

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

TEST REPORT

Report No. GTI20191150F

FCC ID-----: SRQ-ZTEF322

Applicant-----: ZTE Corporation

Address...... ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan

District, Shenzhen, Guangdong, 518057, P.R. China

Manufacturer ZTE Corporation

Address...... ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan

District, Shenzhen, Guangdong, 518057, P.R. China

Jali Zhang Zone zhang Mutter chos

Product Name: WCDMA/GSM Feature Phone

Trade Mark······ ZTE

Model/Type reference····· ZTE F322

Listed Model(s) ····· N/A

Standard FCC CFR Title 47 Part 2, Part 22 Subpart H, Part 24 Subpart E

FCC CFR Title 47 Part 27 Subpart L

Date of receipt of test sample...: 2019-05-10

Date of testing...... 2019-05-10 to 2019-06-12

Date of issue...... 2019-06-12

Result..... PASS

Compiled by:

(Printed name+signature) Zaki Zhang

Supervised by:

(Printed name+signature) Eric Zhang

Approved by:

(Printed name+signature) Walter Chen

Testing Laboratory Name...... CTC Laboratories, Inc.

Address...... 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park,

Shenzhen, Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.

Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

		Table of Contents	raye
1.	SUN	MMARY	3
	1.1.	Test Standards	3
	1.2.	REPORT VERSION	
	1.3.	TEST DESCRIPTION	4
	1.4.	TEST FACILITY	5
	1.5.	Environmental conditions	6
2.	GEN	NERAL INFORMATION	7
	2.1.	CLIENT INFORMATION	7
	2.2.	GENERAL DESCRIPTION OF EUT	
	2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	g
	2.4.	MEASUREMENT INSTRUMENTS LIST	g
3.	TES	ST ITEM AND RESULTS	11
	3.1.	CONDUCTED OUTPUT POWER	11
	3.2.	Peak-to-Average Ratio	14
	3.3.	Occupy Bandwidth	28
	3.4.	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
	3.5.	BAND EDGE COMPLIANCE	
	3.6.	RADIATED POWER MEASUREMENT	
	3.7.	RADIATED SPURIOUS EMISSION	
	3.8.	FREQUENCY STABILITY	54
4.	EU1	T TEST PHOTOS	58
5.	PHO	OTOGRAPHS OF FUT CONSTRUCTIONAL	59

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Page 3 of 59 Report No.: GTI20191150F

1.1. Test Standards

<u>FCC Rules Part 2:</u> FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Rules Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Rules Part 24: PUBLIC MOBILE SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

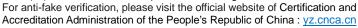
TIA/EIA 603 E March 2016: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version

Revised No.	Date of issue	Description
01	2019-06-12	Original


CTC Laboratories, Inc.

1.3. Test Description

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c) Part 27.50	Pass	Roy Luo
Peak-to-Average Ratio	Part 24.232 Part 27.50	Pass	Roy Luo
99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b) Part 27.53	Pass	Roy Luo
Band Edge	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Roy Luo
Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Roy Luo
Frequency stability vs temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235 Part 27.54	Pass	Roy Luo
Frequency stability vs voltage	Part 2.1055(d)(1)(2) Part 22.355 Part 24.235 Part 27.54	Pass	Roy Luo
ERP and EIRP	Part 22.913(a) Part 24.232(b) Part 27.50	Pass	Roy Luo
Radiated Spurious Emissions	Part 2.1053 Part 22.917 Part 24.238 Part 27.53	Pass	Roy Luo

Note: The measurement uncertainty is not included in the test result.

Page 5 of 59

Report No.: GTI20191150F

1.4. Test Facility

1.3.1 Address of the test laboratory

CTC Laboratories. Inc.

Add: 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

1.3.2 Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

ISED Registration No.: CN0029

The 3m alternate test site of CTC Laboratories, Inc.EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0029 on Dec, 2018.

FCC-Registration No.: CN1208

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration CN1208, Sep 07, 2017.

Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements and is documented in the CTC Laboratories, Inc quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTC Laboratories, Inc. is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-20 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

1.5. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 7 of 59 Report No.: GTI20191150F

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	ZTE Corporation
Address:	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R. China
Manufacturer:	ZTE Corporation
Address:	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R. China
Factory:	ZTE Corporation
Address:	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R. China

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

2.2. General Description of EUT

Product Name:	WCDMA/GSM Feature Phone
Model/Type reference:	ZTE F322
Marketing Name:	ZTE
Listed Model(s):	/
Power supply:	3.7Vdc 800mAh from Li-ion Battery
Battery 1:	Model: Li3708T42P3h533456 3.7Vdc 800mAh
Battery 2:	Model: 5C0802 3.7Vdc 800mAh
Adapter 1:	Model:50.069MX03 Input:100-240Vac 50/60Hz 0.2A Output:5Vdc/0.5A
Adapter 2:	Model:TPA-97050050U01 Input:100-240Vac 50/60Hz 0.15A Output:5Vdc/0.5A
Hardware version:	HS520_MB_V2.0
Software version:	ZTE_F322V1.0_20190603
GSM	
Operation Band:	GSM850: UL: 824MHz~848MHz, DL: 869MHz~894MHz PCS1900: UL: 1850MHz~1910, DL: 1930MHz~1990MHz
Supported Type:	GSM/GPRS
Modulation Type:	GMSK for GSM/GPRS
Antenna Type:	PIFA Antenna
Antenna Gain:	GSM 850: -0.81dBi PCS 1900: -0.81dBi
WCDMA	
Operation Band:	Band II: UL: 1852.4MHz~1907.6MHz, DL: 1932.6MHz~1987.4MHz Band V: UL: 826.4MHz~846.6MHz, DL: 871.6MHz~1891.4MHz
Modulation Type:	QPSK for WCDMA
Antenna Type:	Internal Antenna
Antenna Gain:	WCDMA II: -0.26dBi WCDMA V: -0.26dBi

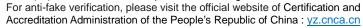
Remark: The Test EUT support two SIM card(SIM1,SIM2),so all the tests are performed at each SIM card (SIM1,SIM2) mode, the datum recorded is the worst case for all the mode at SIM1 Card mode.

Page 9 of 59

Report No.: GTI20191150F

2.3. Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CUM200 used to control the EUT staying in continuous transmitting and receiving mode for testing.

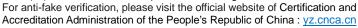

Test Frequency:

GSN	<i>I</i> 850	PCS 1900		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
128	824.20	512	1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

WCDMA Band II		WCI	DMA Band IV	WCDMA Band V	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
9262	1852.40	1312	1712.40	4132	826.40
9400	1880.00	1413	1732.60	4183	836.60
9538	1907.60	1513	1752.60	4233	846.60

2.4. Measurement Instruments List

Output Power (Radiated) & Radiated Spurious Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100967	Dec. 28, 2019	
2	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 28, 2019	
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28, 2019	
4	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4181	Dec. 28, 2019	
5	Spectrum Analyzer	HP	8563E	02052	Dec. 28, 2019	
6	Horn Antenna	Schwarzbeck	BBHA 9120D	648	Dec. 28, 2019	
7	Horn Antenna	Schwarzbeck	BBHA 9120D	649	Dec. 28, 2019	
8	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 28, 2019	
9	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25842	Dec. 28, 2019	
10	Pre-Amplifier	HP	8447D	1937A03050	Dec. 28, 2019	
11	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 28, 2019	
12	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019	
13	Signal Generator	Agilent	N5182A	1019356	Dec. 28, 2019	
14	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 28, 2019	
15	Antenna Mast	UC	UC3000	N/A	N/A	
16	Antenna mast	MATURO	TAM-4.0-P	N/A	N/A	
17	Turn Table	UC	UC3000	N/A	N/A	
18	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28, 2019	
19	Cable Above 1GHz	Hubersuhner	SUCOFLEX102	DA1580	Dec. 28, 2019	



Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge **Compliance & Conducted Spurious Emission** Manufacturer Item Test Equipment Model No. Serial No. Calibrated until UNIVERSAL Rohde & Schwarz **CMU200** 114694 Dec. 28, 2019 1 **RADIO** COMMUNICATION 2 **FSU** Dec. 28, 2019 Spectrum Analyzer Rohde & Schwarz 100105 3 Spectrum Analyzer Rohde & Schwarz FUV40-N 101331 Dec. 28, 2019 4 Mini-Circuit ZAPD-4 400059 Dec. 28, 2019 Splitter RF Connection 5 **HUBER+SUHNER** RE-7-FL N/A Dec. 28, 2019 Cable RF Connection Chengdu 6 Dec. 28, 2019 Cable E-Microwave Chengdu EMCAXX-10 7 Attenuator Dec. 28, 2019 E-Microwave

Frequency Stability							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until		
	UNIVERSAL	Dalada 0 Oalaaa	OMUIOOO	44.400.4	D = - 00 0040		
1	RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 28, 2019		
2	Spectrum Analyzer	Rohde & Schwarz	FSU	100105	Dec. 28, 2019		
3	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 28, 2019		
4	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019		
5	Climate Chamber	ESPEC	EL-10KA	05107008	Dec. 28, 2019		

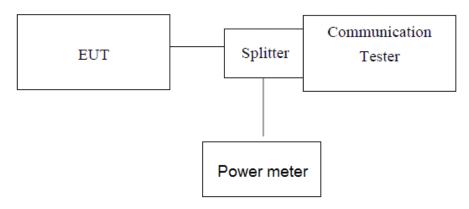
RNZ-3

Note: 1. The Cal. Interval was one year.

^{2.} The cable loss has calculated in test result which connection between each test instruments.

Page 11 of 59

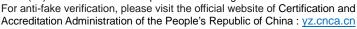
Report No.: GTI20191150F


3. TEST ITEM AND RESULTS

3.1. Conducted Output Power

LIMIT:

GSM850/WCDMA Band V: 7W PCS1900/WCDMA Band II/WCDMA Band IV: 2W


TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum PK burst power and maximum Avg. burst power.

TEST RESULTS

			Conducted Power (dBm	n)		
GSN	1850	CH128	CH190	CH251		
		824.20MHz	836.60MHz	848.80MHz		
G	GSM		33.00	34.08		
	1TXslot	31.67	33.37	34.28		
GPRS	2TXslots	30.66	33.75	33.63		
(GMSK)	3TXslots	28.21	30.05	31.17		
	4TXslots	26.88	28.72	29.89		

GSM1900		Conducted Power (dBm)		
		CH512	CH661	CH810
		1850.2MHz	1880.0MHz	1909.8MHz
GSM		28.68	28.67	29.95
	1TXslot	28.19	28.15	29.31
GPRS	2TXslots	27.56	29.56	29.04
(GMSK)	3TXslots	25.11	25.25	26.54
	4TXslots	23.56	23.75	25.04

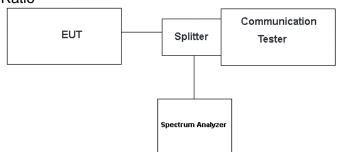
	Conducted Power (dBm)		
WCDMA Band II	CH9262	CH9400	CH9538
	1852.40	1880.00	1907.60
RMC 12.2K	21.96	23.06	22.08

	Conducted Power (dBm)		
WCDMA Band V	CH4132	CH4183	CH4233
	826.40	836.60	846.60
RMC 12.2K	21.59	21.60	21.37

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Page 14 of 59

Report No.: GTI20191150F


3.2. Peak-to-Average Ratio

LIMIT:

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13dB.

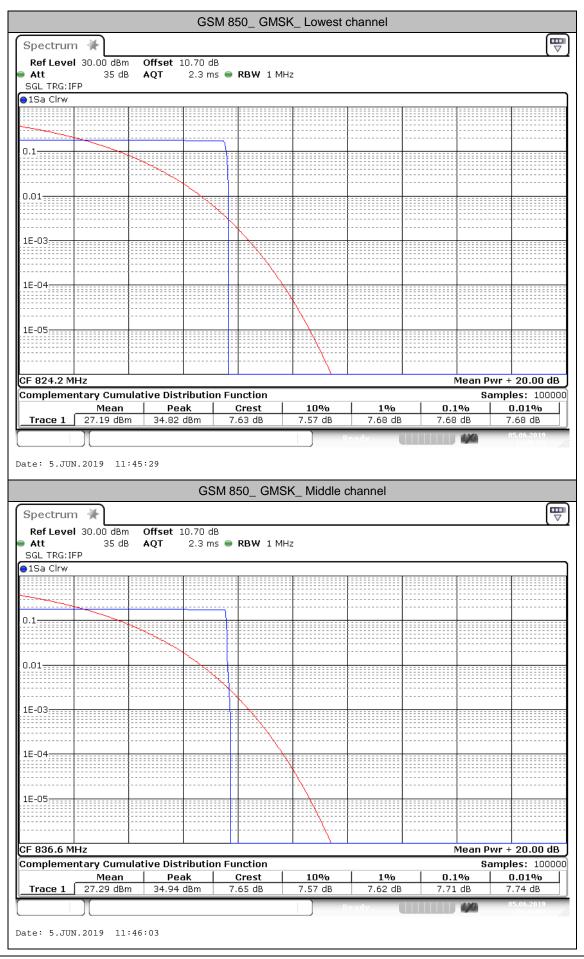
TEST CONFIGURATION

For Peak-to-Average Ratio

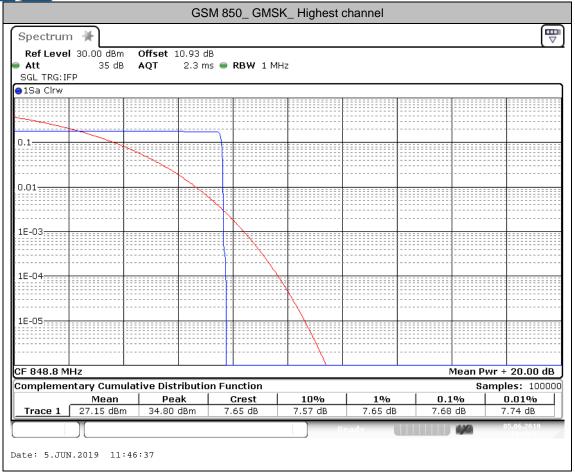
TEST PROCEDURE

- For Peak-to-Average Ratio
- 1. The testing follows FCC KDB 971168 v03r01 Section 5.7.1.
- 2. The EUT was connected to spectrum and communication tester via a splitter
- 3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 6. Record the deviation as Peak to Average Ratio.

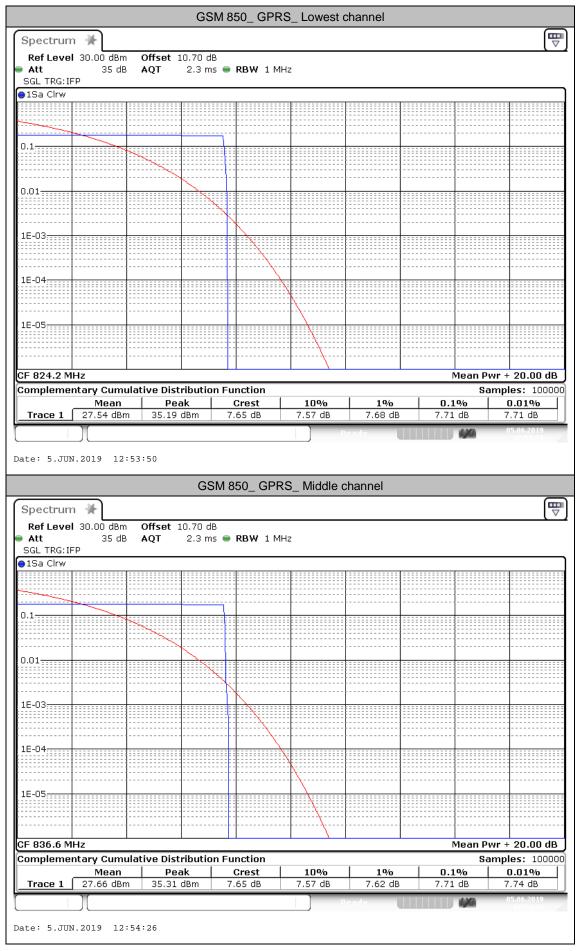
TEST RESULTS

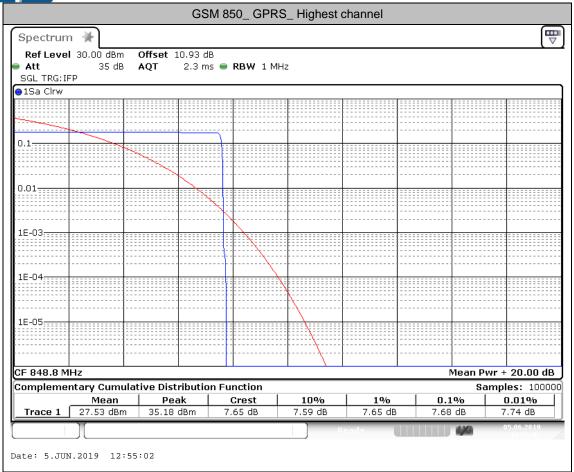

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

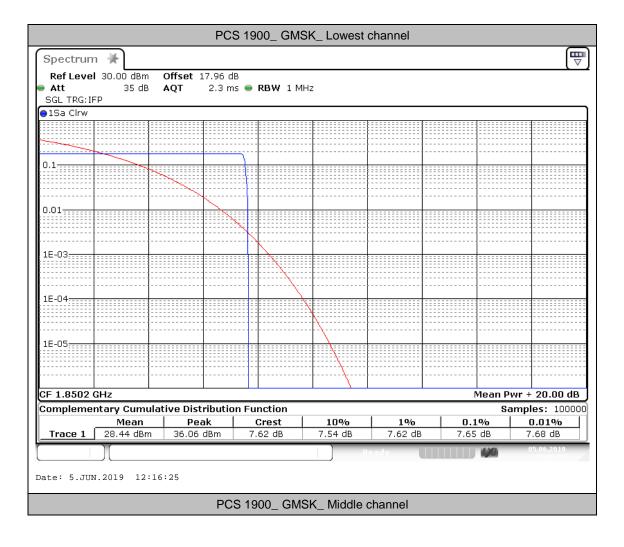


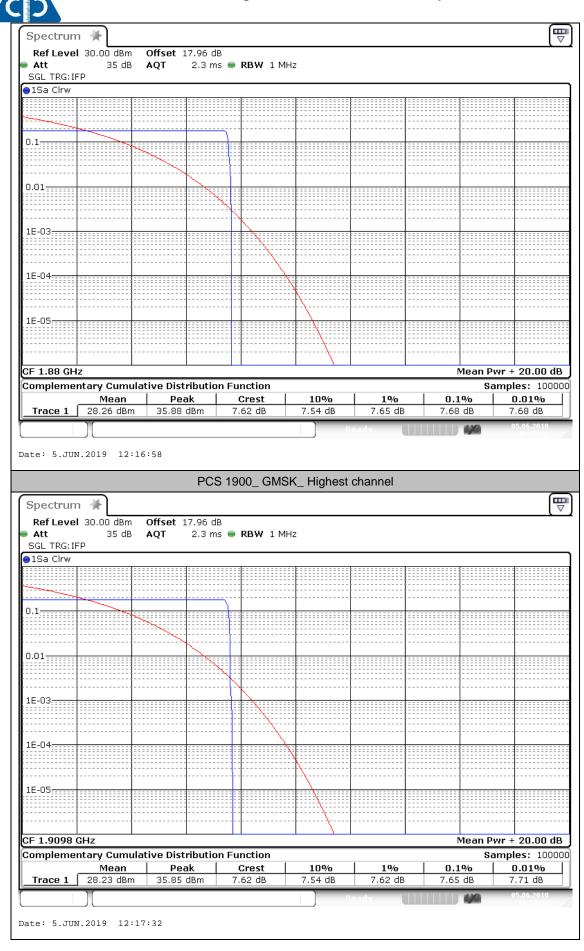
EUT Mode	Channel	Frequency (MHz)	Peak-to-Average Ratio(dB)	Limit (dB)	Result
GSM 850 GMSK	128	824.20	7.68	13	
	190	836.60	7.71	13	
	251	848.80	7.68	13	
GSM 850 GPRS	128	824.20	7.71	13	
	190	836.60	7.71	13	
OI IXO	251	848.80	7.68	13	PASS
	512	1850.20	7.65	13	PASS
PCS 1900 GMSK	661	1880.00	7.68	13	
	810	1909.80	7.65	13	
500 4000	512	1850.20	7.68	13	
PCS 1900 GPRS	661	1880.00	7.68	13	
	810	1909.80	7.65	13	
WCDMA Band II WCDMA	9262	1852.40	3.10	13	
	9400	1880.00	3.10	13	
	9538	1907.60	3.13	13	DACC
WCDMA Band	4132	826.40	3.22	13	PASS
V WCDMA	4183	836.60	2.64	13	
	4233	846.60	3.10	13	

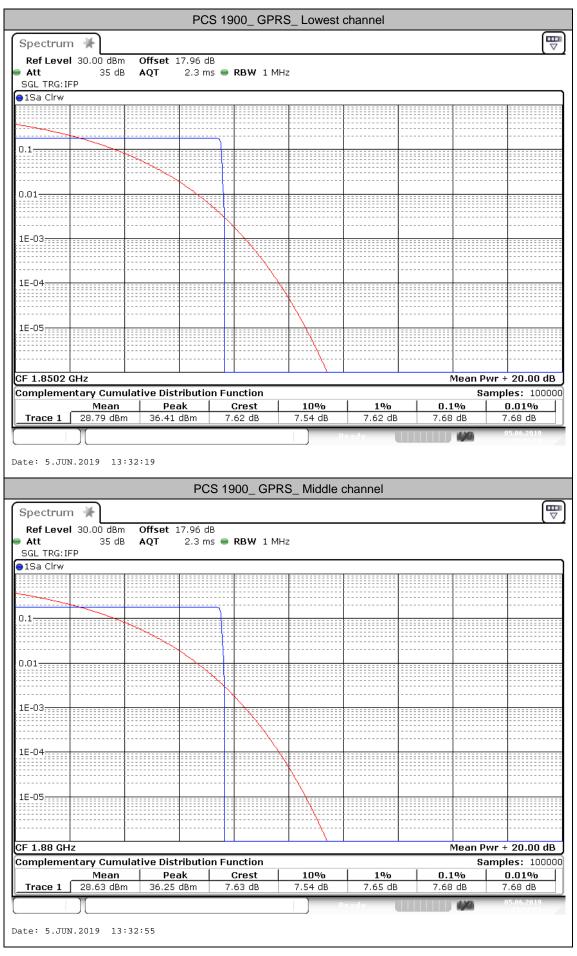


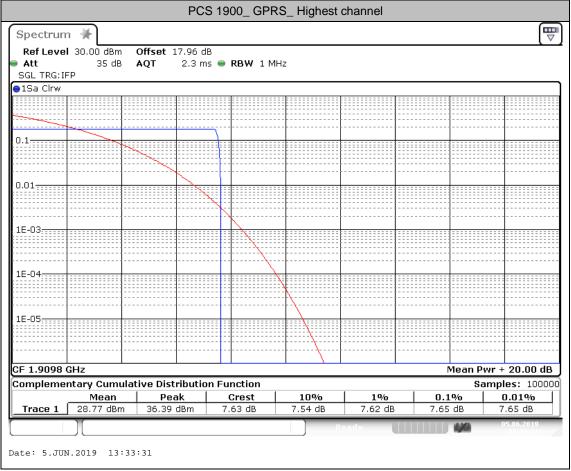


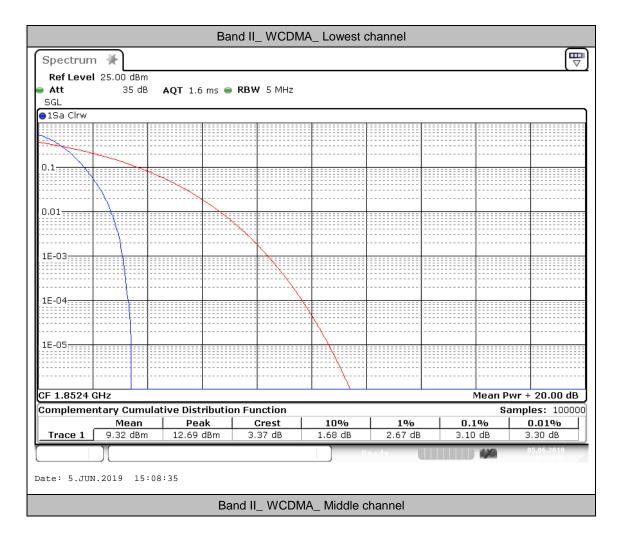
Accreditation Administration of the People's Republic of China: yz.cnca.cn

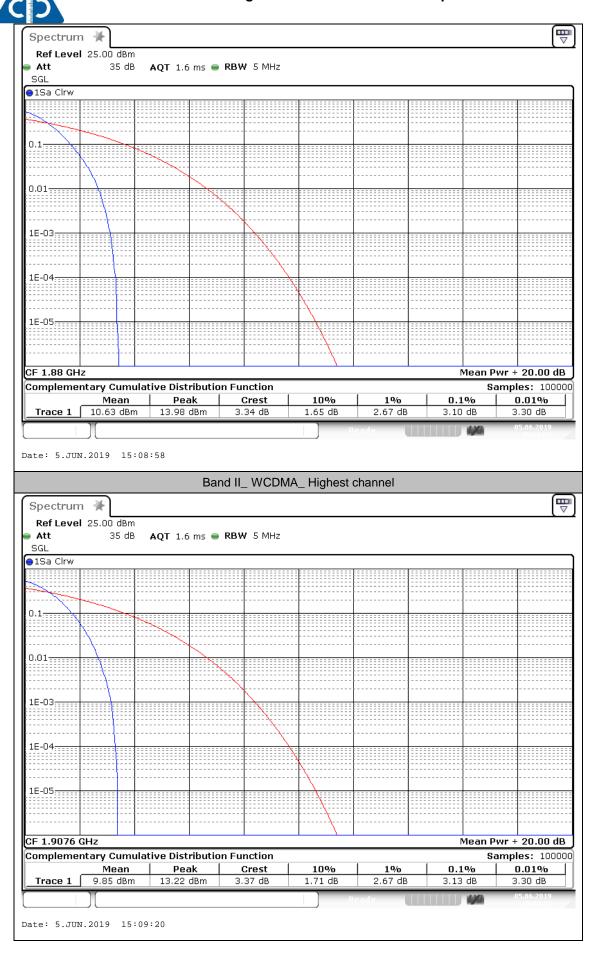


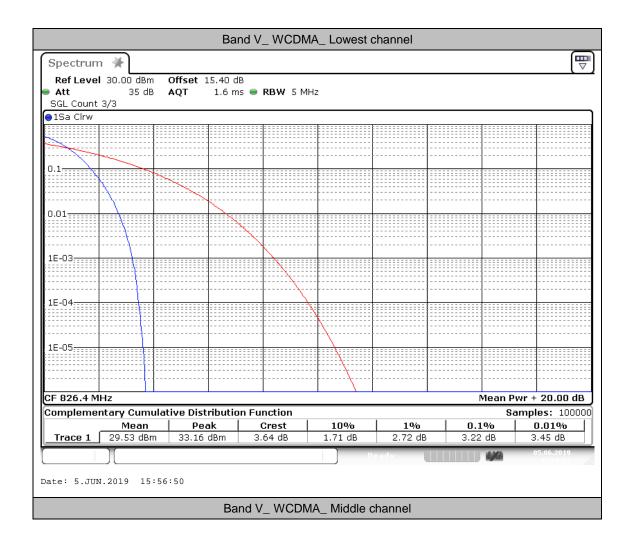


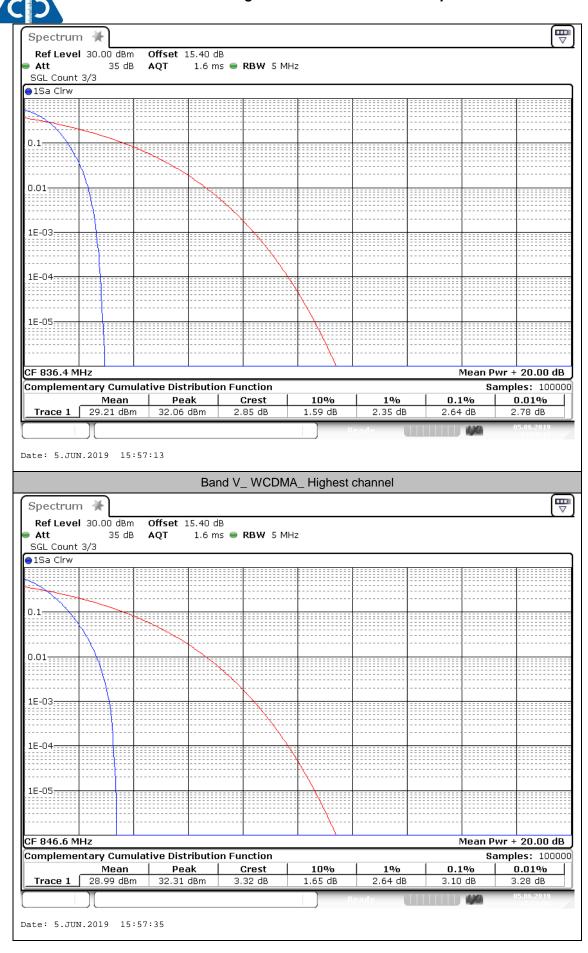




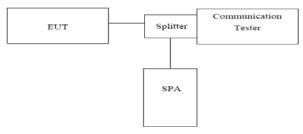








Accreditation Administration of the People's Republic of China: yz.cnca.cn

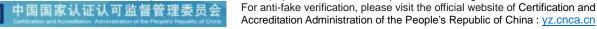


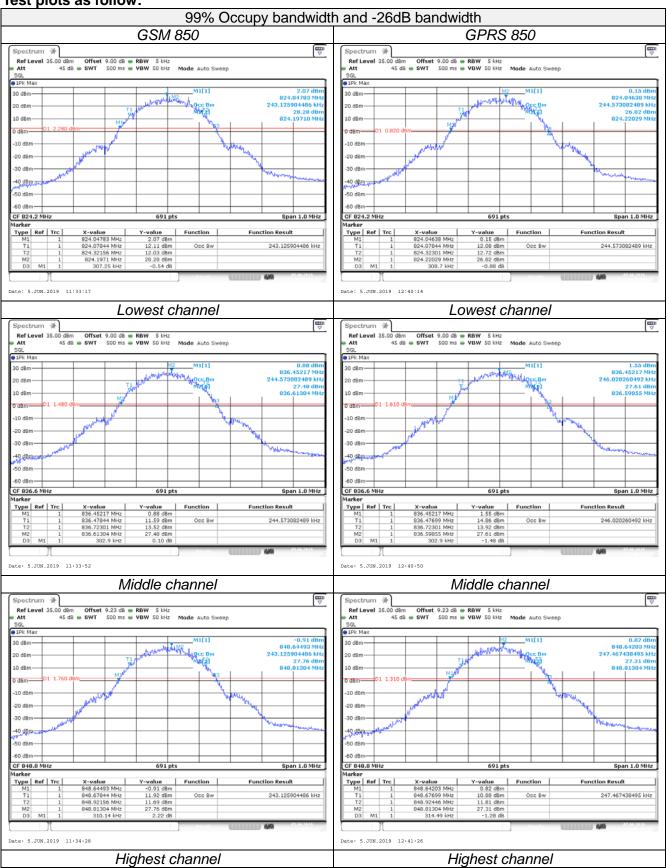
3.3. Occupy Bandwidth

TEST CONFIGURATION

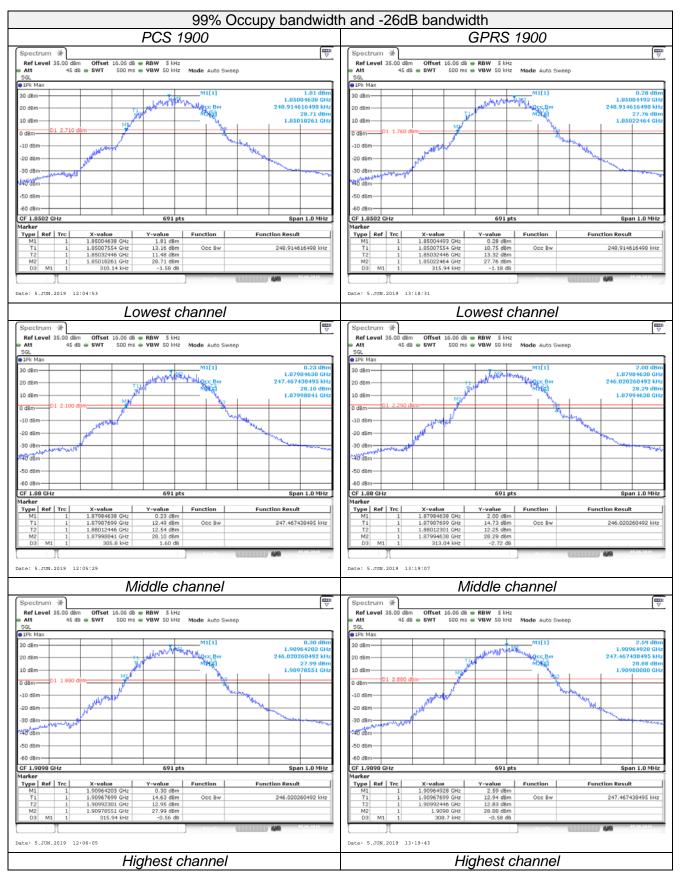
Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

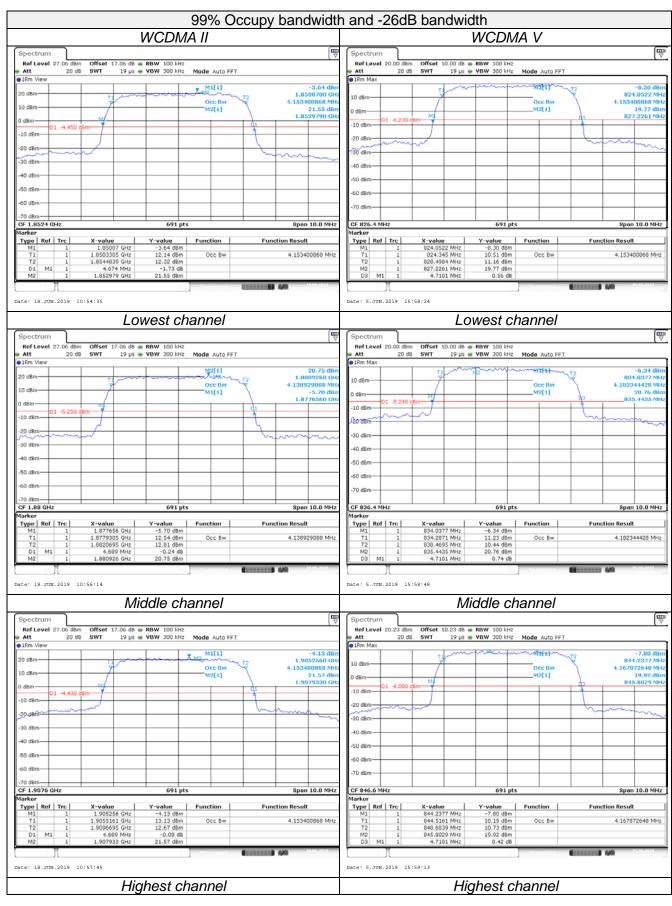

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW≥3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.


TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
GSM 850 (GMSK)	128	824.20	243.13	307.25
	190	836.60	244.57	302.90
	251	848.80	243.13	310.14
GPRS850 (8PSK,1Slot)	128	824.20	244.57	308.70
	190	836.60	246.02	302.90
(01 011, 10101)	251	848.80	247.47	314.49
2001000	512	1850.20	248.91	310.14
PCS1900 (GMSK)	661	1880.00	247.47	305.80
(Giviort)	810	1909.80	246.02	315.94
0.000	512	1850.20	248.91	315.94
GPRS1900 (8PSK,1Slot)	661	1880.00	246.02	313.04
(01 313, 13101)	810	1909.80	247.47	308.70
WCDMA Dond II	9262	1852.40	4153.4	4674
WCDMA Band II (QPSK)	9400	1880.00	4138.9	4689
	9538	1907.60	4153.4	4689
WODAA D	4132	826.40	4153.4	4710
WCDMA Band V (QPSK)	4183	836.60	4182.3	4710
	4233	846.60	4167.9	4710

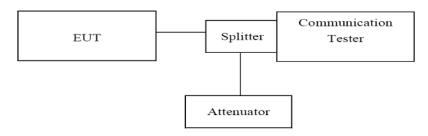

Note: GSM&GPRS use the same modulation technical (GMSK), and with the same channels, so the 99% OBW and the -26dB of GPRS not performed.

Test plots as follow:



Page 33 of 59

Report No.: GTI20191150F


3.4. Out of band emission at antenna terminals

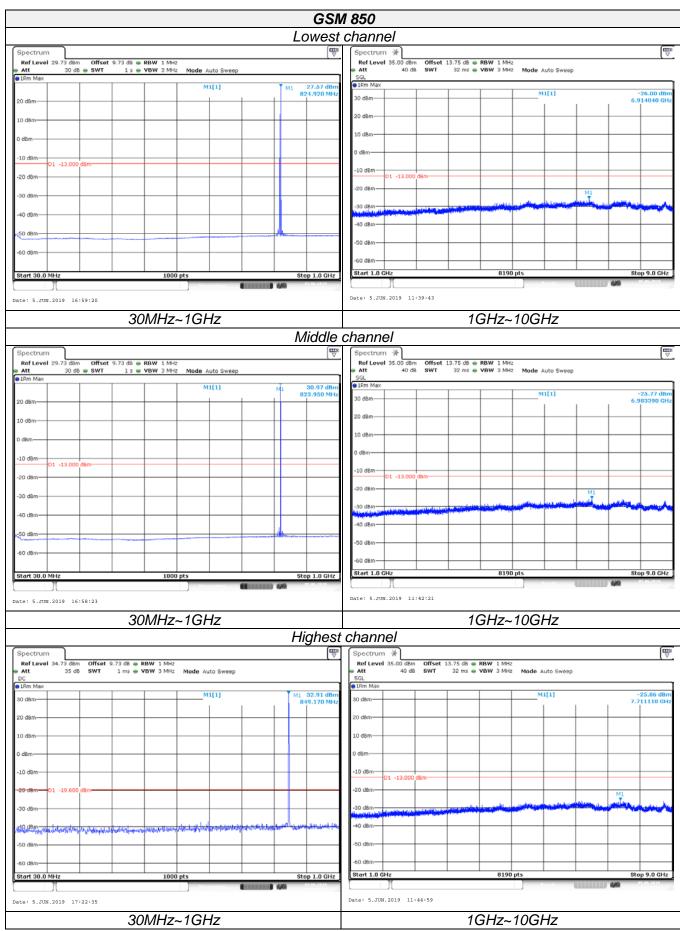
LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

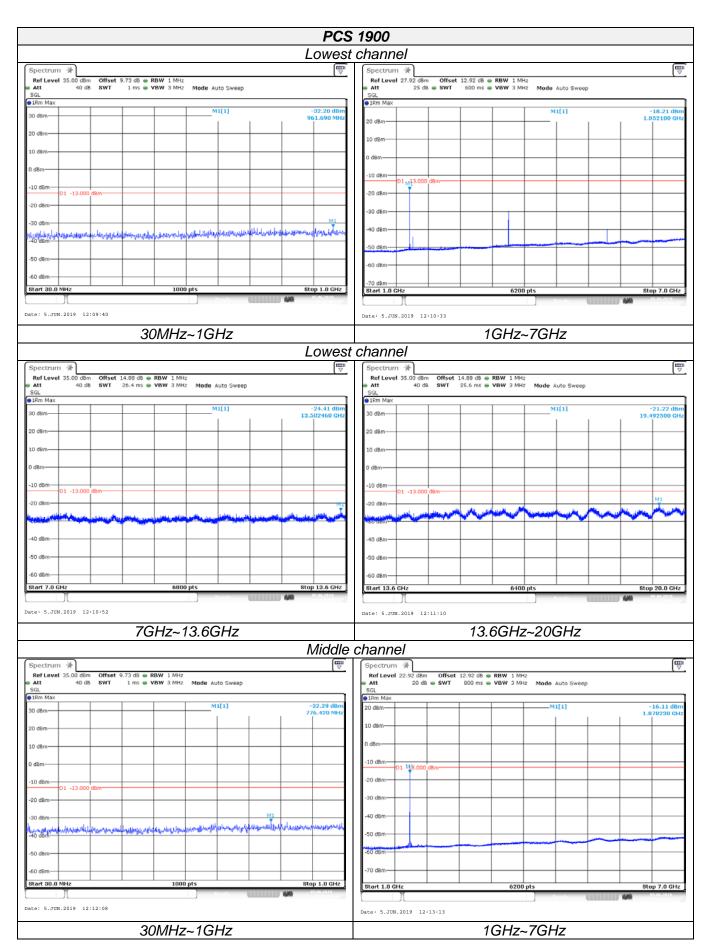
TEST CONFIGURATION

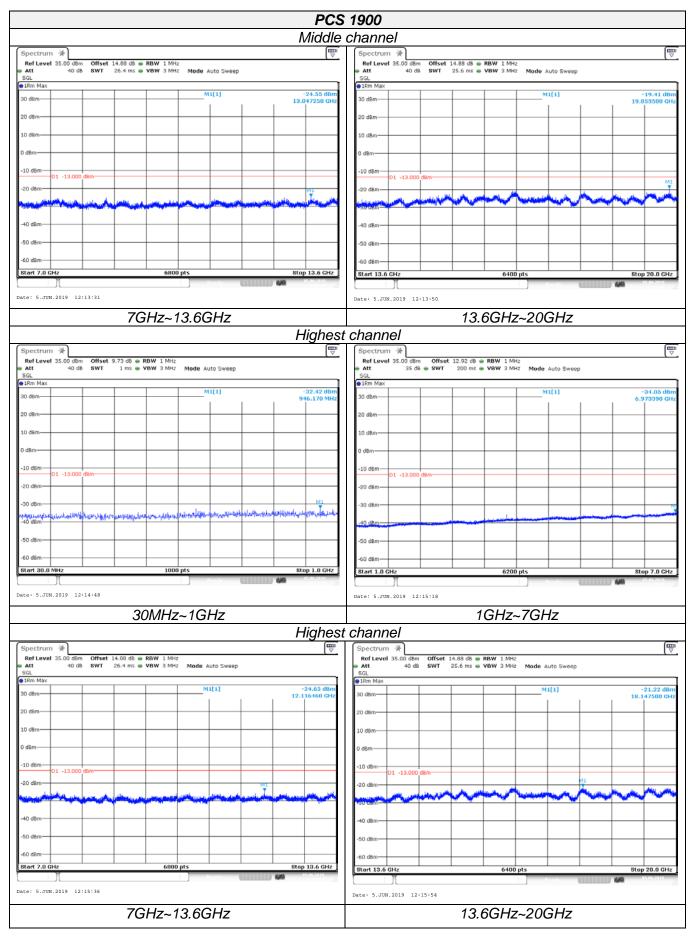
TEST PROCEDURE

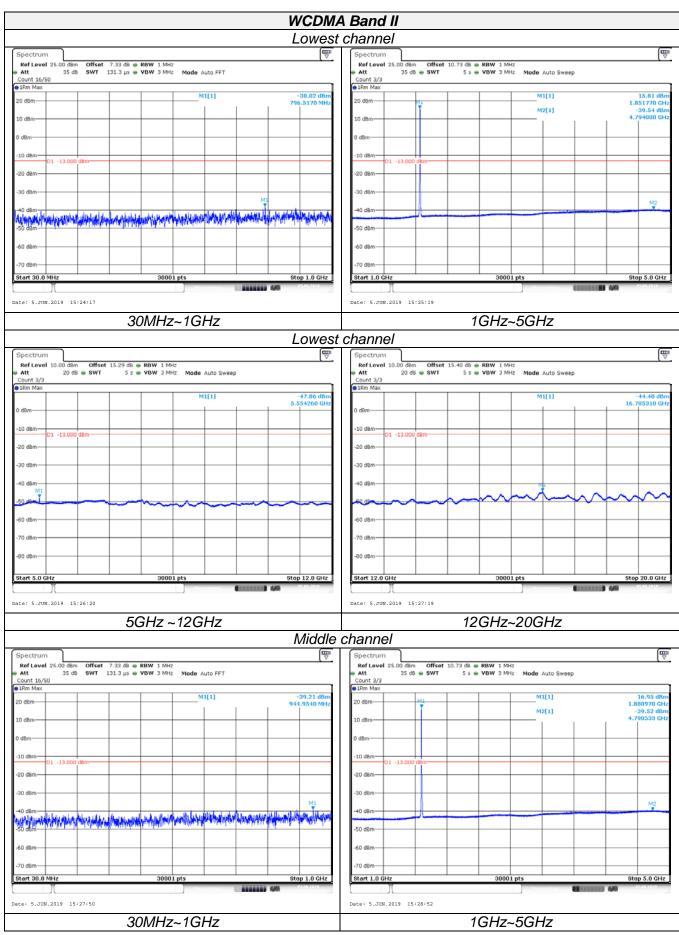

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz; sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW = 1MHz VBW ≥ 3 times RBW, Start=30MHz, Stop= 10th harmonic.

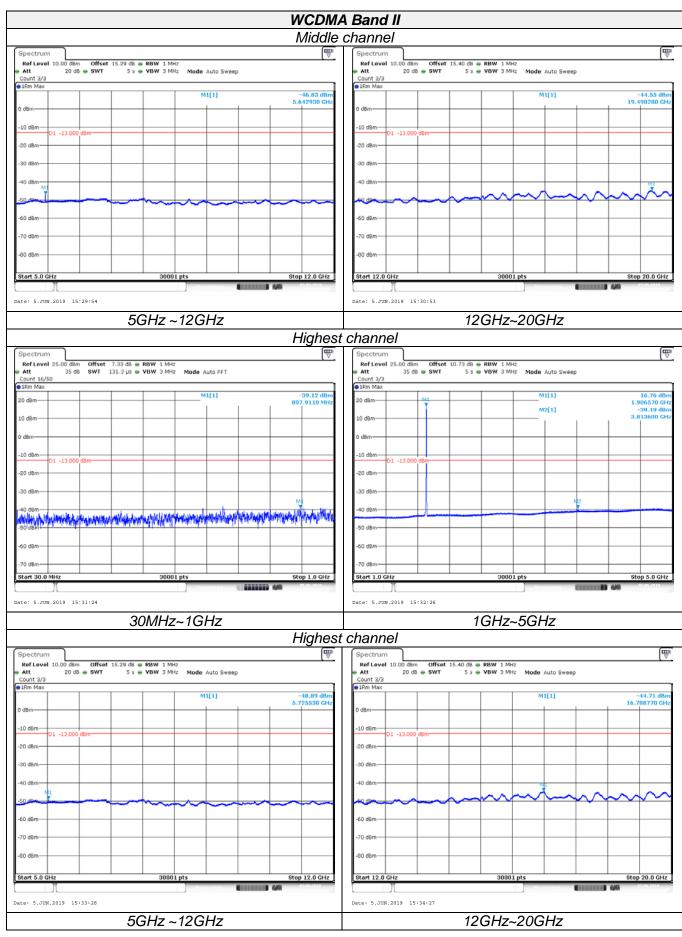
TEST RESULTS

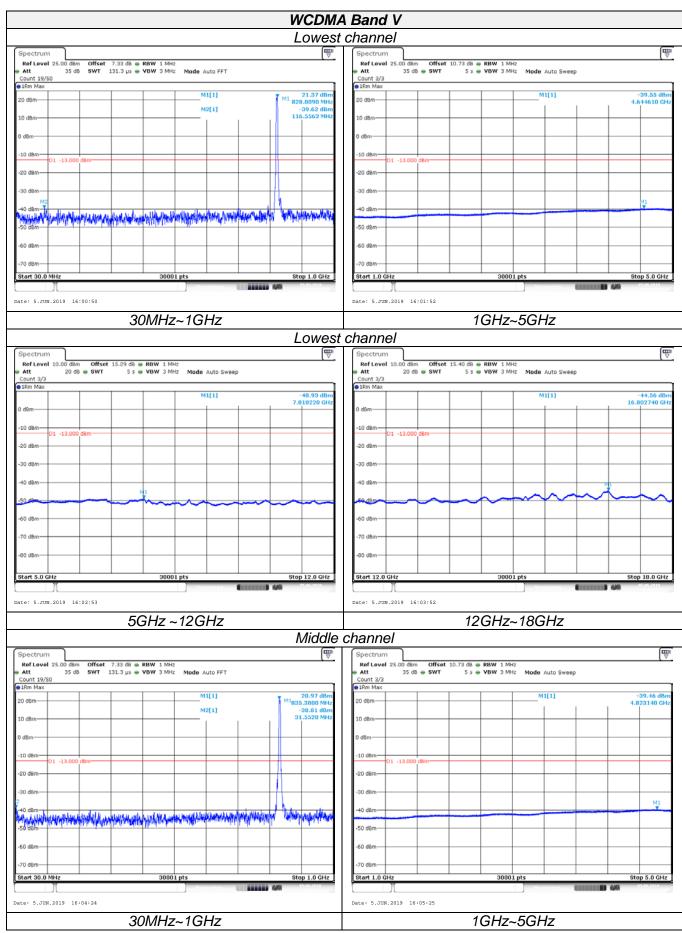
Remark: we test all modulation type and record worst case at Voice mode.

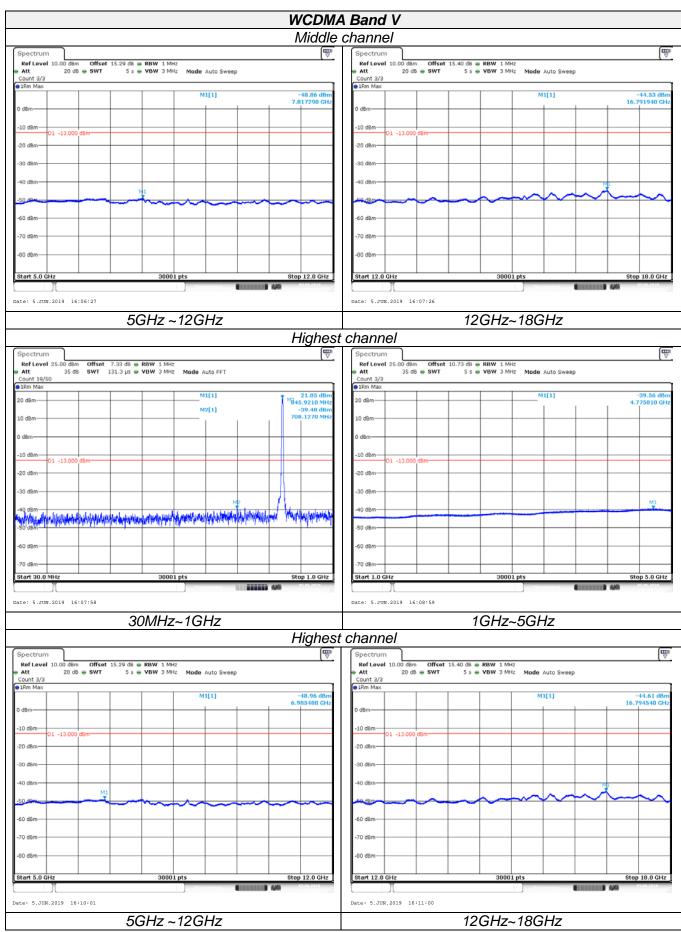

Tel.: (86)755-27521059





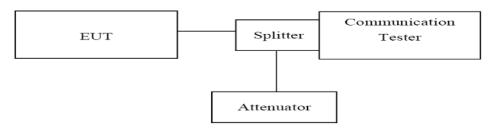






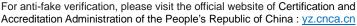
Page 41 of 59

Report No.: GTI20191150F


3.5. Band Edge compliance

LIMIT

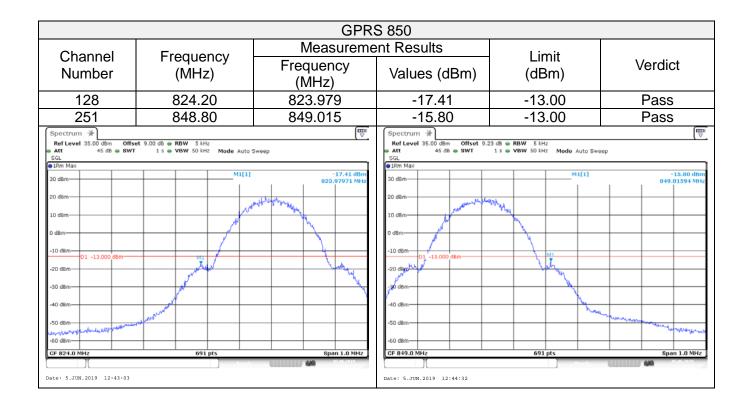
Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.


The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

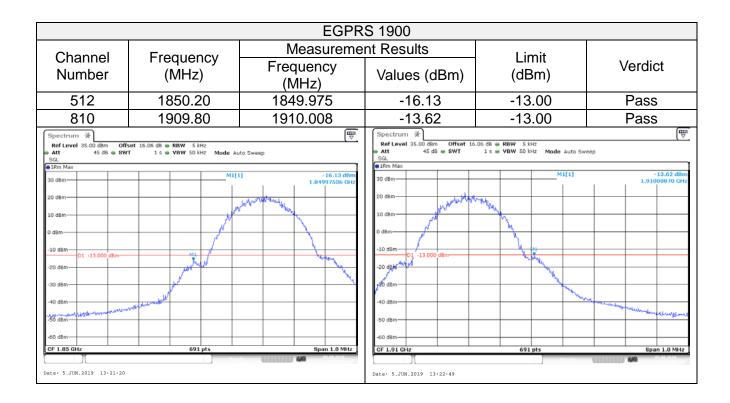
TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. Set the RBW=5 KHz, VBW = 50KHz, Span=1MHz Sweep time= Auto for 2G system measurement.
- 3. Set the RBW=50 KHz, VBW = 300KHz, Span=1MHz Sweep time= Auto for 3G system measurement.



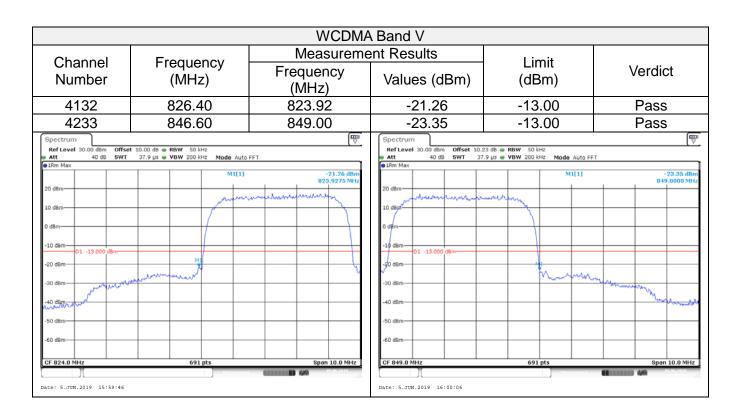
TEST RESULTS

		GSM	1 850			
Channel	Frequency	Max Measure	ment Results	Limit		
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict	
128	824.20	823.976	-16.98	-13.00	Pass	
251	848.80	849.021	-17.26	-13.00	Pass	
■ Att 45 dB ■ SWT SGL	st 9.00 dB e RBW 5 kHz 1 s e VBW 50 kHz Mode Auto S	∵weep	Spectrum ** Ref Level 35.00 dBm Offset 9. Att 45 dB SWT SGL BIRM Max	23 dB • RBW 5 kHz 1 s • VBW 50 kHz Mode Auto Sw	reep	
● 1Rm Max 30 dBm	M1[1]	-16.98 dBm 823.97681 MHz	30 dBm	M1[1]	-17.26 dBm 849.02029 MHz	
20 d8m		Span 1.0 MHz	20 d8m 10 d8m 0 d8m -10 d8m 01 12 000 d8m -20 d8ggh 40 d8m -40 d8m -50 d8m -60 d8m	691 pts	Span 1.0 MHz	
GF 624.0 MHZ	Beady Deady	Span 1.0 MHz	GF 849.0 MH2	691 pts	span 1.0 MHz	
Date: 5.JUN.2019 11:35:46			Date: 5.JUN.2019 11:36:56			



Accreditation Administration of the People's Republic of China: yz.cnca.cn

		PCS	1900		
Channel	Frequency	Measureme	nt Results	Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
512	1850.20	1849.995	-14.98	-13.00	Pass
810	1909.80	1910.004	-14.08	-13.00	Pass
Ref Level 35.00 dBm Offs Att 45 dB SW SGL 1Rm Max 30 dBm	set 16.06 d8 • RBW 5 kHz 1 s • VBW 50 kHz Mode Au M1[1		Ref Level 35.00 dBm Offset 10 Att 45 dB SWT SGL 1Rm Max 30 dBm	1 s = VBW 50 kHz Mode Auto Sw	-14.08 dBm 1.91000435 GHz
20 dBm-		www. May	20 d8m 0 d8m	War de la company de la compan	
-10 dBm — D1 -13.000 dBm — -20 dBm — -30 dBm — -40 dBm — -40 dBm	and the last of	The state of the s	-10 dBm O1 -13 000 dBm	The state of the s	
-50 dBm	No formation		-50 d8m-		the strength of the same of th
CF 1.85 GHz	691 pts	Span 1.0 MHz	CF 1.91 GHz	691 pts	Span 1.0 MHz
Date: 5.JUN.2019 12:07:23	,	700	Date: 5.JUN.2019 12:08:33	,	



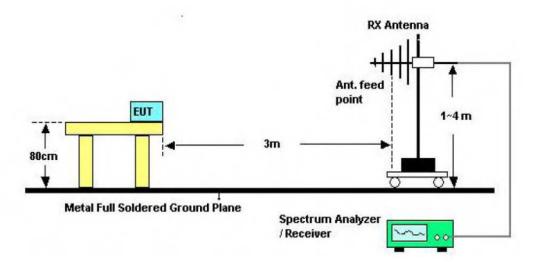
Accreditation Administration of the People's Republic of China: yz.cnca.cn

		WCDMA	A Band II		
Channel	Frequency	Measureme	ent Results	Limit	
Number	(MHz)	Frequency (MHz)	Values (dBm)	(dBm)	Verdict
9262	1852.40	1849.97	-17.11	-13.00	Pass
9538	1907.60	1910.05	-19.45	-13.00	Pass
Ref Level 30.00 dBm Offset Att 40 dB SWT	17.06 dB ⇔ RBW 50 kHz 37.9 μs ⇔ VBW 200 kHz Mode Auto	FFT -17.11 d8m		06 dB • RBW 50 kHz 9.9 µs • VBW 200 kHz Mode Auto Fi	FT -19.45 dBm
20 d8m		1.8499710 GHz	20 d8m 10 d8m		1.9100580 GHz
-10 dBm D1 -13.000 dBm -20 dBm		4	-10 dBm O1 -13.000 dBm	12 Cypnolium	Warmen Warmen
-40 d8m			-30 dBm		and show ment
-50 dBm			-50 dBm		
CF 1.85 GHz	691 pts	Span 10.0 MHz	CF 1.91 GHz Date: 5.JUN.2019 15:14:53	691 pts	Span 10.0 MHz

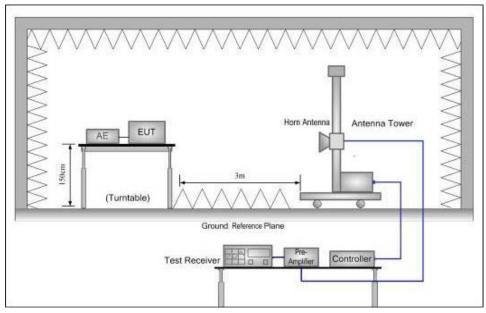
Accreditation Administration of the People's Republic of China: yz.cnca.cn

Page 45 of 59 Report No.: GTI20191150F

3.6. Radiated Power Measurement


LIMIT

GSM850/WCDMA Band V: 7W ERP


PCS1900/WCDMA Band II/WCDMA Band IV: 2W ERP

TEST CONFIGURATION

For the actual test configuration, please refer to the related Item – EUT Test Photos.

Below 1GHz

Above 1GHz

Page 46 of 59 Report No.: GTI20191150F

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI), the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:
 - Power(EIRP)=PMea- PAg Pcl + Ga
 - We used N5182A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 - ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Remark:

1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

Tel.: (86)755-27521059

Measurement Data (worst case):

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	400	V	30.36		Pass
	128	Н	28.49		
GSM850	190	V	32.53	20 15	
(GMSK)	190	Н	28.07	38.45	
	254	V	33.23		
	251	Н	28.77		
	128	V	30.71	38.45	
		Н	26.92		
GSM850		V	32.04		
(GPRS)	190	Н	27.10		
	251	V	31.98		
	201	Н	28.61		

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	F10	V	27.45		
	512	Н	24.17		
PCS1900	661	V	28.06	22.00	Door
(GMSK)	661	Н	23.81	33.00	Pass
	040	V	27.05	31	
	810	Н	23.03		
	540	V	27.31		
	512	Н	24.15		
PCS1900	664	V	25.48	22.00	
(GPRS)	661	Н	24.32	33.00	
	040	V	25.10		
	810	Н	23.15		

Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

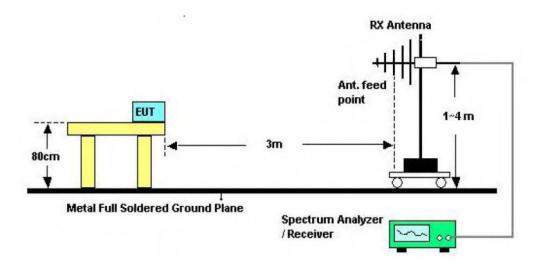
Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	0262	V	20.16		Pass
	9262	Н	19.78		
WCDMA Band II	9400 9538	V	22.06	33.00	
(QPSK)		Н	19.77		
		V	22.08		
		Н	19.87		

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	4420	V	21.57		Pass
	4132	Н	18.39	38.45	
WCDMA Band V	4183	V	21.41		
(QPSK)		Н	18.06		
	4000	V	21.34		
	4233	Н	18.39		

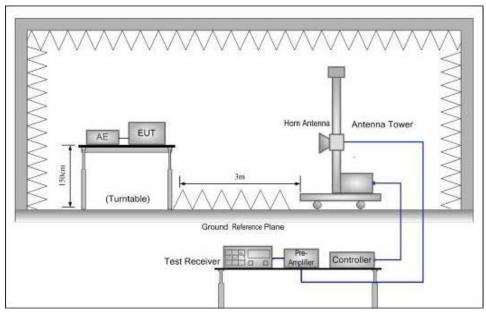
Accreditation Administration of the People's Republic of China : <u>yz.cnca.cn</u>

Page 50 of 59

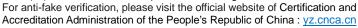
Report No.: GTI20191150F


3.7. Radiated Spurious Emission

LIMIT


-13dBm

TEST CONFIGURATION


For the actual test configuration, please refer to the related Item – EUT Test Photos.

Below 1GHz

Above 1GHz

Page 51 of 59 Report No.: GTI20191150F

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below:

Power(EIRP)=PMea- PcI + Ga

- 7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 - ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.
- 8. Test frequency range should extend to 10th harmonic of highest fundamental frequency.

TEST RESULTS

Remark:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- We test all modulation type and record worst case at Voice mode.

Measurement Data (worst case):

GSM850								
Channel	Frequency	Spurious	Emission	Limit (dBm)	Dooult			
Chamer	(MHz)	Polarization	Level (dBm)	Limit (dbin)	Result			
	1648.40	Vertical	-43.47					
400	2472.60	Vertical	-48.07					
128	1648.40	Horizontal	-47.88					
	2472.60	Horizontal	-53.53	40.00				
	1673.20	Vertical	-43.67					
400	2509.80	Vertical	-49.68		Dage			
190	1673.20	Horizontal	-47.05	-13.00	Pass			
	2509.80	Horizontal	-54.44					
	1697.60	Vertical	-44.88					
054	2546.40	Vertical	-46.30					
251	1697.60	Horizontal	-44.42	1				
	2546.40	Horizontal	-47.40					

Remark:

1. The emission levels of below 1 GHz are very lower than the limit above 10dB and not show in test report.

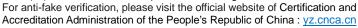
PCS1900								
Channel	Frequency	Spurious	Emission	Limit (dDm)	Darrell			
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	3700.40	Vertical	-46.48					
512	5550.60	Vertical	-51.16					
512	3700.40	Horizontal	-47.10		Pass			
	5550.60	Horizontal	-52.08					
	3760.00	Vertical	-42.86					
661	5640.00	Vertical	-51.58	-13.00				
001	3760.00	Horizontal	-44.91	-13.00				
	5640.00	Horizontal	-53.91					
	3819.60	Vertical	-42.55					
810	5729.40	Vertical	-46.50					
010	3819.60	Horizontal	-48.74					
	5729.40	Horizontal	-52.67					

Remark:

1. The emission levels of below 1 GHz are very lower than the limit above 10dB and not show in test report.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

WCDMA Band II Spurious Emission Frequency Channel Limit (dBm) Result (MHz) Polarization Level (dBm) 3705.20 Vertical -40.40 5557.80 Vertical -50.429262 3705.20 -47.96 Horizontal 5557.80 -52.99 Horizontal 3760.00 Vertical -43.39 Vertical -53.34 5640.00 9400 -13.00**Pass** 3760.00 Horizontal -43.43 5640.00 Horizontal -52.69 3814.80 Vertical -41.58 5722.20 Vertical -52.129538 3814.80 Horizontal -42.09 5722.20 Horizontal -48.24


Remark:

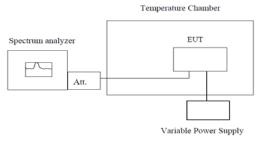
1. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

WCDMA Band V								
Channel	Frequency	Spurious	Emission	Limit (dPm)	D 1			
Criannei	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result			
	1653.20	Vertical	-41.69					
4132	2479.80	Vertical	-52.33					
4132	1653.20	Horizontal	-49.78		Pass			
	2479.80	Horizontal	-50.00					
	1672.80	Vertical	-44.10					
4183	2509.20	Vertical	-51.76	-13.00				
4103	1672.80	Horizontal	-46.12	-13.00				
	2509.20	Horizontal	-51.15					
	1692.80	Vertical	-38.94					
4000	2539.20	Vertical	-54.48]				
4233	1692.80	Horizontal	-45.91					
	2539.20	Horizontal	-51.99					

Remark:

1. The emission levels of below 1 GHz are very lower than the limit above 10dB and not show in test report.

Page 54 of 59



3.8. Frequency stability

LIMIT

Cellular Band: ± 2.5 ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25 °C operating frequency as reference frequ
- 5. Turn EUT off and set the chamber temperature to -30 approximately 30 minutes recorded the frequency.

°C. After the te

°C increased pe

6. Repeat step measure with 10 reached.

Report No.: GTI20191150F

7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark: we test all modulation type and record worst case at Voice mode

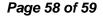
1. Temperature measurement:

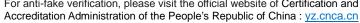
	Reference Fre	equency: GSM850 Middl	e channel=190 channel	=836.6MHz	
Voltage	Temperature			Limit	Result
(V)	(°C)	Hz	ppm	(ppm)	Nesuit
	-30	-1.65	-0.002005		
	-20	-1.30	-0.001573		
	-10	1.37	0.001668		
	0	8.25	0.010013		
3.70	10	12.21	0.014820	±2.5	Pass
	20	14.46	0.017544		
	30	4.00	0.004849		
	40	-0.63	-0.000768		
	50	4.19	0.005086		
	Reference Fre	equency: PCS1900 Midd	le channel=661 channe	l=1880MHz	
Voltage	Temperature	Freque	ncy error	Limit	Result
(V)	(°C)	Hz	ppm	(ppm)	Result
	-30	46.66	0.024818		
	-20	-14.03	-0.007462		
	-10	17.42	0.009264		
	0	40.87	0.021739		
3.70	10	-6.43	-0.003419	±2.5	Pass
	20	-13.13	-0.006987		
	30	40.39	0.021485		
	40	43.58	0.023180		
	50	-7.59	-0.004035		

50

Reference Frequency: WCDMA Band II Middle channel=9400 channel=1880MHz **Temperature** Frequency error Voltage Limit Result (V) (°C) (ppm) Hz ppm -30 1.48 0.000798 -20 0.78 0.000421 -10 2.93 0.001581 0 -1.20 -0.000648 3.70 10 -0.39 -0.000212 ± 2.5 **Pass** 20 3.41 0.001840 30 -1.51 -0.000816 40 -0.11 -0.000062 50 3.11 0.001678 Reference Frequency: WCDMA Band V Middle channel=4183 channel=836.6MHz **Temperature** Frequency error Voltage Limit Result (V) (ppm) (°C) Hz ppm -30 1.32 0.001576 -20 -2.50-0.002989 -10 -0.34-0.000410 0 0.90 0.001073 3.70 10 -1.45 ± 2.5 -0.001730 **Pass** 20 0.13 0.000159 30 2.38 0.002840 40 1.39 0.001667

-0.94


-0.001121


2. Voltage measurement:

	Reference Frequency	uency: GSM850 Middle	channel=190 channel	l=836.6MHz	
Temperature	Voltage (V)	Frequen	Frequency error		Result
(℃)	voitage (v)	Hz	ppm	(ppm)	I/69uit
	4.42	4.33	0.005175		
25	3.70	6.99	0.008361	±2.5	Pass
	3.27	2.88	0.003444		
	Reference Frequency	uency: PCS1900 Middle	channel=661 channe	el=1880MHz	
Temperature	Voltage (V)	Frequen	cy error	Limit	Result
(℃)	voltage (v)	Hz	ppm	(ppm)	Nesuit
	4.42	12.46	0.006626		
25	3.70	37.82	0.020118	±2.5	Pass
	3.27	7.56	0.004024		
Ref	erence Frequenc	cy: WCDMA Band II Mid	dle channel=9400 cha	annel=1880MH	İz
Temperature	\/oltogo (\/)	Frequency error		Limit	Dogult
(℃)	Voltage (V)	Hz	ppm	(ppm)	Result
	4.42	-8.27	-0.004467		
	3.70	0.84	0.000454		
25	3.27	3.02	0.001629	±2.5	Pass
	3.70	-6.84	-0.003638		
	3.27	-0.26	-0.000140		
Refe	erence Frequenc	y: WCDMA Band V Mide	dle channel=4183 cha	annel=836.6MH	Hz
Temperature	Voltage (\/)	Frequen	cy error	Limit	Result
(℃)	Voltage (V)	Hz	ppm	(ppm)	Kesuit
	4.42	-1.85	-0.002243		
25	3.70	0.47	0.000563	±2.5	Pass
	3.27	1.33	0.001608		

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Reference to the document No.: Test Photographs 1.

Page 59 of 59 Report No.: GTI20191150F

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the document No.: External Photographs and Internal Photographs.