naos H.B. Compliance Solutions

Maximum Permissible Exposure Statement

For the
Raveon Technologies Corporation
DART Data Modem M7UC

November 4, 2015
Prepared for:
Raveon Technologies Corporation
2320 Cousteau Court,
Vista, CA 92081

Prepared By:

H.B. Compliance Solutions

5005 S. Ash Avenue, Suite \# A-10
Tempe, Arizona 85282

Reviewed By:

Hoosamuddin Bandukwala

Cert \# ATL-0062-E

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01
$S=P G / 4 \pi R^{2}$
Where,
$\mathrm{S}=$ power density ($\mathrm{mW} / \mathrm{cm} 2$)
$\mathrm{P}=$ output power at the antenna terminal (mW)
$\mathrm{G}=$ gain of transmit antenna (numeric)
$R=$ distance from transmitting antenna (cm)
Maximum peak output power at antenna input terminal $=\underline{37.1(\mathrm{dBm})}$
Maximum peak output power at antenna input terminal $=\underline{5128(m W)}$
Antenna gain (typical) $=\underline{0}(\mathrm{dBi})$
Maximum antenna gain $=1.0$ (numeric)
Prediction distance $=38(\mathrm{~cm})$
Prediction frequency $=\underline{450(M H z)}$
MPE limit for uncontrolled exposure at prediction frequency $=\underline{0.300\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)}$
Power density at prediction frequency $\left.=\underline{0.282607(m W / c m}{ }^{\wedge} 2\right)$
To solve for the minimum mounting distance required;
$\mathbf{R}=\mathbf{V}(\mathbf{P G} / 4 \pi S)$
$R=V(5128 \times 1.0 / 4 \pi \times 0.282607)=\underline{38 \mathrm{~cm}}$ (Based on continuous transmission)

Maximum peak output power at antenna input terminal $=37.1(\mathrm{dBm})$
Maximum peak output power at antenna input terminal $=\underline{5128(m W)}$
Antenna gain (typical) $=6$ (dBi)
Maximum antenna gain $=3.98$ (numeric)
Prediction distance $=\underline{100(c m)}$
Prediction frequency $=450(\mathrm{MHz})$
MPE limit for uncontrolled exposure at prediction frequency $=0.300\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
Power density at prediction frequency $=0.162417\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
To solve for the minimum mounting distance required;
$\mathbf{R}=\mathbf{V} \mathbf{(P G / 4 \pi S})$
$R=v(5128 \times 3.98 / 4 \pi \times 0.162417)=\underline{100 \mathrm{~cm}}$ (Based on continuous transmission)

END OF TEST REPORT

