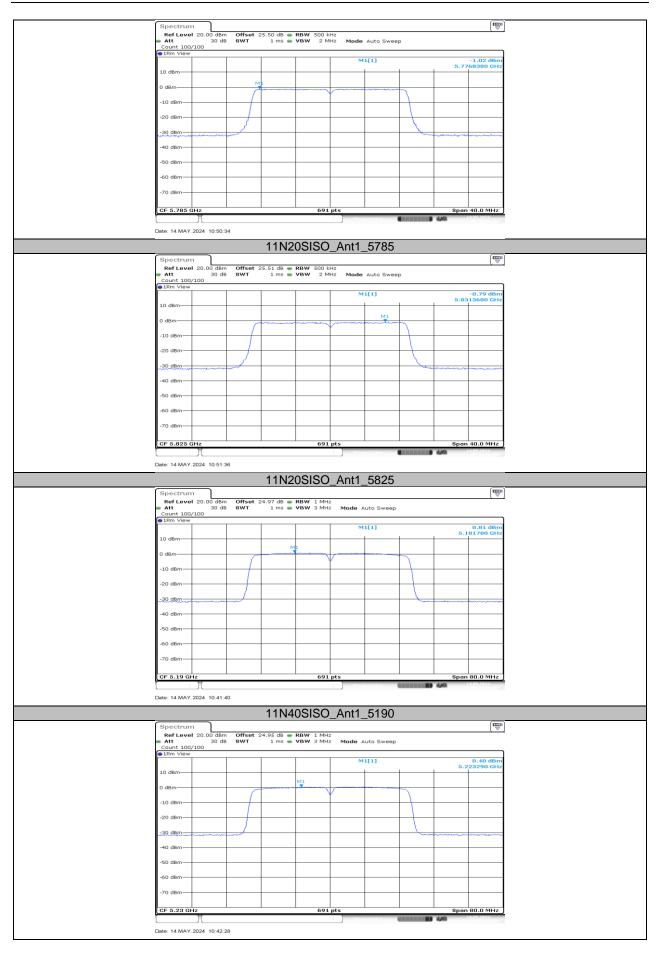
11.5. APPENDIX E: MAXIMUM POWER SPECTRAL DENSITY 11.5.1. Test Result

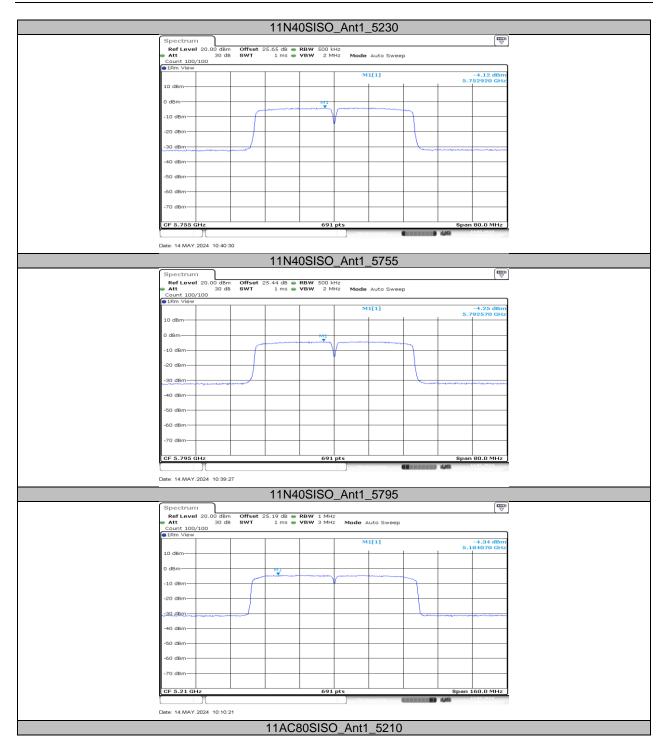

Test Mode	Antenna	Frequency[MHz]	Power [dBm/MHz]	Limit [dBm/MHz]	Verdict
		5180	6.75	≤11.00	PASS
		5200	6.76	≤11.00	PASS
110	A n+1	5240	6.60	≤11.00	PASS
11A	Ant1	5745	2.01	≤30.00	PASS
		5785	1.89	≤30.00	PASS
		5825	1.80	≤30.00	PASS
		5180	4.04	≤11.00	PASS
		5200	5.87	≤11.00	PASS
11N20SISO	Ant1	5240	5.56	≤11.00	PASS
111203130	Anti	5745	-0.89	≤30.00	PASS
		5785	-1.02	≤30.00	PASS
		5825	-0.79	≤30.00	PASS
		5190	0.81	≤11.00	PASS
11N40SISO	A n+1	5230	0.40	≤11.00	PASS
1111403130	Ant1	5755	-4.12	≤30.00	PASS
		5795	-4.25	≤30.00	PASS
11AC80SISO	Ant1 -	5210	-4.34	≤11.00	PASS
1140005150		5775	-9.04	≤30.00	PASS

Note: 1. The Result and Limit Unit is dBm/500 kHz in the band 5.725 ~ 5.85 GHz.


2. The Duty Cycle Factor and RBW Factor is compensated in the graph.


11.5.2. Test Graphs





11.6. APPENDIX F: FREQUENCY STABILITY 11.6.1. Test Result

	Frequency Error vs. Voltage										
	802.11a:5200MHz										
_		0 Minute		2 Minute		5 Minute		10 Minute			
Temp.	Volt.	Freq.Error (MHz)	Tolerance (ppm)	Freq.Error (MHz)	Tolerance (ppm)	Freq.Error (MHz)	Tolerance (ppm)	Freq.Error (MHz)	Tolerance (ppm)		
TN	VL	5200.0129	2.48	5199.9985	-0.30	5199.9841	-3.06	5199.9962	-0.73		
TN	VN	5200.0212	4.08	5200.0196	3.78	5200.0188	3.62	5199.9941	-1.13		
TN	VH	5200.0032	0.62	5199.9862	-2.66	5200.0214	4.11	5199.9759	-4.63		
				Frequency	Error vs. Temp	erature					
				802	.11a:5200MHz						
_		0 Min	ute	2 Minute		5 Min	ute	10 Minute			
Temp.	Volt.	Freq.Error (MHz)	Tolerance (ppm)	Freq.Error (MHz)	Tolerance (ppm)	Freq.Error (MHz)	Tolerance (ppm)	Freq.Error (MHz)	Tolerance (ppm)		
40	VN	5199.9781	-4.21	5200.0189	3.63	5199.9914	-1.66	5199.9894	-2.05		
30	VN	5199.9826	-3.35	5200.0197	3.78	5199.9918	-1.57	5200.0112	2.16		
20	VN	5200.0010	0.19	5199.9966	-0.65	5200.0077	1.48	5199.9782	-4.20		
10	VN	5200.0035	0.68	5199.9812	-3.62	5200.0099	1.90	5199.9916	-1.62		
0	VN	5199.9957	-0.83	5199.9918	-1.58	5199.9858	-2.74	5199.9904	-1.84		

Note:

1. All antennas, test modes and test channels have been tested, only the worst data record in the report.

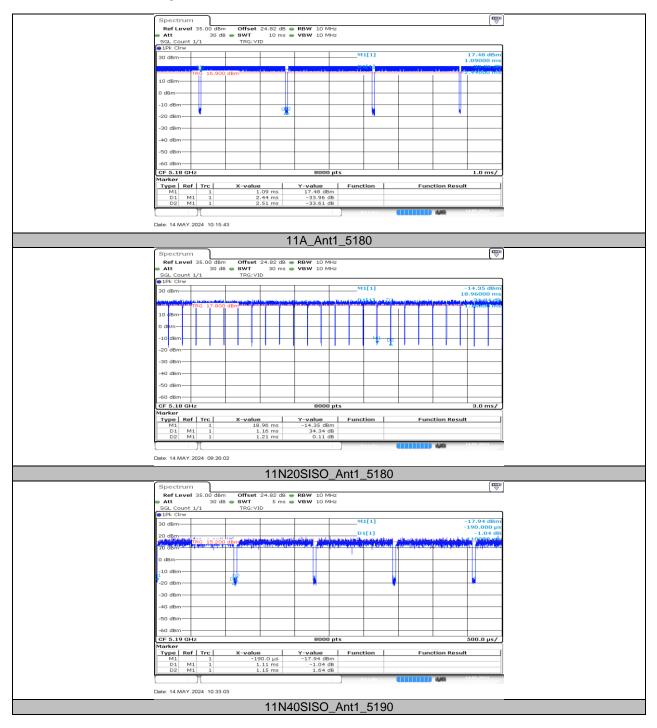
2. For the detail Test Conditions, please refer to section 7.5 TEST ENVIRONMENT.

11.7. APPENDIX G: DUTY CYCLE 11.7.1. Test Result

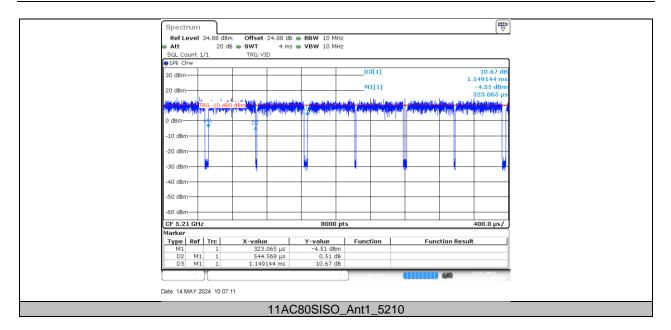
Test Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T Minimum VBW (kHz)	Final setting For VBW (kHz)
11A	2.44	2.51	0.9721	97.21	0.12	0.41	1
11N20SISO	1.16	1.21	0.9587	95.87	0.18	0.86	1
11N40SISO	1.11	1.15	0.9652	96.52	0.15	0.90	1
11AC80SISO	1.09	1.15	0.9478	94.78	0.23	0.92	1

Note:

Duty Cycle Correction Factor=10log (1/x).


Where: x is Duty Cycle (Linear)

Where: T is On Time


If that calculated VBW is not available on the analyzer then the next higher value should be used.

11.7.2. Test Graphs

END OF REPORT