Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 Http://www.ehinattl.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvFZ | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|--------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.99 | 9.99 | 9.99 | 0.30 | 0.95 | ±12% | | 835 | 55.2 | 0.97 | 9.74 | 9.74 | 9.74 | 0.14 | 1.66 | ±12% | | 1750 | 53.4 | 1.49 | 8.39 | 8.39 | 8.39 | 0.21 | 1.16 | ±12% | | 1900 | 53.3 | 1.52 | 7.98 | 7.98 | 7.98 | 0.22 | 1.24 | ±12% | | 2300 | 52.9 | 1.81 | 7.97 | 7.97 | 7.97 | 0.55 | 0.80 | ±12% | | 2450 | 52.7 | 1.95 | 7.85 | 7.85 | 7.85 | 0.50 | 0.86 | ±12% | | 2600 | 52.5 | 2.16 | 7.63 | 7.63 | 7.63 | 0.44 | 0.91 | ±12% | | 5250 | 48.9 | 5.36 | 5.03 | 5.03 | 5.03 | 0.50 | 1.60 | ±13% | | 5600 | 48.5 | 5.77 | 4.34 | 4.34 | 4.34 | 0.54 | 1.66 | ±13% | | 5750 | 48.3 | 5.94 | 4.52 | 4.52 | 4.52 | 0.57 | 1.95 | ±13% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97012 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) Certificate No: Z17-97012 Page 7 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Certificate No: Z17-97012 Page 8 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 10 Input Signal[µV] 104 102 10° 10 10 10² 103 SAR[mW/cm3] not compensated - compensated Error(dB) -2 10" SAR[mW/cm not compensated -e- compensated Certificate No: Z17-97012 Page 9 of 11 Uncertainty of Linearity Assessment: ±0.9% (k=2) Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn ## **Conversion Factor Assessment** ### f=835 MHz, WGLS R9(H_convF) ## f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Certificate No: Z17-97012 Page 10 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 117.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z17-97012 Page 11 of 11 ## **ANNEX E: D835V2 Dipole Calibration Certificate** E-mail: cttl@chinattl.com http://www.chinattl.cn Client TA(Shanghai) Certificate No: Z17-97114 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d020 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 102083 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | 100595 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | 102083
100595
SN 3617
SN 1331
ID #
MY49071430 | 102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID # Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286) | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: August 31, 201 This calibration certificate shall not be reproduced except in full without written approval of the laborator Certificate No: Z17-97114 Page 1 of 8 SAR Test Report No: RXA1711-0362SAR01R2 In Collaboration with S P E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters; The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97114 Page 2 of 8 In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** | | Temperature
| Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | - | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.34 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.45 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.51 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.09 mW /g ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.6 ± 6 % | 0.98 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.46 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.75 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.63 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.47 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97114 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.3Ω- 2.54jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.9dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.8Ω- 4.57jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.8dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.495 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | THE STATE OF S | | |--|-------| | Manufactured by | SPEAG | | The state of s | | Certificate No: Z17-97114 Page 4 of 8 Date: 08.28.2017 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.887$ S/m; $\varepsilon_r = 41.22$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.73, 9.73, 9.73); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.74V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (measured) = 3.16 W/kg 0 dB = 3.16 W/kg = 5.00 dBW/kg Certificate No: Z17-97114 Page 5 of 8 ### Impedance Measurement Plot for Head TSL Certificate No: Z17-97114 Page 6 of 8 DASY5 Validation Report for Body TSL Date: 08.27.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.984$ S/m; $\varepsilon_r = 55.62$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017; - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW; DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.55 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.63 W/kg Maximum value of SAR (measured) = 3.29 W/kg 0 dB = 3.29 W/kg = 5.17 dBW/kg Certificate No: Z17-97114 Page 7 of 8 ### Impedance Measurement Plot for Body TSL Certificate No: Z17-97114 Page 8 of 8 ### ANNEX F: D1900V2 Dipole Calibration Certificate E-mail: cttl@chinattl.com http://www.chinattl.cn TA(Shanghai) Certificate No: Z17-97115 ## CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: Client August 26, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---|--| | 102083 | | Sep-17 | | 100595 | | Sep-17 | | SN 3617 | | Jan-18 | | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | 102083
100595
SN 3617
SN 1331
ID#
MY49071430 | 102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286) | Calibrated by: Name Function Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved
by: Qi Dianyuan SAR Project Leader Issued: August 30, 20 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z17-97115 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97115 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **Measurement Conditions** DASY system configuration | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | - | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.1 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.19 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 mW /g ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.6 ± 6 % | 1.53 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | _ | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.90 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 39.5 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.21 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97115 Page 3 of 8 ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.0Ω+ 6.59jΩ | |--------------------------------------|---------------| | Return Loss | - 23.4dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.7Ω+ 8.35jΩ | |--------------------------------------|---------------| | Return Loss | - 21.4dB | ### General Antenna Parameters and Design | ns | |----| | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SDEAG | |------------------|-------| | Walidiactored by | SFEAG | Certificate No: Z17-97115 Page 4 of 8 DASY5 Validation Report for Head TSL Date: 08.26.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.413$ S/m; $\epsilon r = 39.85$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.94 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 19.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.19 W/kgMaximum value of SAR (measured) = 15.9 W/kg 0 dB = 15.9 W/kg = 12.01 dBW/kg Certificate No: Z17-97115 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: Z17-97115 DASY5 Validation Report for Body TSL Date: 08.26.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ S/m; $\varepsilon_r = 53.55$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.19 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.9 W/kg; SAR(10 g) = 5.21 W/kg Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg Certificate No: Z17-97115 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: Z17-97115 Page 8 of 8 ## **ANNEX G: D2450V2 Dipole Calibration Certificate** E-mail: cttl@chinattl.com http://www.chinattl.cn > Certificate No: Z17-97116 ## CALIBRATION CERTIFICATE Object D2450V2 - SN: 786 TA(Shanghai) Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 29, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---
--| | 102083 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | 100595 | 22-Sep-16 (CTTL, No.J16X06809) | Sep-17 | | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | SN 1331 | 19-Jan-17(CTTL-SPEAG,No.Z17-97015) | Jan-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | 102083
100595
SN 3617
SN 1331
ID#
MY49071430 | 102083 22-Sep-16 (CTTL, No.J16X06809) 100595 22-Sep-16 (CTTL, No.J16X06809) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 1331 19-Jan-17(CTTL-SPEAG,No.Z17-97015) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286) | Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 1, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97116 Page 1 of 8 In Collaboration with S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97116 Page 2 of 8 ### In Collaboration with # S D E B G Add: No.51 Xueyuan Road, Ilaidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.7 ± 6 % | 1.82 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | - | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.2 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.16 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 mW /g ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.5 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | - | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.8 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.87 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.5 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97116 Page 3 of 8 ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.4Ω+ 4.29jΩ | |--------------------------------------|---------------| | Return Loss | - 25.5dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.0Ω+ 6.61jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.265 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z17-97116 Page 4 of 8 Date: 08.29.2017 Add: No.51 Xueyuan Road, Ilaidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: ctl@chinattl.com http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.822 \text{ S/m}$; $\epsilon r = 39.65$; $\rho = 1000 \text{ kg/m}3$ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 1/23/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.16 W/kg Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg Certificate No: Z17-97116 Page 5 of 8 ### Impedance Measurement Plot for Head TSL Certificate No: Z17-97116 Page 6 of 8 Date: 08.29.2017 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.943$ S/m; $\epsilon_r = 52.45$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.8, 7.8, 7.8); Calibrated: 1/23/2017; -
Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1331; Calibrated: 1/19/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) **Dipole Calibration**/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.28 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.0 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 21.5 W/kg 0 dB = 21.5 W/kg = 13.32 dBW/kg Certificate No: Z17-97116 Page 7 of 8 ### Impedance Measurement Plot for Body TSL Certificate No: Z17-97116 Page 8 of 8 ## **ANNEX H: D2600V2 Dipole Calibration Certificate (SN:1025)** Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 | Calibration procedure for dipole validation Calibration procedure for dipole validation Calibration date: December 08, 2014 This calibration certificate documents the traceability to national standards, which realize the The measurements and the uncertainties with confidence probability are given on the followin All calibrations have been conducted in the closed laboratory facility: environment temperature. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Prower meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Prower sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Prower sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02020) Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec SN: 3205 30-Dec-13 (No. ES3-3205_Dec SN: 601 18-Aug-14 (No. DAE4-601_Aug-Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E Name Function | kits above 700 MHz | |--|---| | Calibration procedure for dipole validation Calibration procedure for dipole validation Calibration date: December 08, 2014 This calibration certificate documents the traceability to national standards, which realize the The measurements and the uncertainties with confidence probability are given on the followin All calibrations have been conducted in the closed laboratory facility: environment temperature Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec SN: 3205 30-Dec-13 (No. ES3-3205_Dec SN: 601 18-Aug-14 (No. DAE4-601_Aug-14 DAE4- | kits above 700 MHz | | This calibration certificate documents the traceability to national standards, which realize the The measurements and the uncertainties with confidence probability are given on the following All calibrations have been conducted in the closed laboratory facility: environment temperature. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Power meter EPM-442A GB37480704 O7-Oct-14 (No. 217-02020) Power sensor HP 8481A US37292783 O7-Oct-14 (No. 217-02020) Power sensor HP 8481A MY41092317 O7-Oct-14 (No. 217-02021) Reference 20 dB Attenuator SN: 5058 (20k) O3-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 O3-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 O3-Dec-13 (No. ES3-3205_Dec Dec SN: 601 SN: 601 Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 Network Analyzer HP 8753E Name Function | | | The measurements and the uncertainties with confidence probability are given on the following the measurements and the uncertainties with confidence probability are given on the following the measurement and the uncertainties with confidence probability are given on the following the measurement and the following follo | | | Calibration Equipment used (M&TE critical for calibration) Primary Standards | physical units of measurements (SI). In g pages and are part of the certificate. | | Calibration Equipment used (M&TE critical for calibration) Primary Standards | e (22 ± 3)°C and humidity < 70%. | | Power meter EPM-442A GB37480704 07-Oct-14 (No. 217-02020) Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec SN: 601 18-Aug-14 (No. DAE4-601_Augsteen SS) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E Name Function | | | Power sensor HP 8481A US37292783 07-Oct-14 (No. 217-02020) Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec SN: 601 18-Aug-14 (No. DAE4-601_Aug-14 DAE | Scheduled Calibration | | Power sensor HP 8481A MY41092317 07-Oct-14 (No. 217-02021) Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Aug-14 217-01921) Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) | Oct-15 | | Secondary Standards | Oct-15 | | Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Au Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct | Oct-15 | | SN: 3205 30-Dec-13 (No. ES3-3205 Dec | Apr-15 | | DAE4 SN: 601 18-Aug-14 (No. DAE4-601_Augners) Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct Name | Apr-15 | | Secondary Standards ID # Check Date (in house) RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct Name Function | c13) Dec-14 | | RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct Name Function | g14) Aug-15 | | RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct Name Function | Scheduled Check | | Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct Name Function | | | | , | | | Signature | | | cian · I/III \ | | | Miller | | Approved by: Katja Pokovic Technical Manage | | | | M. Mobes | Certificate No: D2600V2-1025_Dec14 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland **Swiss Calibration Service** Accreditation No.: SCS 108
Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: tissue simulating liquid TSL ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1025_Dec14 Page 2 of 8