

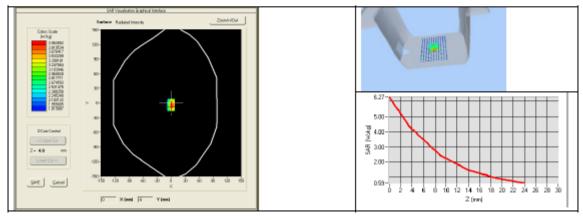
Ref: ACR.332.6.17.SATU.A

1900	39.7	20.5	
1950	40.5	20.9	
2000	41.1	21.1	
2100	43.6	21.9	
2300	48.7	23.3	
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	
3700	67.4	24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5±5%		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8±5%		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3±5%		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2300	52.9 ±5 %		1.81 ±5 %	

Page: 9/11


Ref: ACR.332.6.17.SATU.A

2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 53.2 sigma : 1.47
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1800	37.68 (3.77)	20.26 (2.03)

Ref: ACR.332.6.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	01/2017	01/2020
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020

Page: 11/11

SID1900 Dipole Calibration Report

Ref: ACR 332.7.17.SATU A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/28/2017	JS
Checked by :	Jérôme LUC	Product Manager	11/28/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	11/28/2017	-Him hithoushi

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
А	11/28/2017	Initial release

Page: 2/11

Ref: ACR 332.7.17.SATU A

TABLE OF CONTENTS

1 Introduction	
2 Device Under Test	
3 Product Description	
3.1 General Information	4
4 Measurement Method	
4.1 Return Loss Requirements	_5
4.2 Mechanical Requirements	_5
5 Measurement Uncertainty	
5.1 Return Loss	_5
5.2 Dimension Measurement	_5
5.3 Validation Measurement	_5
6 Calibration Measurement Results	
б.1 Return Loss and Impedance In Head Liquid	6
6.2 Return Loss and Impedance In Body Liquid	6
6.3 Mechanical Dimensions	6
7 Validation measurement	
7.1 Head Liquid Measurement	7
7.2 SAR Measurement Result With Head Liquid	8
7.3 Body Liquid Measurement	_9
7.4 SAR Measurement Result With Body Liquid	_10
8 List of Equipment	

Page: 3/11

Ref: ACR 332.7.17.SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID1900	
Serial Number	SN 09/13 DIP 1G900-218	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR 332.7.17.SATU A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the forementioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

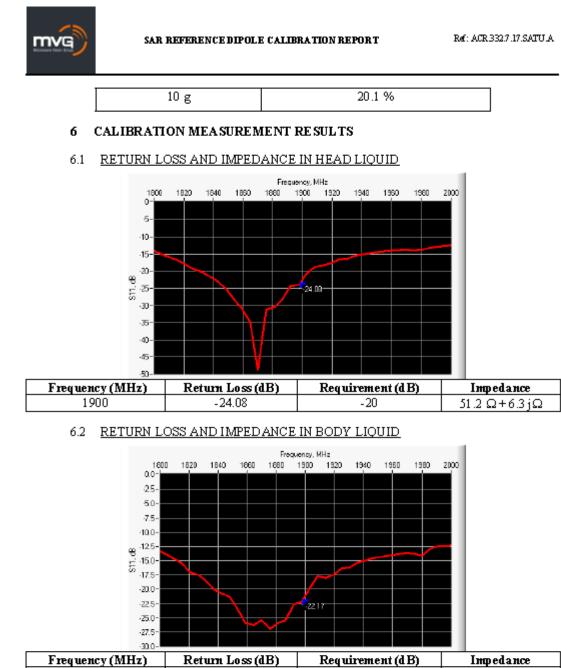
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		


5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11

6.3 MECHANICAL DIMENSIONS

Rreq ueincy MHz	Lmm		quency MHz Lmm hmm		dmm	
	required	measured	required	measured	required	measured
300	420.0±1%.		250.0±1 %.		6.35±1%	

Page: 6/11

Ref: ACR 332.7.17.SATU A

450	290.0±1 %.		166.7 ±1 %.		6.35±1%6.	
750	176.0±1%.		100.0 ±1 %.		6.35±1%6.	
835	161.0±1%.		89 S ±1 %.		3.6±1%.	
900	149.0±1%.		83.3±1%.		3.6±1%.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6±1%	
1640	79.0±1%.		45.7 ±1 %6.		3.6±1%.	
1750	75.2±1%.		429 ±1 %.		3.6±1%.	
1800	72.0±1%.		41.7 ±1 %.		3.6±1%.	
1900	68.0±1%%.	PASS	395±1%6.	PASS	3.6±1 %.	PASS
1950	66.3±1%.		385±1%.		3.6±1%.	
2000	64.5 ±1 %.		375±1%%.		3.6±1%.	
2100	61.0±1%.		35.7 ±1 %6.		3.6±1%.	
2300	55.5±1%.		32.6 ±1 %.		3.6±1%	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6±1%.	
2600	48.5 ±1 %.		258 ±1%.		3.6±1 %.	
3000	41.5 ±1 %.		四の111%。		3.6±1 %.	
3500	37.0±1.%.		26.4 ±1 %.		3.6±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6±1%.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (B ,')		ity (o)S/m
	required	measured	required	measured
300	45.3±5%		0.87±5%	
450	435 ±5 %		0.87±5%	
750	419±5%		0.89 ±5 %	
835	415±5%		0.90±5%	
900	415±5%		0.97 ±5 %	
1450	405±5%		1.20±5%	
1500	40.4 ±5 %		1.23±5%	
1640	40.2±5%		1.31±5%	
1750	401±5%		1.37±5%	

Page: 7/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 332.7.17.SATU A

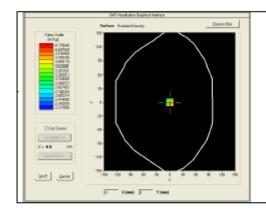
1800	40.0±5%		1.40±5%	
1900	40.0±5%	PASS	1.40±5%	PASS
1950	40.0±5%		1.40±5%	
2000	40.0±5%		1.40±5%	
2100	398±5%		1.49±5%	
2300	395±5%		1.67±5%	
2450	39.2±5%		1.80±5%	
2600	39.0±5%		1.96±5%	
3000	385±5%		2.40±5%	
3500	379±5%		2.91 ±5 %	

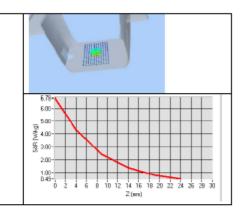
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phartom	SN 2009 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 41.2 sigma : 1.37
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8nm/dy=8mn
Zoon S can Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1gSAR (W/kg/W)		10g SAR	(w/kg/w)
	required	measured	required	measured
300	2.85		194	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		699	
1450	29		16	
1500	30.5		162	
1640	34.2		18,4	
1750	36.4		19.3	
1800	38.4		201	


Page: 8/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 332.7.17.SATU A

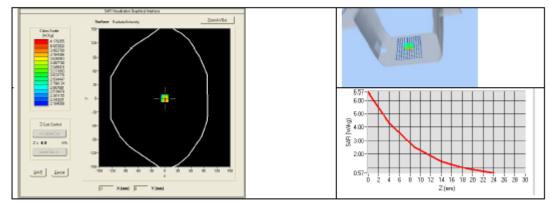
1900	39.7	39.35 (393)	205	ZD.48 (2.05)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mitt ivity (s .')	Conductivi	ty (o) 5/m
	required	measured	required	measured
150	619±5%		0.80±5%	
300	58.2±5%		0.92±5%	
450	56.7±5%		0.94±5%	
750	555±5%		0.96±5%	
835	55.2±5%		0.97 ±5 %	
900	55.0±5%		1.05±5%	
915	55.0±5%		1.06±5%	
1450	54.0±5%		1.30±5%	
1610	538±5%		1.40±5%	
1800	53.3±5%		1.52±5%	
1900	53.3±5%	PASS	1.52±5%	PASS
2000	53.3±5%		1.52±5%	
2100	53.2±5%		1.62±5%	
2300	529±5%		1.81 ±5 %	

Page: 9/11

SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR 332.7.17.SATU A

2450	52.7 ±5 %	1.95 ±5 %	
2600	525±5%	2.16 55 %	
3000	520±5%	2.73 ±5 %	
3500	51.3±5%	3.31 ±5 %	
3700	51.0±5%	3.55 ±5 %	
5200	49.0±10%	5.30±10%	
5300	48.9±10%	542±10%	
5400	48.7±10%	553±10%	
5500	48.6±10%	5.65±10%	
5600	48.5±10%	5.77 ±10%	
5800	48.2±10%	6.00±10%	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phartom	SN 2009 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps ' : 51.0 sigma : 1.52
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8nm/dy=8nm
Zoon S can Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1gSAR (W/kg/W)	10 g SAR (መ/kg/መ)
	rreasured	measured
1900	38 84 (3 88)	20.47 (2.05)

Page: 10/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 332.7.17.SATU A

8 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Manufacturer / Description Model		Identification No.	Current Calibration Date	Next Calibration Date				
SAM Phantom	M∨G	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019				
Calipers	Carrera	CALIPER-01	01/2017	01/2020				
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018				
Multimeter	Keithley 2000	1188656	01/2017	01/2020				
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.					
Power Meter	HP E4418A	US38261498	01/2017	01/2020				
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020				
Directional Coupler	Narda 4216-20	01386	Characterized priorto test. No cal required.	Characterized prior to test. No cal required.				
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020				

Page: 11/11

SID2450 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref : ACR.332.9.17.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 09/13 DIP 2G450-220

> Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.332.9.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/28/2017	JS
Checked by :	Jérôme LUC	Product Manager	11/28/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	11/28/2017	tim Ruthowski

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
Α	11/28/2017	Initial release

Page: 2/11

Ref: ACR.332.9.17.SATU.A

TABLE OF CONTENTS

1	Intro	duction	
2	Devi	ice Under Test	
3	Prod	luct Description	
3	3.1	General Information	4
4	Mea	surement Method	
4	.1	Return Loss Requirements	5
4	.2	Mechanical Requirements	5
5	Mea	surement Uncertainty	
5	5.1	Return Loss	5
5	5.2	Dimension Measurement	5
5	5.3	Validation Measurement	5
б	Cali	bration Measurement Results	
6	5.1	Return Loss and Impedance In Head Liquid	6
6	5.2	Return Loss and Impedance In Body Liquid	6
6	5.3	Mechanical Dimensions	6
7	Vali	dation measurement	
7	7.1	Head Liquid Measurement	7
7	.2	SAR Measurement Result With Head Liquid	8
7	7.3	Body Liquid Measurement	9
7	.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Page: 3/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.332.9.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type COMOSAR 2450 MHz REFERENCE DIPOLE				
Manufacturer MVG				
Model	SID2450			
Serial Number	SN 09/13 DIP 2G450-220			
Product Condition (new / used) Used				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.332.9.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

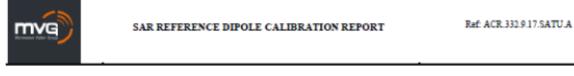
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

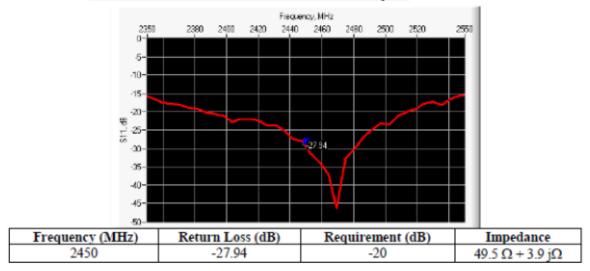
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

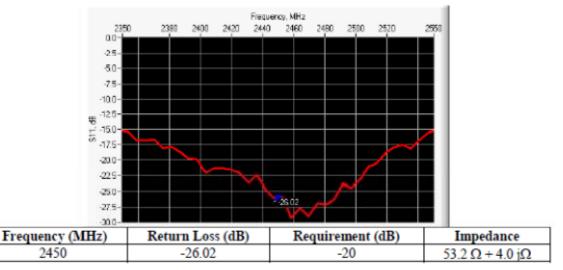

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11




10 g	20.1 %
------	--------

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

F	Frequency MHz	Lmm		ency MHz Lmm hmm		d mm	
		required	measured	required	measured	required	measured
	300	420.0±1%.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.332.9.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5±1%.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5±1%.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5±1%.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s,')		Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9±5%		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.332.9.17.SATU.A

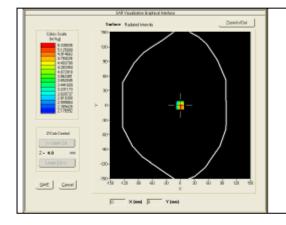
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

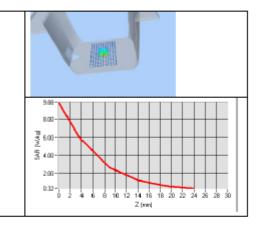
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps' : 40.5 sigma : 1.87
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	


Page: 8/11



SAR REFERENCE DIPOLE CALIBRATION REPORT

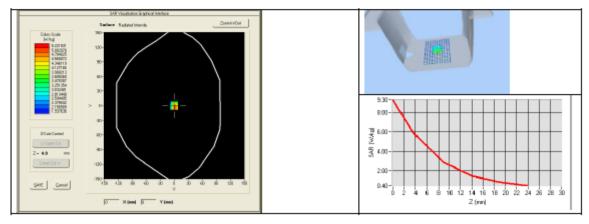
Ref: ACR.332.9.17.SATU.A

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	52.67 (5.27)	24	23.76 (2.38)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (sr')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9±5%		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5±5%		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0±5%		1.05 ±5 %	
915	55.0±5%		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8±5%		1.40 ±5 %	
1800	53.3±5%		1.52 ±5 %	
1900	53.3±5%		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2300	52.9±5%		1.81 ±5 %	

Page: 9/11


Ref: ACR.332.9.17.SATU.A

52.7 ±5 %	PASS	1.95 ±5 %	PASS
52.5 ±5 %		2.16 ±5 %	
52.0 ±5 %		2.73 ±5 %	
51.3 ±5 %		3.31 ±5 %	
51.0 ±5 %		3.55 ±5 %	
49.0 ±10 %		5.30 ±10 %	
48.9 ±10 %		5.42 ±10 %	
48.7 ±10 %		5.53 ±10 %	
48.6 ±10 %		5.65 ±10 %	
48.5 ±10 %		5.77 ±10 %	
48.2 ±10 %		6.00 ±10 %	
	52.5 ±5 % 52.0 ±5 % 51.3 ±5 % 51.0 ±5 % 49.0 ±10 % 48.9 ±10 % 48.7 ±10 % 48.6 ±10 %	52.5 ± 5 % 52.0 ± 5 % 51.3 ± 5 % 51.0 ± 5 % 49.0 ± 10 % 48.9 ± 10 % 48.7 ± 10 % 48.6 ± 10 % 48.5 ± 10 %	52.5 ±5 % 2.16 ±5 % 52.0 ±5 % 2.73 ±5 % 51.3 ±5 % 3.31 ±5 % 51.0 ±5 % 3.55 ±5 % 49.0 ±10 % 5.30 ±10 % 48.9 ±10 % 5.42 ±10 % 48.7 ±10 % 5.65 ±10 % 48.6 ±10 % 5.77 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps' : 54.6 sigma : 1.95
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

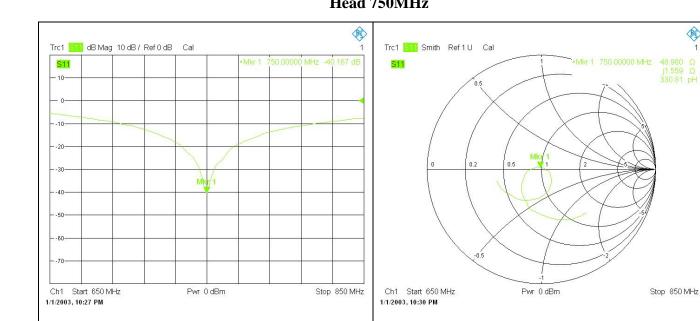
Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	51.42 (5.14)	23.48 (2.35)

Ref: ACR.332.9.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019		
Calipers	Carrera	CALIPER-01	01/2017	01/2020		
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018		
Multimeter	Keithley 2000	1188656	01/2017	01/2020		
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	01/2017	01/2020		
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020		

Page: 11/11

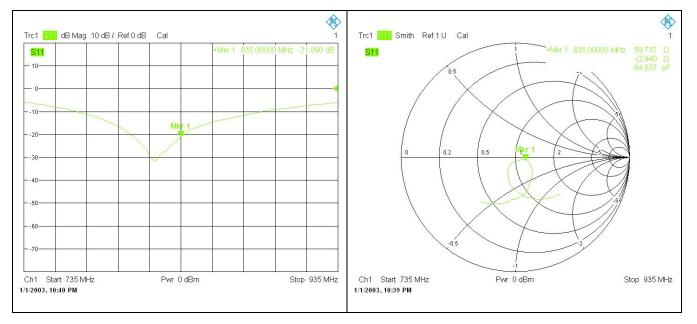

<Justification of the extended calibration>

If dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head 750MHz						
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)		
2017.11.27	-40.35	-	49.1	-		
2019.11.26	-40.17	4.23	48.98	-0.12		

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.

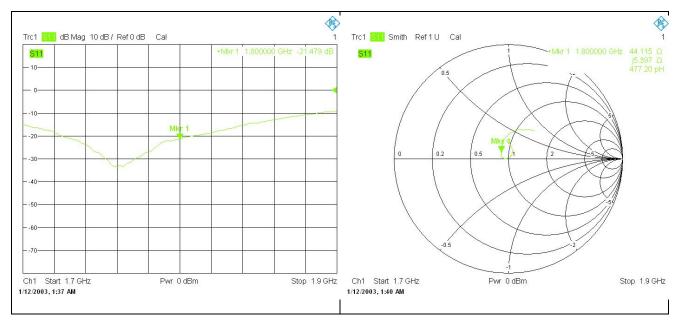
<Dipole Verification Data>



Head 750MHz

Head 835MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-21.05	-	59.7	-
2019.11.26	-21.09	-0.93	59.74	0.04

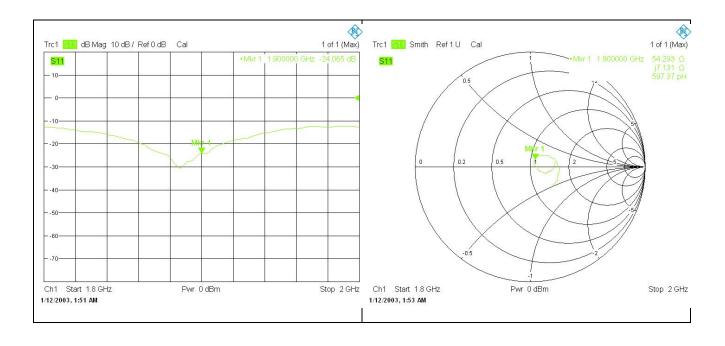
<Dipole Verification Data>



Head 835MHz

Head 1800MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-21.94	-	44.7	-
2019.11.26	-21.48	11.17	44.12	-0.58

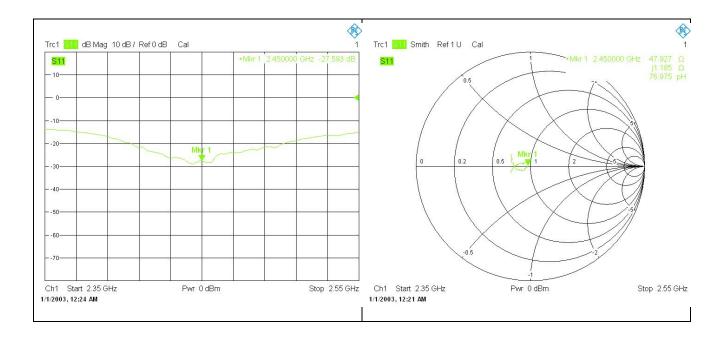
<Dipole Verification Data>


Head 1800MHz

Head 1900MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-24.08	-	51.2	-
2019.11.26	-24.07	0.23	54.29	3.09

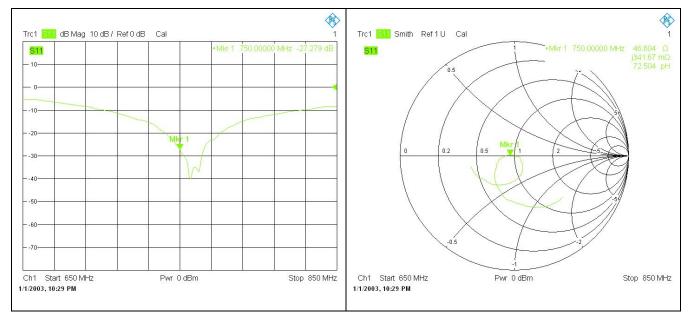
<Dipole Verification Data>

Head 1900MHz



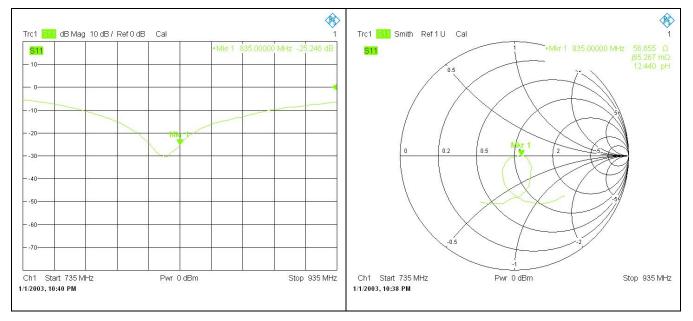
Head 2450MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-27.94	-	49.5	-
2019.11.26	-27.59	8.39	47.93	-1.57

<Dipole Verification Data>


Head 2450MHz

Body 750MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-27.32	-	46.8	-
2019.11.26	-27.28	0.93	46.60	-0.20

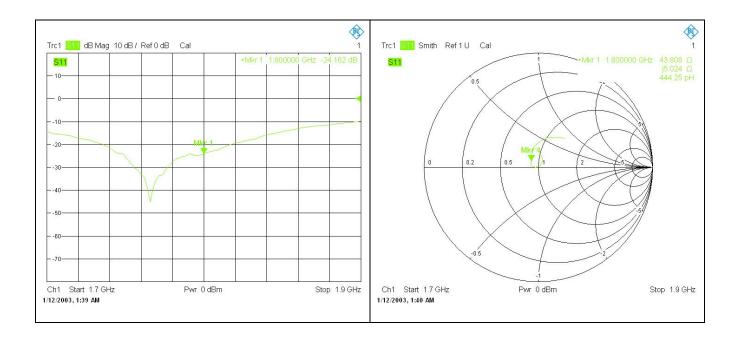
<Dipole Verification Data>



Body 750MHz

Body 835MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-25.17	-	55.1	-
2019.11.26	-25.25	-1.86	56.65	1.55

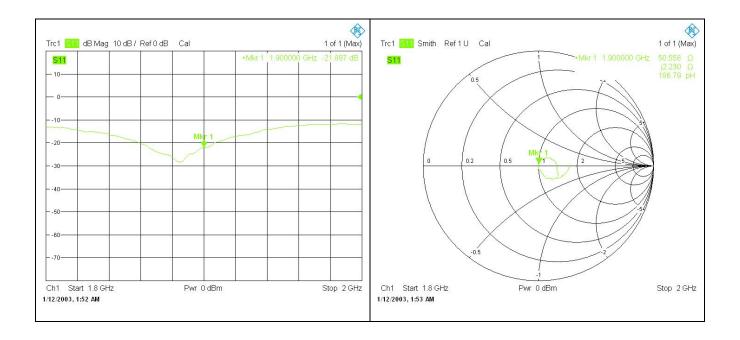
<Dipole Verification Data>


Body 835MHz

Body 1800MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-24.11	-	44.3	-
2019.11.26	-24.16	-1.15	43.81	-0.49

<Dipole Verification Data>

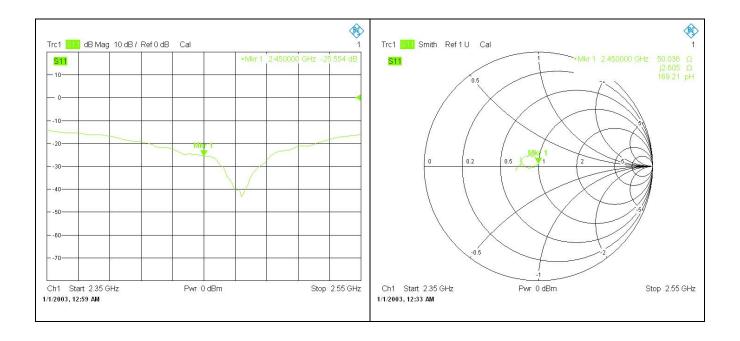
Body 1800MHz



Body 1900MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-22.17	-	46.8	-
2019.11.26	-21.90	6.41	50.56	3.76

<Dipole Verification Data>

Body 1900MHz



Body 2450MHz				
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
2017.11.27	-26.02	-	53.2	-
2019.11.26	-25.55	11.43	50.04	-3.16

<Dipole Verification Data>

Body 2450MHz

-End of the Report-