Plot 36 LTE Band 7 1RB Right Cheek High Date: 7/3/2017 Communication System: UID 0, LTE_FDD (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 1.965$ S/m; $\epsilon_r = 38.298$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.64, 7.64, 7.64); Calibrated: 1/23/2017; Electronics: DAE4 Sn1317; Calibrated: 8/2/2016 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Right Cheek High/Area Scan (91x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.734 W/kg #### Right Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.195 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 1.03 W/kg #### SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.303 W/kg Maximum value of SAR (measured) = 0.622 W/kg ## Plot 37 LTE Band 7 1RB Front Side High (Distance 15mm) Date: 7/3/2017 Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 2.085$ S/m; $\epsilon_r = 53.38$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 1/23/2017; Electronics: DAE4 Sn1317; Calibrated: 8/2/2016 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) #### Front Side High/Area Scan (91x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.391 W/kg #### Front Side High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.070 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.659 W/kg #### SAR(1 g) = 0.358 W/kg; SAR(10 g) = 0.200 W/kg Maximum value of SAR (measured) = 0.387 W/kg ## Plot 38 LTE Band 7 1RB Bottom Edge High (Distance 10mm) Date: 7/3/2017 Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2560 MHz; $\sigma = 2.085$ S/m; $\epsilon_r = 53.38$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.63, 7.63, 7.63); Calibrated: 1/23/2017; Electronics: DAE4 Sn1317; Calibrated: 8/2/2016 Phantom: SAM 2; Type: SAM; Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Bottom Edge High/Area Scan (51x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.485 W/kg Bottom Edge High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.997 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 0.874 W/kg SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.177 W/kg Maximum value of SAR (measured) = 0.452 W/kg #### **FCC SAR Test Report** ## Plot 39 802.11b Right Cheek Middle Date: 7/3/2017 Communication System: UID 0, WiFi (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ S/m; $\epsilon_r = 38.737$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Right Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.90, 7.90, 7.90); Calibrated: 1/23/2017; Electronics: DAE4 Sn1317; Calibrated: 8/2/2016 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) ## Right Cheek Middle/Area Scan (91x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.665 W/kg #### Right Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.200 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 1.33 W/kg #### SAR(1 g) = 0.631 W/kg; SAR(10 g) = 0.295 W/kg Maximum value of SAR (measured) = 0.728 W/kg ## Plot 40 802.11b Back Side Middle (Distance 15mm) Date: 7/3/2017 Communication System: UID 0, WiFi (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 53.67$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.85, 7.85, 7.85); Calibrated: 1/23/2017; Electronics: DAE4 Sn1317; Calibrated: 8/2/2016 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.117 W/kg Back Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.157 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.211 W/kg SAR(1 g) = 0.106 W/kg; SAR(10 g) = 0.059 W/kg Maximum value of SAR (measured) = 0.115 W/kg #### **FCC SAR Test Report** ## Plot 41 802.11b Back Side Middle (Distance 10mm) Date: 7/3/2017 Communication System: UID 0, WiFi (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 53.67$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.85, 7.85, 7.85); Calibrated: 1/23/2017; Electronics: DAE4 Sn1317; Calibrated: 8/2/2016 Phantom: SAM 1; Type: QD000P40CD; Serial: TP:1666 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Back Side Middle/Area Scan (91x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.328 W/kg Back Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.663 V/m; Power Drift = -0.032 dB Peak SAR (extrapolated) = 0.609 W/kg SAR(1 g) = 0.291 W/kg; SAR(10 g) = 0.146 W/kg Maximum value of SAR (measured) = 0.312 W/kg ## **ANNEX D: Probe Calibration Certificate** E-mail: cttl@chinattl.com Http://www.chinattl.cn Client TA(Shanghai) Certificate No: Z17-97012 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:3677 Calibration Procedure(s) FD-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: January 23, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 27-Jun-16 (CTTL, No.J16X04777) 10dB 13-Mar-16(CTTL,No.J16X01547) 20dB 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16 Cal Date(Calibrated by, Certificate No.) 27-Jun-16 (CTTL, No.J16X04776) | 2 1983 1975 BO 10 100 | |--|--| | 27-Jun-16 (CTTL, No.J16X04777) 10dB 13-Mar-16(CTTL,No.J16X01547) 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16) Cal Date(Calibrated by, Certificate No.) | Jun-17 Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-17 | | 10dB 13-Mar-16(CTTL,No.J16X01547) 20dB 13-Mar-16(CTTL, No.J16X01548) 26-Sep-16(SPEAG,No.EX3-7433_Sep16) 13-Dec-16(SPEAG, No.DAE4-549_Dec16 Cal Date(Calibrated by, Certificate No.) | Mar-18 Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-17 | | 20dB 13-Mar-16(CTTL, No.J16X01548)
26-Sep-16(SPEAG,No.EX3-7433_Sep16)
13-Dec-16(SPEAG, No.DAE4-549_Dec16
Cal Date(Calibrated by, Certificate No.) | Mar-18 Sep-17 Dec -17 Scheduled Calibration Jun-17 | | 26-Sep-16(SPEAG,No.EX3-7433_Sep16)
13-Dec-16(SPEAG, No.DAE4-549_Dec16
Cal Date(Calibrated by, Certificate No.) | Sep-17) Dec -17 Scheduled Calibration Jun-17 | | 13-Dec-16(SPEAG, No.DAE4-549_Dec16 Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration Jun-17 | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration Jun-17 | | | Jun-17 | | 05 27-Jun-16 (CTTL, No.J16X04776) | 777 | | | lan -17 | | 673 26-Jan-16 (CTTL, No.J16X00894) | vaii-17 | | Function | Şignature | | g SAR Test Engineer | A TON | | n SAR Project Leader | G C | | | Bones Jan | | g Deputy Director of the laboratory | | | | ng Deputy Director of the laboratory | Certificate No: Z17-97012 Page 1 of 11 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless
Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z17-97012 Page 2 of 11 # Probe EX3DV4 SN: 3677 Calibrated: January 23, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z17-97012 Page 3 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |---|----------|----------|----------|-----------| | Norm(µV/(V/m) ²) ^A | 0.39 | 0.44 | 0.38 | ±10.8% | | DCP(mV) ^B | 97.3 | 102.2 | 101.1 | | ### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 | 0 CW | Х | 0.0 | 0.0 | 1.0 | 0.00 | 180.5 | ±2.0% | | | | Y | 0.0 | 0.0 | 1.0 | | 195.3 | | | | | Z | 0.0 | 0.0 | 1.0 | | 177.9 | 7 | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. Certificate No: Z17-97012 Page 4 of 11 ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.58 | 9.58 | 9.58 | 0.30 | 0.75 | ±12% | | 835 | 41.5 | 0.90 | 9.31 | 9.31 | 9.31 | 0.11 | 1.55 | ±12% | | 1750 | 40.1 | 1.37 | 8.60 | 8.60 | 8.60 | 0.24 | 1.07 | ±12% | | 1900 | 40.0 | 1.40 | 8.39 | 8.39 | 8.39 | 0.23 | 1.10 | ±12% | | 2300 | 39.5 | 1.67 | 8.13 | 8.13 | 8.13 | 0.53 | 0.74 | ±12% | | 2450 | 39.2 | 1.80 | 7.90 | 7.90 | 7.90 | 0.61 | 0.71 | ±12% | | 2600 | 39.0 | 1.96 | 7.64 | 7.64 | 7.64 | 0.68 | 0.68 | ±12% | | 5250 | 35.9 | 4.71 | 5.66 | 5.66 | 5.66 | 0.40 | 1.20 | ±13% | | 5600 | 35.5 | 5.07 | 4.99 | 4.99 | 4.99 | 0.40 | 1.40 | ±13% | | 5750 | 35.4 | 5.22 | 5.00 | 5.00 | 5.00 | 0.40 | 1.40 | ±13% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97012 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvFZ | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|--------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.99 | 9.99 | 9.99 | 0.30 | 0.95 | ±12% | | 835 | 55.2 | 0.97 | 9.74 | 9.74 | 9.74 | 0.14 | 1.66 | ±12% | | 1750 | 53.4 | 1.49 | 8.39 | 8.39 | 8.39 | 0.21 | 1.16 | ±12% | | 1900 | 53.3 | 1.52 | 7.98 | 7.98 | 7.98 | 0.22 | 1.24 | ±12% | | 2300 | 52.9 | 1.81 | 7.97 | 7.97 | 7.97 | 0.55 | 0.80 | ±12% | | 2450 | 52.7 | 1.95 | 7.85 | 7.85 | 7.85 | 0.50 | 0.86 | ±12% | | 2600 | 52.5 | 2.16 | 7.63 | 7.63 | 7.63 | 0.44 | 0.91 | ±12% | | 5250 | 48.9 | 5.36 | 5.03 | 5.03 | 5.03 | 0.50 | 1.60 | ±13% | | 5600 | 48.5 | 5.77 | 4.34 | 4.34 | 4.34 | 0.54 | 1.66 | ±13% | | 5750 | 48.3 | 5.94 | 4.52 | 4.52 | 4.52 | 0.57 | 1.95 | ±13% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97012 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.5% (k=2) Certificate No: Z17-97012 Page 7 of 11 ## Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM ## f=1800 MHz, R22 Certificate No: Z17-97012 Page 8 of 11 ## Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No: Z17-97012 Page 9 of 11 ## **Conversion Factor Assessment** ## f=835 MHz, WGLS R9(H_convF) ## f=1750 MHz, WGLS R22(H_convF) ## **Deviation from Isotropy in Liquid** Certificate No: Z17-97012 Page 10 of 11 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677 ## Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 117.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | |
Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z17-97012 Page 11 of 11 ## **ANNEX E: D835V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client TA(Shanghai) Certificate No: Z14-97073 ## **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d020 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: August 28, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration 102083 11-Sep-13 (TMC, No.JZ13-443) Sep-14 Power Meter NRVD Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Sep -14 5- Sep-13 (SPEAG, No.ES3-3149 Sep13) Reference Probe ES3DV3 SN 3149 Sep-14 DAE3 23-Jan-14 (SPEAG, DAE3-536_Jan14) Jan -15 SN 536 Signal Generator E4438C MY49070393 13-Nov-13 (TMC, No.JZ13-394) Nov-14 Network Analyzer E8362B MY43021135 19-Oct-13 (TMC, No.JZ13-278) Oct-14 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer 提起 Reviewed by: Qi Dianyuan SAR Project Leader Approved by: Lu Bingsong Deputy Director of the laboratory Issued: September 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97073 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax. +86-10-62304633-2504 Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No. Z14-97073 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 Http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52,8,8,1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0±0.2) °C | 42.5 ±6 % | 0.91 mho/m±6 % | | Head TSL temperature change during test | <1.0 °C | 20 <u>1.</u> | | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.39 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 9.54 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | 7 | | SAR measured | 250 mW input power | 1.57 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 6.26 mW/g ± 20.4 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Body TSL parameters | 22,₫ °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0±0.2) °C | 56.7 ±6 % | 0.97 mho/m ±6 % | | Body TSL temperature change during test | <1.0 °C | 3-12- | - | SAR result with Body TSL | SAR averaged over 1 cm ³ (1g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | .2.37 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.54 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.57 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.31 mW/g ± 20.4 % (k=2) | Certificate No. Z14-97073 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 Http://www.chinattl.cn #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $48.6\Omega + 2.75$ j Ω | | |--------------------------------------|--------------------------------|--| | Return Loss | - 30.1dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 54.0Ω +5.88jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.3dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1,242 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z14-97073 Page 4 of 8 Date: 28.08.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.909$ S/m; $\epsilon_r = 42.49$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(6.21, 6.21, 6.21); Calibrated: 2013-09-05; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - · Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8), SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.79 W/kg 0 dB = 2.79 W/kg = 4.46 dBW/kg Certificate No: Z14-97073 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z14-97073 CNAS CALIBRATION No. L0570 Date: 28.08.2014 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 Http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1
Medium parameters used: f = 835 MHz; $\sigma = 0.97$ S/m; $s_r = 56.745$; p = 1000 kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(5.98, 5.98, 5.98); Calibrated: 2013-09-05; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2 - Measurement SW: DASY52, Version 52.8 (8), SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies below 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.515 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 2.74 W/kg 0 dB = 2.74 W/kg = 4.38 dBW/kg Certificate No. Z14-97073 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z14-97073 Page 8 of 8 ## **ANNEX F: D1750V2 Dipole Calibration Certificate** Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn **CNAS L0570** Client TA(Shanghai) Certificate No: Z17-97002 ## CALIBRATION CERTIFICATE Object D1750V2 - SN: 1033 Calibration Procedure(s) FD-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: January 10, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 101919 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | 101547 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | SN 7307 | 19-Feb-16(SPEAG,No.EX3-7307_Feb16) | Feb-17 | | SN 771 | 02-Feb-16(CTTL-SPEAG,No.Z16-97011) | Feb-17 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-16 (CTTL, No.J16X00893) | Jan-17 | | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894) | Jan-17 | | | 101919
101547
SN 7307
SN 771
ID#
MY49071430 | 101919 27-Jun-16 (CTTL, No.J16X04777) 101547 27-Jun-16 (CTTL, No.J16X04777) SN 7307 19-Feb-16(SPEAG,No.EX3-7307_Feb16) SN 771 02-Feb-16(CTTL-SPEAG,No.Z16-97011) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 01-Feb-16 (CTTL, No.J16X00893) | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 36 | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | m. 4353 | Issued: January 12, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97002 Page 1 of 8 #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the bcdy axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97002 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 25000 | 1 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.27 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 37.2 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.90 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.7 mW /g ± 20.4 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0,2) °C | 53.1 ± 6 % | 1,48 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.40 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 37.6 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.03 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.1 mW /g ± 20.4 % (k=2) | Certificate No: Z17-97002 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian Eistrict, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8Ω+ 0.93jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 40.3dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.7Ω- 0.10jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.0dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.327 ns | |----------------------------------|-----------| | | 11047 110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | 47.55 | Certificate No: Z17-97002 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian Eistrict, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax:
+86-10-62304633-2504 http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Date: 01.10.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.352$ S/m; $\epsilon r = 39.36$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(8.37, 8.37, 8.37); Calibrated: 2/19/2016; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.21 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 17.1W/kg SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.9 W/kg Maximum value of SAR (measured) = 14.4 W/kg 0 dB = 14.4 W/kg = 11.58 dBW/kg Certificate No: Z17-97002 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z17-97002 Page 6 of 8 Date: 01.10.2017 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.484$ S/m; $\varepsilon_r = 53.05$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(8.18, 8.18, 8.18); Calibrated: 2/19/2016; · Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn771; Calibrated: 2/2/2016 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.52 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.4 W/kg; SAR(10 g) = 5.03 W/kg Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Certificate No: Z17-97002 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z17-97002 Page 8 of 8 ## **ANNEX G: D1900V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 ## E-mail: cttl@chinattl.com Http://www.chinattl.cn TA(Shanghai) Certificate No: Z14-97074 Client CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d060 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole validation kits Calibration date: September 1, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Cal Date(Calibrated by, Certificate No.) **Scheduled Calibration Primary Standards** ID# | 102083 | 11-Sep-13 (TMC, No.JZ13-443) | Sep-14 | |------------|---|---| | 100595 | 11-Sep-13 (TMC, No. JZ13-443) | Sep -14 | | SN 3149 | 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) | Sep-14 | | SN 536 | 23-Jan-14 (SPEAG, DAE3-536_Jan14) | Jan -15 | | MY49070393 | 13-Nov-13 (TMC, No.JZ13-394) | Nov-14 | | MY43021135 | 19-Oct-13 (TMC, No.JZ13-278) | Oct-14 | | | 100595
SN 3149
SN 536
MY49070393 | 100595 11-Sep-13 (TMC, No. JZ13-443)
SN 3149 5- Sep-13 (SPEAG, No.ES3-3149_Sep13)
SN 536 23-Jan-14 (SPEAG, DAE3-536_Jan14)
MY49070393 13-Nov-13 (TMC, No.JZ13-394) | | | Name | Function Signatur | re | |----------------|-------------|-----------------------------------|-----| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Qi Dianyuan | SAR Project Leader | | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | 52 | | | | Issued: Sentember 4, 20 | 014 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97074 Page 1 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax. +86-10-62304633-2504 Fax. +86-10-62304633-2504 Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z14-97074 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 Http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8,1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22,0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0±0.2) °C | 39.8 ± 6 % | 1.37 mho/m±6 % | | Head TSL temperature change during test | <1.0 °C | 22 | | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.69 mVV / g | | SAR for nominal Head TSL parameters | normalized to 1VV | 39.2 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.14 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 20.7 mW/g ± 20.4 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | 1 | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22:0±0:2) °C | 51.8±6% | 1.50 mho/m ±6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.98 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.0 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.28 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.1 mW/g ± 20.4 % (k=2) | Certificate No. Z14-97074 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504
Http://www.chinattl.cn #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.1Ω-6.34jΩ | |--------------------------------------|--------------| | Return Loss | - 22,8dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 57.6Ω- 4.76jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.248 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z14-97074 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Date: 01.09.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.371$ S/m; $s_r = 39.83$; p = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(5.06, 5.06, 5.06); Calibrated: 2013-09-05; - Sensor-Surface: 3mm (Mechanical Surface Detection) - · Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8), SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.911 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.69 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 12.2 W/kg 0 dB = 12.2 W/kg = 10.86 dBW/kg Certificate No: Z14-97074 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z14-97074 Page 6 of 8 Date: 01.09.2014 #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f=1900 MHz; $\sigma=1.5$ S/m; $s_r=51.78$; $\rho=1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.72, 4.72, 4.72); Calibrated: 2013-09-03; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - · Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.668 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.28 W/kg Maximum value of SAR (measured) = 12.6 W/kg 0 dB = 12.6 W/kg = 11.00 dBW/kg Certificate No: Z14-97074 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z14-97074 Page 8 of 8 ## **ANNEX H: D2450V2 Dipole Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### TA(Shanghai) Certificate No: Z14-97075 Client CALIBRATION CERTIFICATE Object D2450V2 - SN: 786 Calibration Procedure(s) TMC-OS-E-02-194 Calibration procedure for dipole valication kits Calibration date: September 1, 2014 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Cal Date(Calibrated by, Certificate No.) Scheduled Calibration **Primary Standards** ID# Power Meter NRVD 102083 11-Sep-13 (TMC, No.JZ13-443) Sep-14 Power sensor NRV-Z5 100595 11-Sep-13 (TMC, No. JZ13-443) Sep -14 Reference Probe ES3DV3 SN 3149 5- Sep-13 (SPEAG, No.ES3-3149_Sep13) Sep-14 Jan-15 DAF3 23-Jan-14 (SPEAG, DAE3-536_Jan14) SN 536 Nov-14 Signal Generator E4438C MY49070393 13-Nov-13 (TMC, No.JZ13-394) Network Analyzer E8362B MY43021135 19-Oct-13 (TMC, No.JZ13-278) Oct-14 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader Issued: September 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z14-97075 Page 1 of 8 Deputy Director of the laboratory Approved by: Lu Bingsong Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax. +86-10-62304633-2504 Http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL. The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No. Z14-97075 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel. +86-10-62304633-2079 Fax. +86-10-62304633-2504 Http://www.chinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1222 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22,0 °C | 39,2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0±0.2) °C | 40.2 ±6 % | 1.84 mho/m ±6 % | | Head TSL temperature change during test | <1.0 °C | 2 <u>0</u> | (379) | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 mW/ g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.5 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6,20 mW/g | | SAR for nominal Head TSL parameters | normalized to 1VV | 24.8 mW/g ± 20.4 % (k=2) | Body TSL parameters The following parameters and
calculations were applied. | 1 | Temperature | Permittivity | Conductivity | |---|--------------|--------------|-----------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1,95 mho/m | | Measured Body TSL parameters | (22:0±0:2)°C | 51.3±6% | 2.00 mho/m ±6 % | | Body TSL temperature change during test | <1.0 °C | | (| SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13,3 mVV / g | | SAR for nominal Body TSL parameters | normalized to 1W | 52.4 mW/g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.20 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.6 mW/g ± 20.4 % (k=2) | Certificate No. Z14-97075 Page 3 of 8 #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.1Ω- 0.57jΩ | |--------------------------------------|---------------| | Return Loss | - 23.6dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 56.0Ω+3.31jΩ | | |--------------------------------------|--------------|--| | Return Loss | - 23.7dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.192 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: Z14-97075 Page 4 of 8 Date: 01.09.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $s_r = 40.2$; p = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8), SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.583 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.3 W/kg 0 dB = 17.3 W/kg = 12.38 dBW/kg Certificate No: Z14-97075 Page 5 of 8