

EMC TEST REPORT

Applicant ZTE Corporation

FCC ID SRQ-ZTEA2023G

Product 5G NR Multi model smart phone

Model ZTE A2023G

Report No. R2204A0354-E1V3

Issue Date June 6, 2022

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2021)/ ANSI C63.4 -2014. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Wel Liu Prepared by: Wei Liu

Approved by: Guangchang Fan

Guangchang Fan

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

Report No.: R2204A0354-E1V3

1	Test	t Laboratory	. 5
	1.1	Notes of the Test Report	. 5
	1.2	Test facility	. 5
	1.3	Testing Location	. 5
2	Ger	neral Description of Equipment under Test	. 6
	2.1	Applicant and Manufacturer Information	. 6
	2.2	General information	
	2.3	Applied Standards	. 9
	2.4	Test Mode	10
3	Test	t Case Results	11
	3.1	Radiated Emission	11
	3.2	Conducted Emission	16
4	Mai	n Test Instruments	19
A١	INEX	A: The EUT Appearance	20
		B: Test Setup Photos	

MC Test Report No.: R2204A0354-E1V3

Version	Revision description	Issue Date
Rev.0	Initial issue of report.	May 28, 2022
Rev.1	Update information.	May 29, 2022
Rev.2	Update information.	June 5, 2022
Rev.3	Update description.	June 6, 2022

Note: This revised report (Report No. R2204A0354-E1V3) supersedes and replaces the previously issued report (Report No. R2204A0354-E1V2). Please discard or destroy the previously issued report and dispose of it accordingly.

MC Test Report No.: R2204A0354-E1V3

Summary of measurement results

Number	er Test Case Clause in FCC Rules			
1	Radiated Emission	FCC Part15.109, ANSI C63.4-2014	PASS	
2	Conducted Emission	FCC Part15.107, ANSI C63.4-2014	PASS	

Date of Testing: April 13, 2022 ~ April 14, 2022

Date of Sample Received: April 12, 2022

Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Test Laboratory

Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 **Test facility**

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

+86-021-50791141/2/3-8000 Fax:

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant	ZTE Corporation			
Applicant address	ZTE Plaza, #55 Keji Road South, Hi-Tech Industrial Park, Nanshan			
Applicant address	District, Shenzhen, China			
Manufacturer	ZTE Corporation			
Manufacturer address	ZTE Plaza, #55 Keji Road South, Hi-Tech Industrial Park, Nanshan			
Manufacturer address	District, Shenzhen, China			

2.2 General information

EUT Description							
Device Type	Portable Device						
Model	ZTE A2023G						
SN	327324660004						
HW Version	ZTE A2023GHW1.0						
SW Version	MyOS12.0.2 A2023G (GLB					
Power Rating	DC 3.89V from battery o						
Connecting I/O Port(s)	Please refer to the User'	· · · · · · · · · · · · · · · · · · ·					
Antenna Type	Internal Antenna						
	Band	Tx (MHz)	Rx (MHz)				
	GSM 850	824 ~ 849	869 ~ 894				
	GSM 1900	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band II	1850 ~ 1910	1930 ~ 1990				
	WCDMA Band IV	1710 ~ 1755	2110 ~ 2155				
	WCDMA Band V	824 ~ 849	869 ~ 894				
	LTE Band 2	1850 ~ 1910	1930 ~ 1990				
Fraguenov	LTE Band 4	1710 ~ 1755	2110 ~ 2155				
Frequency	LTE Band 5	824 ~ 849	869 ~ 894				
	LTE Band 7	2500 ~ 2570	2620 ~ 2690				
	LTE Band 12	699 ~ 716	729 ~ 746				
	LTE Band 17	704 ~ 716	734 ~ 746				
	LTE Band 28 subset 1	703 ~ 733	758 ~ 788				
	LTE Band 28 subset 2	718 ~ 748	773 ~ 803				
	LTE Band 38	2570 ~ 2620	2570 ~ 2620				
	LTE Band 40 Subset 1	2305 ~ 2315	2305 ~ 2315				

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

Page 6 of 21

EMC Test Report Report No.: R2204A0354-E1V3 LTE Band 40 Subset 2 2350 ~ 2360 2350 ~ 2360 LTE Band 41 2496 ~ 2690 2496 ~ 2690 LTE Band 66 1710 ~ 1780 2110 ~ 2180 NR_{n2} 1850 ~ 1910 1930 ~ 1990 NR_{n5} 824 ~ 849 869 ~ 894 NR n7 2500 ~ 2570 2620 ~ 2690 NR n41 2496~2690 2496~2690 NR n66 1710~1780 2110 ~ 2180 NR n77 subset 1 $3450 \sim 3550$ $3450 \sim 3550$ NR n77 subset 2 3700 ~ 3980 3700 ~ 3980 NR n78 subset 1 $3450 \sim 3550$ $3450 \sim 3550$ NR n78 subset 2 3700 ~ 3800 3700 ~ 3800 Bluetooth 2400 ~ 2483.5 2400 ~ 2483.5 Wi-Fi 2.4G 2400 ~ 2483.5 2400 ~ 2483.5 Wi-Fi 5G(U-NII-1) 5150 ~ 5250 5150 ~ 5250 Wi-Fi 5G(U-NII-2A) 5250 ~ 5350 5250 ~ 5350 Wi-Fi 5G(U-NII-2C) 5470 ~ 5725 5470 ~ 5725 5725 ~ 5850 Wi-Fi 5G(U-NII-3) 5725 ~ 5850 NFC 13.56 13.56 CA Band CA 7C,CA 41 DC 66A-n5A DC 28A-n41A; **EN-DC Band** DC 2A-n66A; DC 5A-n66A DC_2A-n77A; DC_5A-n77A; DC_12A-n77A; DC 2A-n78A; DC 7A-n78A; DC 28A-n78A **EUT Accessory** Manufacturer: ShenZhen KunXing Technology Co., Ltd. Adapter Model: STC-A59152050AC-Z Manufacturer: Zhuhai Cosmx Battery Co., Ltd. Battery Model: Li3949T44P8h806459 Manufacturer: JUWEI ELECTRONICS CO.,LTD Earphone 1 Model: JWEP1092-Z01 Manufacturer: ShenZhen FDC Electronic Co.,Ltd Earphone 2 Model: DEM-9A Manufacturer: King Power Electronics Co., Ltd USB Cable 1 Model: TC20-TC20-W-100-M-6A-HSF Manufacturer: Luxshare-ICT Co., Ltd USB Cable 2 Model: TC20-TC20-W-100-M-6A-HSF Type-C to 3.5 mm Manufacturer: HUIZHOU JUWEI ELECTRONICS CO., LTD Headphone Jack Model: HMZ24 Auxiliary test equipment PC Manufacturer: Microsoft Corporation PC

TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E

Model: L20170076

EMC Test Report Report Report No.: R2204A0354-E1V3

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. There is more than one USB cable, each one should be applied throughout the compliance test respectively, and however, only the worst case USB cable 2 for CE; USB cable 1for RE will be recorded in this report.

EMC Test Report No.: R2204A0354-E1V3

2.3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards FCC Code CFR47 Part15B (2021) ANSI C63.4-2014

2.4 Test Mode

Test Mode					
Mode 1:	Adapter +USB cable+ Front camera On +GNSS Rx + GSM/WCDMA/LTE/SA/NSA/Bluetooth/ WLAN receiver				
Mode 2:	Adapter +USB cable+ Front camera On +GNSS Rx + GSM/WCDMA/LTE/SA/NSA/Bluetooth/ WLAN Traffic				
Mode 3:	Adapter +USB cable+ Rear camera On +GNSS Rx + GSM/WCDMA/LTE/SA/NSA/Bluetooth/ WLAN receiver				
Mode4:	Adapter +USB cable+ Rear camera On +GNSS Rx + GSM/WCDMA/LTE/SA/NSA/Bluetooth/ WLAN Traffic				
Mode 5:	Adapter + USB cable + Mp4				
Mode 6:	Adapter + USB cable + Mp3				
Mode 7:	Adapter + USB cable + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN receiver				
Mode 8:	Adapter + USB cable + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN Traffic				
Mode 9:	USB Copy(EUT with PC) + USB cable				
Mode 10:	Front Camera On + GNSS Rx + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN receiver				
Mode 11:	Front Camera On + GNSS Rx + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN Traffic				
Mode 12	Rear camera On + GNSS Rx + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN receiver				
Mode 13	Rear camera On + GNSS Rx + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN Traffic				
Mode 14:	MP4				
Mode 15	MP3				
Mode 16:	GNSS Rx + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN receiver				
Mode 17:	GNSS Rx + GSM/WCDMA/LTE/SA/NSA/ Bluetooth/ WLAN Traffic				

During the test, the preliminary test was performed in all modes, mode 9 with USB cable 1 is selected as the worst condition for RE, mode 3 with USB cable 2 is selected as the worst condition for CE. The test data of the worst-case condition was recorded in this report.

Report No.: R2204A0354-E1V3

3 Test Case Results

3.1 Radiated Emission

Ambient condition

Temperature	Relative humidity	Pressure
15°C~35°C	30%~60%	101.5kPa

Report No.: R2204A0354-E1V3

Methods of Measurement

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level.

The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power.

Set the spectrum analyzer in the following:

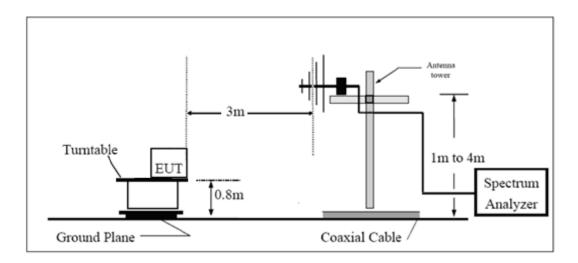
Below 1GHz:

RBW=100 kHz / VBW=300 kHz / Sweep=AUTO

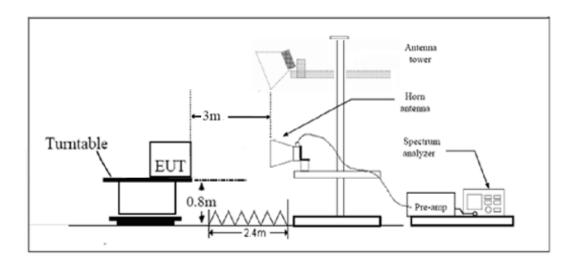
Above 1GHz:

- (a) PEAK Detector: RBW=1MHz / VBW=3MHz/ Sweep=AUTO
- (b) AVERAGE Detector: RBW=1MHz / VBW=3MHz / Sweep=AUTO

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded.


During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; PC is connected to server via a long LAN cable.

Took Cotum


Test Setup

Below 1GHz

Report No.: R2204A0354-E1V3

Above 1GHz

Note: Area side: 2.4mX3.6m

Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast.

EMC Test Report No.: R2204A0354-E1V3

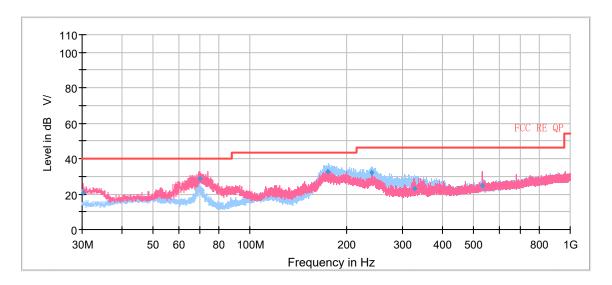
Limits

Class B

Frequency (MHz)	Field Strength (dBµV/m)	Detector
30 -88	40.0	Quasi-peak
88-216	43.5	Quasi-peak
216 – 960	46.0	Quasi-peak
960-1000	54.0	Quasi-peak
1000-5 th harmonic of the highest	54	Average
frequency or 40GHz, which is lower	74	Peak

Measurement Uncertainty

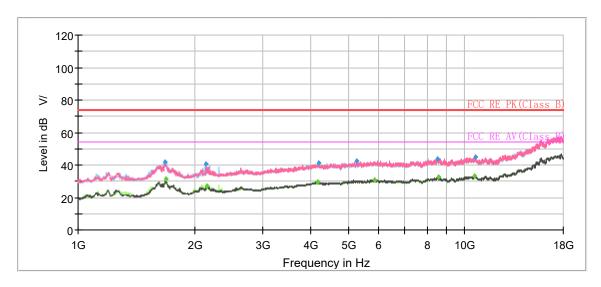
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
30MHz~200MHz	4.17 dB
200MHz~1000MHz	4.84 dB
1GHz~18GHz	4.35 dB

Test Results

Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. The Emissions in the frequency band 18GHz – 26.5GHz is more than 20dB below the limit are not reported.

The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. A font (Level in dB V/)in the test plot =(level in dB μ V/m)



Radiated Emission from 30MHz to 1GHz

Frequency (MHz)	Quasi-Peak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
30.28	20.63	40.00	19.37	1000.00	100.0	V	311.00	17
69.78	28.93	40.00	11.07	1000.00	100.0	V	293.00	16
175.67	32.66	43.50	10.84	1000.00	184.0	Н	229.00	16
239.93	32.10	46.00	13.90	1000.00	109.0	Н	279.00	19
325.89	23.11	46.00	22.89	1000.00	100.0	Н	72.00	21
533.17	24.55	46.00	21.45	1000.00	225.0	V	162.00	25

Remark: 1. Correction Factor = Antenna factor + Insertion loss(cable loss+amplifier gain)

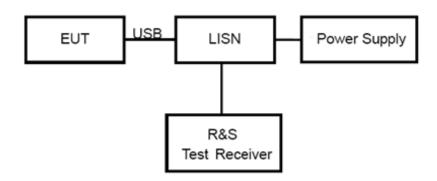
2. Margin = Limit - Quasi-Peak

Radiated Emission from 1GHz to 18GHz

Frequency (MHz)	Peak (dBuV/m)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
1677.88	41.89		74.00	32.11	500.00	100.0	Н	69.00	-15
1684.25		31.19	54.00	22.81	500.00	100.0	V	122.00	-15
2143.25	40.44		74.00	33.56	500.00	100.0	Н	161.00	-12
2156.00		27.16	54.00	26.84	500.00	100.0	Н	161.00	-12
4155.63		29.46	54.00	24.54	500.00	100.0	V	107.00	-3
4191.75	41.33		74.00	32.67	500.00	200.0	Н	211.00	-3
5258.50	42.61		74.00	31.39	500.00	200.0	V	310.00	-1
5864.13		31.01	54.00	22.99	500.00	200.0	V	289.00	0
8522.50	43.99		74.00	30.01	500.00	100.0	V	96.00	4
8558.63		32.36	54.00	21.64	500.00	100.0	Н	156.00	4
10598.63		33.41	54.00	20.59	500.00	200.0	Н	263.00	5
10694.25	45.04		74.00	28.96	500.00	200.0	Н	59.00	5

EMC Test Report Report No.: R2204A0354-E1V3

3.2 Conducted Emission


Ambient condition

Temperature	Relative humidity	Pressure
15°C~35°C	30%~60%	101.5kPa

Methods of Measurement

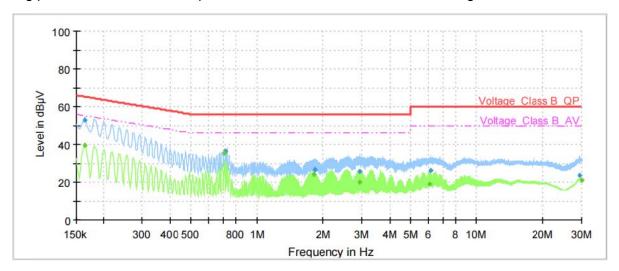
The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line.

Test Setup

Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz.

Limits

Frequency (MHz)	Conducted Limits(dBµV)					
	Quasi-peak	Average				
0.15 - 0.5	66 to 56 *	56 to 46 [*]				
0.5 - 5	56	46				
5 - 30	60	50				
* Decreases with the logarithm of the frequency.						


Measurement Uncertainty

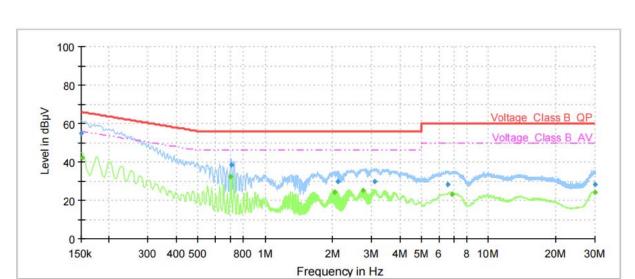
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB.

EMC Test Report No.: R2204A0354-E1V3

Test Results

Following plots, Blue trace uses the peak detection; Green trace uses the average detection.

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.16		39.39	55.28	15.89	1000.00	9.000	L1	ON	21
0.16	52.83		65.28	12.45	1000.00	9.000	L1	ON	21
0.71		35.26	46.00	10.74	1000.00	9.000	L1	ON	20
0.71	36.24		56.00	19.76	1000.00	9.000	L1	ON	20
1.80		24.00	46.00	22.00	1000.00	9.000	L1	ON	20
1.82	26.85		56.00	29.15	1000.00	9.000	L1	ON	20
2.92	25.70		56.00	30.30	1000.00	9.000	L1	ON	19
2.93		19.92	46.00	26.08	1000.00	9.000	L1	ON	19
6.08		18.98	50.00	31.02	1000.00	9.000	L1	ON	19
6.12	26.18		60.00	33.82	1000.00	9.000	L1	ON	19
29.31	23.52		60.00	36.48	1000.00	9.000	L1	ON	20
29.99		21.18	50.00	28.82	1000.00	9.000	L1	ON	20


Remark: Correct factor=cable loss + LISN factor

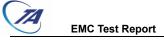
L line

Conducted Emission from 150 KHz to 30 MHz

TA Technology (Shanghai) Co., Ltd.

TA-MB-06-001E

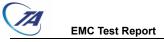
Frequency (MHz)	QuasiPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.15	54.80		66.00	11.20	1000.00	9.000	N	ON	21
0.15		42.20	55.88	13.68	1000.00	9.000	N	ON	21
0.70		32.50	46.00	13.50	1000.00	9.000	N	ON	20
0.71	38.63		56.00	17.37	1000.00	9.000	N	ON	20
2.03		24.15	46.00	21.85	1000.00	9.000	N	ON	20
2.11	29.51		56.00	26.49	1000.00	9.000	N	ON	20
2.74		25.26	46.00	20.74	1000.00	9.000	N	ON	19
3.11	29.97	1	56.00	26.03	1000.00	9.000	N	ON	19
6.60	28.34		60.00	31.66	1000.00	9.000	N	ON	20
6.83		23.21	50.00	26.79	1000.00	9.000	N	ON	20
29.96	28.15		60.00	31.85	1000.00	9.000	N	ON	20
30.00		24.01	50.00	25.99	1000.00	9.000	N	ON	20


Remark: Correct factor=cable loss + LISN factor

N line Conducted Emission from 150 KHz to 30 MHz

4 Main Test Instruments

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Date	Expiration Time					
Radiated Emission										
EMI Test Receiver	R&S	ESR	102389	2021-06-04	2022-06-03					
Signal Analyzer	R&S	FSV40	100815	2021-05-15	2022-05-14					
TRILOG Broadband Antenna	SCHWARZBECK	9163	1023	2021-06-07	2024-06-06					
Horn Antenna	Schwarzbeck	BBHA 9120D 430		2019-12-16	2022-12-15					
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09					
Software	R&S	EMC32	9.26.01	1	1					
Conducted Emission										
Artificial main network	R&S	ENV216 102 ⁻		2020-12-13	2022-12-12					
EMI Test Receiver	R&S	ESR	101667	2021-05-15	2022-05-14					
Software	R&S	EMC32	10.35.10	/	/					


*****END OF REPORT *****

MC Test Report No.: R2204A0354-E1V3

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

EMC Test Report No.: R2204A0354-E1V3

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.