

H.B. Compliance Solutions

Maximum Permissible Exposure Statement

For the

Raveon Technologies Corporation

Pro Max Transmitter II – RV-PMTII

June 16, 2016

Prepared for:

Raveon Technologies Corporation

2320 Cousteau Court,

Vista, CA 92081

Prepared By:

H.B. Compliance Solutions

5005 S. Ash Avenue, Suite # A-10

Tempe, Arizona 85282

Reviewed By:

A handwritten signature in black ink, appearing to read 'Hoosamuddin Bandukwala'.

Hoosamuddin Bandukwala

Cert # ATL-0062-E

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$

Where,

S = power density (mW/cm²)

P = output power at the antenna terminal (mW)

G = gain of transmit antenna (numeric)

R = distance from transmitting antenna (cm)

Maximum peak output power at antenna input terminal = 29.18 (dBm)

Maximum peak output power at antenna input terminal = 827.94 (mW)

Antenna gain (typical) = 3 (dBi)

Maximum antenna gain = 2.0 (numeric)

Prediction distance = 26 (cm)

Prediction frequency = 154.6 (MHz)

MPE limit for uncontrolled exposure at prediction frequency = 0.2 (mW/cm²)

Power density at prediction frequency = 0.194711 (mW/cm²)

To solve for the minimum mounting distance required;

$$R = \sqrt{PG/4\pi S}$$

$R = \sqrt{(827.949 \times 2.0 / 4\pi \times 0.194711)} = \underline{26 \text{ cm}}$ (Based on continuous transmission)

END OF TEST REPORT