HAC TEST REPORT **Applicant** ZTE Corporation FCC ID SRQ-ZTEA2022PG **Product** 5G NR/LTE/WCDMA/GSM(GPRS) Multi-Mode Digital Mobile Phone Marketing ZTE Axon 30 Ultra 5G Model ZTE A2022PG **Report No.** R2103A0263-H1V2 **Issue Date** May 12, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **ANSI C63.19-2011.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Yu Wang Approved by: Guangchang Fan Guangchang Fan TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 ## **Table of Contents** | 1 | Test | Laboratory | 4 | |---|-------|--|-----| | | 1.1 | Notes of the Test Report | 4 | | | 1.2. | Test facility | 4 | | | 1.2 | Testing Location | 4 | | | 1.3 | Laboratory Environment | 5 | | 2 | Stat | ement of Compliance | 6 | | 3 | Des | cription of Equipment under Test | 7 | | 4 | Test | Specification and Operational Conditions | 10 | | | 4.1 | Test Specification | 10 | | 5 | Test | Information | .11 | | | 5.1 | Operational Conditions during Test | .11 | | | 5.1.1 | General Description of Test Procedures | .11 | | | 5.2 | HAC RF Measurements System Configuration | .11 | | | 5.2.1 | HAC Measurement Set-up | .11 | | | 5.2.2 | Probe System | 12 | | | 5.2.3 | Test Arch Phantom & Phone Positioner | 13 | | | 5.3 | RF Test Procedures | 14 | | | 5.4 | System Check | 16 | | | 5.5 | Modulation Interference Factor | 17 | | | 5.6 | Justification of Held to Ear Modes Tested | 18 | | | 5.6.1 | Analysis of RF Air Interface Technologies | 18 | | | 5.6.2 | Average Antenna Input Power & Evaluation for Low-power Exemption | 19 | | 6 | Test | Results | 20 | | | 6.1 | ANSI C63.19-2011 Limits | 20 | | | 6.2 | Summary Test Results | 21 | | 7 | Mea | surement Uncertainty | 22 | | 8 | Maiı | n Test Instruments | 23 | | Α | NNEX. | A: System Check Results | 24 | | Α | NNEX | B: Graph Results | 27 | | Α | NNEX | C: E-Probe Calibration Certificate | 51 | | Α | NNEX | D: CD835V3 Dipole Calibration Certificate | 73 | | Α | NNEX | E: CD1800V3 Dipole Calibration Certificate | 78 | | Α | NNEX | F: CD2600V3 Dipole Calibration Certificate | 83 | | Δ | NNEX | G: DAE4 Calibration Certificate | 88 | Report No.: R2103A0263-H1V2 | Version | Revision description | Issue Date | |---------|-------------------------------------|----------------| | Rev.0 | Initial issue of report. | April 27, 2021 | | Rev.1 | Rev.1 Update description in Page 9. | | | Rev.2 | Rev.2 Update description in Page 9. | | Note: This revised report (Report No. R2103A0263-H1V2) supersedes and replaces the previously issued report (Report No. R2103A0263-H1V1). Please discard or destroy the previously issued report and dispose of it accordingly. ## 1 Test Laboratory ## 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA Technology** (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. ## 1.2. Test facility ## FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. ## A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. ## 1.2 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Fan Guangchang Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: fanguangchang@ta-shanghai.com ## 1.3 Laboratory Environment | Temperature | Min. = 18°C, Max. = 28 °C | | |---|---------------------------|--| | Relative humidity | Min. = 0%, Max. = 80% | | | Ground system resistance | < 0.5 Ω | | | Ambient noise is checked and found very low and in compliance with requirement of standards | | | Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards. ## 2 Statement of Compliance Table 2.1: The Total M-rating of each tested band | Mode | Rating | |--------------------|--------| | GSM 850/GSM 1900 | M4 | | WCDMA Band II/IV/V | M4 | | LTE FDD & LTE TDD | M4 | ## The Total M-rating is M4 Date of Testing: April 16, 2021 Date of Sample Received: March 18, 2021 Note: Refer to section 7 Evaluation for Low-power Exemption. RF Emission testing for this device is required only for GSM voice modes and Wi-Fi 2.4G modes. WCDMA and LTE mode applicable air-interfaces are exempt from testing in accordance with C93.19-2011 Clause 4.4 and are rated M4. 2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. # 3 Description of Equipment under Test ## **Client Information** | Applicant | ZTE Corporation | | | |----------------------|---|--|--| | Applicant address | ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan | | | | Applicant address | District, Shenzhen, Guangdong, 518057, P.R.China | | | | Manufacturer | ZTE Corporation | | | | Manufacturer address | ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan | | | | Manufacturer address | District, Shenzhen, Guangdong, 518057, P.R.China | | | ## **General Technologies** | Device Type: | Portable Device | | | | |--------------------|--|-----------------------|--|--| | State of Sample: | Prototype Unit | | | | | Model: | ZTE A2022PG | | | | | IMEI: | IMEI 1:861959050001424 | | | | | IIVICI: | IMEI 2:861959050002224 | | | | | Hardware Version | ZTE A2022PGHW1.0 | | | | | Software Version 1 | MyOS11.0.0_A2022PG_GLB | | | | | Software Version 2 | MyOS11.0.0_A2022PG_TEL | | | | | Antenna Type: | Internal Antenna | | | | | Flash | 8+128G/12+256G | | | | | | GSM850/1900:3 | | | | | Power Class: | WCDMA Band II/IV/V:3 | | | | | Power Class. | LTE FDD Band 2/4/5/7/12/17/26:3 | | | | | | LTE TDD Band 38/41:3 | | | | | | GSM850/1900:max power | | | | | Power Level | WCDMA Band II/IV/V: max power | | | | | 1 OWC: LCVC! | LTE FDD Band 2/4/5/7/12/17/26: max power | | | | | | LTE TDD Band 38/41:max power | | | | | Test Modulation: | (GSM)GMSK EGPRS; (WCDMA) QPS | SK; (LTE) QPSK, 16QAM | | | | | 64QAM; | | | | | | Band | Tx (MHz) | | | | | GSM850 | 824 ~ 849 | | | | | GSM1900 | 1850 ~ 1910 | | | | Operating | WCDMA Band II 1850 ~ 1910 | | | | | Frequency | WCDMA Band IV 1710 ~ 1755 | | | | | Range(s): | WCDMA Band V 824 ~ 849 | | | | | | LTE FDD 2 1850 ~ 1910 | | | | | | LTE FDD 4 | 1710 ~ 1755 | | | | | LTE FDD 5 | 824 ~ 849 | | | | | LTE FDD 7 | 2500~2570 | | |----------|---|-----------|--| | | LTE FDD 12 | 699 ~ 716 | | | | LTE FDD 17 | 704~716 | | | | LTE FDD 26 | 814~849 | | | | LTE TDD 38 | 2570~2620 | | | | LTE TDD 41 | 2496~2690 | | | | Accessory Equipment | | | | Battery | Manufacturer: Zhuhai CosMX Battery Co., Ltd. | | | | Dattery | Model: Li3941T44P8h826453 | | | | Earnhone | Manufacturer: Shen zhen FDC Electronic Co.,Ltd. | | | | Earphone | Model: DEM-9A | | | Note:1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. 2. The two different software versions are for different market requirement. | Air-
Interface | Band
(MHz) | Туре | ANSI C63.19 tested | Simultaneous
Transmissions | Name of Voice
Service | Power
Reduction | | | |-------------------|---------------|------|--------------------|-------------------------------|--------------------------|--------------------|-----|----| | | 850 | VO | Voc | N/A | N/A | No | | | | GSM | 1900 | VO | Yes | | | | | | | | GPRS/EGPRS | DT | No | | | | | | | | 850 | | | | | | | | | WCDMA | 1700 | VO | Yes | N/A | N/A | No | | | | WCDIVIA | 1900 | | | IN/A | IN/A | No | | | | | HSPA | DT | No | | | | | | | | 1900(B2) | | | es N/A | VoLTE | No | | | | | 1700(B4) | | Yes | | | | | | | LTE-FDD | 850(B5/B26) | VD | | | | | | | | | 2600(B7) | | | | | | | | | | 700(B12/17) | | | | | | | | | LTE-TDD | 2600(B38) | VD | Yes | Yes N/A | VoLTE | No | | | | LIE-IDD | 2600(B41) | טי | | | | | | | | 5G NR | 2500(n41) | DT | No | LTE, Wi-Fi, BT | N/A | No | | | | | 2450 | | | WWAN | | | | | | | 5200 U-NII 1 | | | | | | | | | Wi-Fi | 5300 U-NII 2A | DT | No | No | No WWAN,BT, W | WWAN,BT, Wi-Fi | N/A | No | | | 5500 U-NII 2C | | | 2.4G | | | | | | | 5800 U-NII 3 | | | | | | | | | Bluetooth
(BT) | 2450 | DT | No | WWAN, Wi-Fi | N/A | No | | | VO= legacy Cellular Voice Service from Table 7.1 in 7.4.2.1 of ANSI C63.19-2011 DT= Digital Transport only (no voice) VD= IP voice service over digital transport. #: Ref Lev in accordance with 7.4.2.1 of ANSI C63.19-2011 ##: Ref Lev in accordance with the July 2012 VoLTE interpretation. #### Remark - 1. It applies the low power exemption based on ANSI C63.19-2011 - 2. This device has no VoWIFI and Google duo function. ## 4 Test Specification and
Operational Conditions ## 4.1 Test Specification The tests documented in this report were performed in accordance with the following: FCC CFR47 Part 20.19 ANSI C63.19-2011 KDB 285076 D01 HAC Guidance v05 KDB 285076 D03 HAC FAQ v01r03 5 Test Information ## 5.1 Operational Conditions during Test ## **5.1.1 General Description of Test Procedures** The phone was tested in all normal configurations for the ear use. The EUT is mounted in the device holder equivalent as for classic dosimeter measurements. The acoustic output of the EUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame The EUT shall be moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete. The EUT holder is on the yellow base plate of the Test Arch phantom. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The EUT is commanded to operate at maximum transmitting power. ## 5.2 HAC RF Measurements System Configuration ### 5.2.1 HAC Measurement Set-up These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. Cell controller systems contain the power supply, robot controller, teach pendant (Joystick) and remote control, and are used to drive the robot motors. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Report No.: R2103A0263-H1V2 Report No.: R2103A0263-H1V2 Remote Control Box PC Electro Optical Coupler (EOC) Signallamps M/2 DAE Measurement Server (opt link) DAST Probe (opt link) 2xserial +digitalI/O EUT Device Light Beam Positioner Robot Controler (CS7MB-ty ٥ Figure 1 HAC Test Measurement Set-up The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. ### 5.2.2 Probe System Teach Pendant The HAC measurements were conducted with the E-Field Probe ER3DV6 and the H-Field Probe H3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. ### **E-Field Probe Description** Construction One dipole parallel, two dipoles normal to probe axis Built-in shielding against static charges PEEK enclosure material Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy $\pm 6.0\%$, k=2) Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz) Linearity: ± 0.2 dB (100 MHz to 3 GHz) Figure 2 ER3DV6 E-field Directivity $\pm 0.2 \text{ dB}$ in air (rotation around probe axis) **Probe** ± 0.4 dB in air (rotation normal to probe axis) Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB Dimensions Overall length: 330 mm (Tip: 16 mm) Tip diameter: 8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.5 mm Application General near-field measurements up to 6 GHz Field component measurements Fast automatic scanning in phantoms ### 5.2.3 Test Arch Phantom & Phone Positioner The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: 370 x 370 x 370 mm). The Device reference point is set for the EUT at 6.3 mm, the Grid reference point is on the upper surface at the origin of the coordinates, and the "user point \Height Check 0.5 mm" is 0.5mm above the center, allowing verication of the gap of 0.5mm while the probe is positioned there. The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field <±0.5 dB. Figure 3 HAC Phantom & Device Holder ## 5.3 RF Test Procedures ## The evaluation was performed with the following procedure: - 1. Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system. - 2. Position the WD in its intended test position. The gauge block can simplify this positioning. Note that a separate E-field gauge block will be needed if the center of the probe sensor elements is at different distances from the tip of the probe. - 3. Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test. - 4. The center sub-grid shall center on the center of the axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception. - 5. Record the reading. - 6. Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids. The distance between measurement points shall be sufficient to assure the identification of the maximum reading. - 7. Identify the five contiguous sub-grids around the center sub-grid with the lowest maximum field strength readings. Thus the six areas to be used to determine the WD's highest emissions are identified and outlined for the final manual scan. Please note that a maximum of five blocks can be excluded for both E-field measurements for the WD output being measured. Stated another way, the center sub-grid and three others must be common to both the E-field measurements. - 8. Identify the maximum field reading within the non-excluded sub-grids identified in Step 7. - 9. Convert the maximum field strength reading identified in Step 8 to V/m or A/m, as appropriate. For probes which require a probe modulation factor, this conversion shall be done using the appropriate probe modulation factor and the calibration. - 10. Repeat Step 1 through Step 10 for both the E-field measurements. - 11. Compare this reading to the categories in ANSI C63.19 Clause 8 and record the resulting category. The lowest category number listed in 8.2, Table 8.3 obtained in Step 10 for either E-field determines the M category for the audio coupling mode assessment. Record the WD category rating. Figure 4 WD reference and plane for RF emission measurements ## 5.4 System Check ### **Validation Procedure** Place a dipole antenna meeting the requirements given in ANSI C63.19 D.11 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probe so that: The probes and their cables are parallel to the coaxial feed of the dipole antenna. The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions. Position the E-field probe at a 15 mm distance from the center of the probe element to the top surface. Validation was performed to verify that measured E-field is within +/-18% from the target reference values provided by the manufacturer. "Values within +/-18% are acceptable. Of which 12% is deviation and 13% is measurement uncertainty." Figure 5 Dipole Validation Setup | Frequency
(MHz) | Input Power (mW) | Target ¹ Value (V/m) | Measured ² Value (V/m) | Deviation ³
(%) | Test Date | |--------------------|------------------|---------------------------------|-----------------------------------|-------------------------------|-----------| | 835 | 100 | 106.6 | 107.3 | -0.65 | 4/16/2021 | | 1880 | 100 | 90.5 | 92.1 | 1.77 | 4/16/2021 | | 2600 | 100 | 87.3 | 87.4 | 0.11 | 4/16/2021 | ## 5.5 Modulation Interference Factor For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF The MIF may be determined using a radiated RF field or a conducted RF signal, - b) Using RF illumination or conducted coupling, apply the specific modulated signal in question to the measurement system at a level within its confirmed operating dynamic range. - c) Measure the steady-state rms level at the output of the fast probe or sensor. - d) Measure the steady-state average level at the weighting output. - e)
Without changing the square-law detector or weighting system, and using RF illumination or conducted coupling, substitute for the specific modulated signal a 1kHz, 80% amplitude modulated carrier at the same frequency and adjust its strength until the level at the weighting output equals the step d) measurement. - f) Without changing the carrier level from step e), remove the 1 kHz modulation and again measure the steady-state ms level indicated at the output of the fast probe or sensor. - g) The MIF for the specific modulation characteristic is provided by the ratio of the step f) measurement to the step c) measurement, expressed in dB (20 x log(step f)/step c)). Based on the KDB285076 D01v05, the handset can also use the MIF values predetermined by the test equipment manufacturer, and the following table lists the MIF values evaluated by DASY manufacturer (SPEAG), and the test result will be calculated with the MIF parameter automatically. | SPEAG UID | UID version | Communication system | MIF(dB) | |-----------|-------------|---------------------------------------|---------| | 10021 | DAC | GSM-FDD (TDMA, GMSK) | 3.63 | | 10011 | CAB | UMTS-FDD (WCDMA) | -27.23 | | 10175 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | -15.63 | | 10169 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | -15.63 | | 10181 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | -15.63 | | 10172 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | -1.62 | ## 5.6 Justification of Held to Ear Modes Tested ## 5.6.1 Analysis of RF Air Interface Technologies - a. According to the April 2013 TCB workshop slides, LTE and other OTT data services are outside the current definition of a managed CMRS service and are currently not required to be evaluated. - b. No associated T-coil measurements for VoIP over WIFI CMRS have been made in accordance with the guidance issued by OET in KDB publication 285076 D02 T-Coil testing for CMRS IP. - c. An analysis was performed, following the guidance of 4.3 and 4.4 of the ANSI standard, of the RF air interface technologies being evaluated. The factors that will affect the RF interference potential were evaluated, and the worst case operating modes were identified and used in the evaluation. A WD's interference potential is a function both of the WD's average near-field field strength and of the signal's audio-frequency amplitude modulation characteristics. Per 4.4, RF air interface technologies that have low power have been found to produce sufficiently low RF interference potential, So it is possible to exempt them from the product testing specified in Clause 5 of the ANSI standard. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is <17dBm for all of its operating modes. RF air interface technologies exempted from testing in this manner are automatically assigned an M4 rating to be used in determining the overall rating for the WD. The worst case MIF plus the worst case average antenna input power for all modes are investigated below to determine the testing requirements for this device. ## 5.6.2 Average Antenna Input Power & Evaluation for Low-power Exemption An RF air interface technology of a device is exempt from testing when its average antenna input power plus its **MIF is** ≤17 **dBm** for any of its operating modes. If a device supports multiple RF air interfaces, each RF air interface shall be evaluated individually. | Band | Maximum Average Antenna Input Power (dBm) | Worst Case
MIF (dB) | Maximum Average
Antenna Input
Power + MIF (dBm) | Low power exemption | | | |-------------------------------------|---|------------------------|---|---------------------|--|--| | GSM 850 | 33.50 | 3.63 | 37.13 | No | | | | GSM 1900 | 31.00 | 3.63 | 34.63 | No | | | | WCDMA B2 | 25.00 | -27.23 | -2.23 | Yes | | | | WCDMA B4 | 25.00 | -27.23 | -2.23 | Yes | | | | WCDMA B5 | 25.00 | -27.23 | -2.23 | Yes | | | | LTE FDD B2 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B4 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B5 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B7 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B12 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B17 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B26 | 25.00 | -15.63 | 9.37 | Yes | | | | LTE FDD B38 | 25.00 | -1.62 | 23.38 | No | | | | LTE FDD B41 | 25.00 | -1.62 | 23.38 | No | | | | Note: 1. MIF values applied in this | Note: 1. MIF values applied in this test report were provided by the HAC equipment provider, SPEAG. | | | | | | Report No.: R2103A0263-H1V2 ## **Test Results** ## 6.1 ANSI C63.19-2011 Limits | Category | Telephone RF parameters < 960 MHz | Telephone RF parameters > 960 MHz | |-------------|-----------------------------------|-----------------------------------| | Near field | ld E-field emissions | | | Category M1 | 50 to 55 dB (V/m) | 40 to 45 dB (V/m) | | Category M2 | 45 to 50 dB (V/m) | 35 to 40 dB (V/m) | | Category M3 | 40 to 45 dB (V/m) | 30 to 35 dB (V/m) | | Category M4 | < 40 dB (V/m) | < 30 dB (V/m) | Report No.: R2103A0263-H1V2 ## **Summary Test Results** | Band | Channel
/Frenqucy (MHz) | MIF
(dB) | E-field
(dBV/m) | Power
Drift (dB) | Category | Graph
Results | |-------------|----------------------------|-------------|--------------------|---------------------|----------|------------------| | | 128/824.2 | | 30.21 | -0.04 | M4 | 1 | | GSM 850 | 190/836.6 | 3.63 | 30.27 | 0.26 | M4 | 2 | | | 251/848.8 | | 29.92 | 0.00 | M4 | 3 | | | 512/1850.2 | | 21.94 | -0.74 | M4 | 4 | | GSM 1900 | 661/1880 | 3.63 | 22.56 | -0.50 | M4 | 5 | | | 810/1909.8 | | 23.68 | -0.47 | M4 | 6 | | | 37850/2580 | | 17.99 | -0.46 | M4 | 7 | | LTE FDD B38 | 38000/2595 | -1.62 | 18.20 | -0.31 | M4 | 8 | | | 38150/2610 | | 15.77 | -0.34 | M4 | 9 | | | 39750/2506 | | 17.72 | 0.09 | M4 | 10 | | LTE FDD B41 | 40620/2593 | -1.62 | 17.13 | 0.42 | M4 | 11 | | | 41490/2680 | | 17.52 | 0.05 | M4 | 12 | ## 7 Measurement Uncertainty Measurement uncertainty evaluation template for DUT HAC RF test | Error source | Туре | Uncertainty Value (± %) | Prob.
Dist. | k | c _{i/} E | c _{i\} H | Standard
Uncertainty
ui (± %) E | Degree of freedom Veff or vi | |--|-----------|-------------------------|----------------|-------|-------------------|-------------------|---------------------------------------|------------------------------| | Measurement system | | | | | | | | | | Probe Calibration | В | 5.1 | N | 1 | 1 | 1 | 5.1 | 8 | | Axial Isotropy | В | 4.7 | R | 1.732 | 1 | 1 | 2.7 | ∞ | | Sensor Displacement | В | 16.5 | R | 1.732 | 1 | 0.145 | 9.5 | ∞ | | Boundary Effects | В | 2.4 | R | 1.732 | 1 | 1 | 1.4 | ∞ | | Test Arch | В | 7.2 | R | 1.732 | 1 | 0 | 4.2 | ∞ | | Linearity | В | 4.7 | R | 1.732 | 1 | 1 | 2.7 | ∞ | | Scaling to Peak Envelope Power | В | 2.0 | R | 1.732 | 1 | 1 | 1.2 | ∞ | | System Detection Limit | В | 1.0 | R | 1.732 | 1 | 1 | 0.6 | ∞ | | Readout Electronics | В | 0.3 | N | 1 | 1 | 1 | 0.3 | ∞ | | Response Time | В | 0.8 | R | 1.732 | 1 | 1 | 0.5 | ∞ | | Integration Time | В | 2.6 | R | 1.732 | 1 | 1 | 1.5 | ∞ | | RF Ambient Conditions | В | 3.0 | R | 1.732 | 1 | 1 | 1.7 | ∞ | | RF Reflections | В | 12.0 | R | 1.732 | 1 | 1 | 6.9 | ∞ | | Probe Positioner | В | 1.2 | R | 1.732 | 1 | 0.67 | 0.7 | ∞ | | Probe Positioning | Α | 4.7 | R | 1.732 | 1 | 0.67 | 2.7 | ∞ | | Extra. And Interpolation | В | 1.0 | R | 1.732 | 1 | 1 | 0.6 | ∞ | | Test sample related | | | | | | | | | | Device Positioning Vertical | В | 4.7 | R | 1.732 | 1 | 0.67 | 2.7 | 80 | | Device Positioning Lateral | В | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 8 | | Device Holder and
Phantom | В | 2.4 | R | 1.732 | 1 | 1 | 1.4 | 8 | | Power Drift | В | 5.0 | R | 1.732 | 1 | 1 | 2.9 | ∞ | | Phantom and Setup related | d | | <u> </u> | | | | l | | | Phantom Thickness | В | 2.4 | R | 1.732 | 1 | 0.67 | 1.4 | ∞ | | Combined standard uncertain | inty (%) | <u>l</u> | 1 | | 1 | L . | 15.3 | | | Expanded Std. uncertainty o | n power (| K=2) | | | | | 30.6 | | | Expanded Std. uncertainty on field (K=2) | | | | | | | 15.3 | | ## 8 Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration
Time | |---|--------------|------------------|------------------|---------------------|--------------------| | Power meter | Agilent | E4417A | GB41291714 | 2020-05-17 | 2021-05-16 | | Power sensor | Agilent | N8481H | MY50350004 | 2020-05-17 | 2021-05-16 | | Signal Generator | Agilent | N5181A | MY50140143 | 2020-05-17 | 2021-05-16 | | Amplifier | INDEXSAR | IXA-020 | 0401 | 2020-05-17 | 2021-05-16 | | Wideband radio
communication
tester | R&S | CMW500 | 146734 | 2020-05-17 | 2021-05-16 | | E-Field Probe | SPEAG | EF3DV3 | 4048 | 2021-03-04 | 2022-03-03 | | DAE | SPEAG | DAE4 | 1317 | 2021-02-23 | 2022-02-22 | | Validation Kit
835MHz | SPEAG | CD835V3 | 1133 | 2020-10-12 | 2021-10-11 | | Validation Kit
1880MHz | SPEAG | CD1880V3 | 1115 | 2020-10-12 | 2021-10-11 | | Validation Kit
2600MHz | SPEAG | CD2600V3 | 1016 | 2021-01-18 | 2022-01-17 | | Hygrothermograph | Anymetr | HTC-1 | TY2020A043 | 2020-05-19 | 2021-05-18 | | HAC Phantom | SPEAG | SD HAC P01
BB | 1117 | / | / | | Software for Test | Speag | DASY5 | / | / | 1 | | Software for Tissue | Agilent | 85070 | / | / | / | *****END OF REPORT ***** ## **ANNEX A: System Check Results** ## HAC_System Performance Check at 835MHz_E **DUT: Dipole 835 MHz; Type: CD835V3; SN:1023** Date: 4/16/2021 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Phantom section: RF Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with
AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm 2/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 91 V/m; Power Drift = 0.003 dB Applied MIF = 0.00 dB Maximum value of peak Total field = 107.3 V/m ## Hearing Aid Near-Field Category: M4 (AWF 0 dB) Peak E-field in V/m | Grid 1 | Grid 2 | Grid 3 | |----------|----------|----------| | 101.2 M4 | 104.3 M4 | 101.5 M4 | | Grid 4 | Grid 5 | Grid 6 | | 61.2 M4 | 64.23 M4 | 62.39 M4 | | Grid 7 | Grid 8 | Grid 9 | | 104.5 M4 | 107.3 M4 | 104.3 M4 | ## HAC_System Performance Check at 1880MHz_E DUT: Dipole 1880 MHz; Type: CD1880V3; SN: 1018 Date: 4/16/2021 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 86V/m; Power Drift = 0.002 dB Applied MIF = 0.00 dB Maximum value of peak Total field = 92.1 V/m Hearing Aid Near-Field Category: M2 (AWF 0 dB) Peak E-field in V/m | Grid 1 | Grid 2 | Grid 3 | |----------|----------|---------------------------| | 91.78 M2 | 98.10 M2 | 93.42M2 | | Grid 4 | Grid 5 | Grid 6 | | | | | | 71.76 M3 | 73.56 M3 | 71.17 M3 | | | | 71.17 M3
Grid 9 | 0 dB = 98.10 V/m ## HAC_System Performance Check at 2600MHz_E DUT: Dipole 2600 MHz; Type: CD2600V3; SN: 1016 Date: 4/16/2021 Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Ambient Temperature:22.3 $^{\circ}$ C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # E Scan - measurement distance from the probe sensor center to CD2600 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=0.5000 mm, dy=0.5000 mm Maximum value of peak Total field = 87.40 V/m Applied MIF = 0.00 dB Device Reference Point: 0, 0, -6.3 mm Reference Value = 71.52V/m; Power Drift = 0.01 dB ## Hearing Aid Near-Field Category: M2 (AWF 0 dB) Peak E-field in V/m | Grid 1 | Grid 2 | Grid 3 | |----------|----------|----------| | 83.35 M2 | 86.32 M2 | 85.70M2 | | Grid 4 | Grid 5 | Grid 6 | | 79.62 M3 | 81.46 M3 | 81.15 M3 | | Grid 7 | Grid 8 | Grid 9 | | 84.28 M2 | 87.40 M2 | 86.59 M2 | ## **ANNEX B: Graph Results** #### Plot 1 HAC RF E-Field GSM 850 Low Date: 4/16/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 824.2 MHz; Duty Cycle: 1:8.6896 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: RF Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) A2022PG GSM850 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 21.98 V/m; Power Drift = -0.04 dB Applied MIF = 3.63 dB RF audio interference level = 30.21 dBV/m **Emission category: M4** #### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 30.02 dBV/m | 31.02 dBV/m | 30.97 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 28.17 dBV/m | 30.21 dBV/m | 30.22 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 26.31 dBV/m | 28.94 dBV/m | 28.98 dBV/m | #### **Cursor:** Total = 31.02 dBV/m E Category: M4 Location: -6, -25, 7.7 mm 0 dB = 35.58 V/m = 31.02 dBV/m ## Plot 2 HAC RF E-Field GSM 850 Middle Date: 4/16/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:8.6896 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: RF Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG GSM850 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 21.69 V/m; Power Drift = 0.26 dB Applied MIF = 3.63 dB RF audio interference level = 30.27 dBV/m **Emission category: M4** ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 30.75 dBV/m | 31.57 dBV/m | 31.43 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 28.7 dBV/m | 30.27 dBV/m | 30.27 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 26.34 dBV/m | 28.82 dBV/m | 28.83 dBV/m | #### **Cursor:** Total = 31.57 dBV/m E Category: M4 Location: -4.5, -25, 7.7 mm 0 dB = 37.87 V/m = 31.57 dBV/m ## Plot 3 HAC RF E-Field GSM 850 High Date: 4/16/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 848.6 MHz; Duty Cycle: 1:8.6896 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: RF Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG GSM850 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 20.88 V/m; Power Drift = -0.00 dB Applied MIF = 3.63 dB RF audio interference level = 29.92 dBV/m **Emission category: M4** ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 30.51 dBV/m | 31.54 dBV/m | 31.39 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 28.24 dBV/m | 29.92 dBV/m | 29.91 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 25.51 dBV/m | 28.19 dBV/m | 28.21 dBV/m | #### **Cursor:** Total = 31.54 dBV/m E Category: M4 Location: -4.5, -25, 7.7 mm -9.44 0 dB = 37.74 V/m = 31.54 dBV/m ## Plot 4 HAC RF E-Field GSM 1900 Low Date: 4/16/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1850.2 MHz; Duty Cycle: 1:8.69961 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG GSM1900 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 5.562 V/m; Power Drift = -0.74 dB Applied MIF = 3.63 dB RF audio interference level = 21.94 dBV/m **Emission category: M4** ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 23.06 dBV/m | 23.1 dBV/m | 21.87 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 19.43 dBV/m | 19.36 dBV/m | 18.25 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 20.45 dBV/m | 21.94 dBV/m | 21.94 dBV/m | #### **Cursor:** Total = 23.10 dBV/m E Category: M4 Location: 5.5, -25, 7.7 mm -5.25 -6.56 0 dB = 14.30 V/m = 23.11 dBV/m ## Plot 5 HAC RF E-Field GSM 1900 Middle Date: 4/16/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz; Duty Cycle: 1:8.69961 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: RF Section **DASY5** Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG GSM1900 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 7.351 V/m; Power Drift = -0.50 dB Applied MIF = 3.63 dB RF audio interference level = 22.56 dBV/m **Emission category: M4** ### MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3
M4 | |------------------|------------------|------------------| | 24.19 dBV/m | 24.52 dBV/m | 23.25 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 20.91 dBV/m | 21.05 dBV/m | 19.83 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 20.88 dBV/m | 22.55 dBV/m | 22.56 dBV/m | #### **Cursor:** Total = 24.52 dBV/m E Category: M4 Location: 4, -25, 7.7 mm 0 dB = 16.83 V/m = 24.52 dBV/m ## Plot 6 HAC RF E-Field GSM 1900 High Date: 4/16/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1909.8 MHz; Duty Cycle: 1:8.69961 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG GSM1900 HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 7.595 V/m; Power Drift = -0.47 dB Applied MIF = 3.63 dB RF audio interference level = 23.68 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 24.48 dBV/m | 24.98 dBV/m | 23.93 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 20.83 dBV/m | 21.36 dBV/m | 20.74 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 22.11 dBV/m | 23.68 dBV/m | 23.64 dBV/m | #### **Cursor:** Total = 24.98 dBV/m E Category: M4 Location: 1, -25, 7.7 mm 0 dB = 17.74 V/m = 24.98 dBV/m ## Plot 7 HAC RF E-Field LTE Band 38 Low Date: 4/16/2021 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2580 MHz; Duty Cycle: 1:8.33105 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG LTE B38 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 9.792 V/m; Power Drift = -0.46 dB Applied MIF = -1.62 dB RF audio interference level = 17.99 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 17.24 dBV/m | 20.56 dBV/m | 20.49 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 17.34 dBV/m | 17.99 dBV/m | 18.05 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 16.36 dBV/m | 16.46 dBV/m | 16.61 dBV/m | #### **Cursor:** Total = 20.56 dBV/m E Category: M4 Location: -6.5, -25, 7.7 mm 0 dB = 10.66 V/m = 20.56 dBV/m ## Plot 8 HAC RF E-Field LTE Band 38 Middle Date: 4/16/2021 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2595 MHz; Duty Cycle: 1:8.33105 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG LTE B38 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 5.570 V/m; Power Drift = -0.31 dB Applied MIF = -1.62 dB RF audio interference level = 18.20 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 18.46 dBV/m | 21 dBV/m | 20.85 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 14.46 dBV/m | 17.28 dBV/m | 18.2 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 15.86 dBV/m | 17.86 dBV/m | 18.1 dBV/m | #### **Cursor:** Total = 21.00 dBV/m E Category: M4 Location: -5.5, -25, 7.7 mm 0 dB = 11.22 V/m = 21.00 dBV/m ## Plot 9 HAC RF E-Field LTE Band 38 High Date: 4/16/2021 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2610 MHz; Duty Cycle: 1:8.33105 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG LTE B38 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 5.674 V/m; Power Drift = -0.34 dB Applied MIF = -1.62 dB RF audio interference level = 15.77 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 15.81 dBV/m | 19.07 dBV/m | 18.94 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 13.16 dBV/m | 15.37 dBV/m | 15.77 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 14.88 dBV/m | 14.43 dBV/m | 14.9 dBV/m | #### **Cursor:** Total = 19.07 dBV/m E Category: M4 Location: -6.5, -25, 7.7 mm 0 dB = 8.984 V/m = 19.07 dBV/m ## Plot 10 HAC RF E-Field LTE Band 41 Low Date: 4/16/2021 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2506 MHz; Duty Cycle: 1:8.33105 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Low/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 8.649 V/m; Power Drift = 0.09 dB Applied MIF = -1.62 dB RF audio interference level = 17.72 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 18.11 dBV/m | 19.56 dBV/m | 19.48 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 17.72 dBV/m | 16.02 dBV/m | 16.43 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 16.18 dBV/m | 17.16 dBV/m | 17.47 dBV/m | #### **Cursor:** Total = 19.56 dBV/m E Category: M4 Location: -6, -25, 7.7 mm -4.81 -6.41 -8.01 0 dB = 9.509 V/m = 19.56 dBV/m ## Plot 11 HAC RF E-Field LTE Band 41 Middle Date: 4/16/2021 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:8.33105 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # A2022PG LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device Middle/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 5.321 V/m; Power Drift = 0.42 dB Applied MIF = -1.62 dB RF audio interference level = 17.13 dBV/m **Emission category: M4** ## MIF scaled E-field | Grid 1 M4 | Grid 2 M4 | Grid 3 M4 | |------------------|------------------|------------------| | 16.69 dBV/m | 19.91 dBV/m | 19.74 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 13.18 dBV/m | 16.04 dBV/m | 17.13 dBV/m | | Grid 7 M4 | Grid 8 M4 | Grid 9 M4 | | 15.27 dBV/m | 16.89 dBV/m | 17.13 dBV/m | #### **Cursor:** Total = 19.91 dBV/m E Category: M4 Location: -6, -25, 7.7 mm Report No.: R2103A0263-H1V2 0 dB = 9.901 V/m = 19.91 dBV/m ## Plot 12 HAC RF E-Field LTE Band 41 High Date: 4/16/2021 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2680 MHz; Duty Cycle: 1:8.33105 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: RF Section DASY5 Configuration: Sensor-Surface: 4mm (Mechanical Surface Detection) Probe: EF3DV3 - SN4048; ConvF(1, 1, 1); Calibrated:3/04/2021 Electronics: DAE4 SN1317; Calibrated: 2/23/2021 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4);
SEMCAD X Version 14.6.14 (7483) # A2022PG LTE B41 1RB HAC RF E-Field/E Scan - ER3D: 15 mm from Probe Center to the Device High/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 8.614 V/m; Power Drift = 0.05 dB Applied MIF = -1.62 dB RF audio interference level = 17.52 dBV/m **Emission category: M4** ## MIF scaled E-field | | Grid 3 M4
18.99 dBV/m | |---------------------------------|--| | Grid 4 M4
17.52 dBV/m | Grid 6 M4
16.2 dBV/m | | | Grid 9 M4
15.35 dBV/m | #### **Cursor:** Total = 19.07 dBV/m E Category: M4 Location: -6.5, -25, 7.7 mm 0 dB = 8.983 V/m = 19.07 dBV/m ## **ANNEX C: E-Probe Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-SH (Auden) Certificate No: EF3-4048_Mar21 ## **CALIBRATION CERTIFICATE** Object EF3DV3-SN:4048 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v7 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: March 4, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 789 | 23-Dec-20 (No. DAE4-789 Dec20) | Dec-21 | | Reference Probe ER3DV6 | SN: 2328 | 05-Oct-20 (No. ER3-2328_Oct20) | Oct-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 4, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EF3-4048 Mar21 Page 1 of 22 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étaionnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMx,y,z sensitivity in free space diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters En incident E-field orientation normal to probe axis Ep incident E-field orientation parallel to probe axis Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center). i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: IEEE Std 1309-2005, * IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz*, December 2005 b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.1.1, May 2017 Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell: f > 1800 MHz: R22 waveguide). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EF3-4048_Mar21 Page 2 of 22 Report No.: R2103A0263-H1V2 EF3DV3 - SN:4048 March 4, 2021 ## DASY/EASY - Parameters of Probe: EF3DV3 - SN:4048 ## **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)$ | 0.61 | 0.60 | 1.13 | ± 10.1 % | | DCP (mV) th | 100,4 | 101.0 | 96.1 | 2 10.1 70 | Calibration results for Frequency Response (30 MHz - 6 GHz) | Frequency
MHz | Target E-Field
V/m | Measured
E-field (En)
V/m | Deviation
E-normal
in % | Measured
E-field (Ep)
V/m | Deviation
E-normal
in % | Unc (k=2)
% | |------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|----------------| | 30 | 77.1 | 77.1 | 0.0% | 77.5 | 0.5% | ± 5.1 % | | 100 | 77.2 | 78.3 | 1.4% | 77.9 | 0.9% | ± 5.1 % | | 450 | 77.2 | 78.4 | 1.6% | 77.9 | 1.0% | ± 5.1 % | | 600 | 77.1 | 77.9 | 1.1% | 77.5 | 0.5% | ± 5.1 % | | 750 | 77.0 | 77.7 | 0.9% | 77.3 | 0.3% | ± 5.1 % | | 1800 | 143.1 | 139.2 | -2.7% | 139.3 | -2.7% | ± 5.1 % | | 2000 | 135.1 | 131.5 | -2.7% | 131.5 | -2.7% | ± 5.1 % | | 2200 | 127.6 | 123.4 | -3.3% | 124.5 | -2.5% | ± 5.1 % | | 2500 | 125.5 | 122.4 | -2.5% | 123.4 | -1.6% | ± 5.1 % | | 3000 | 79.3 | 75.6 | -4.8% | 76.7 | -3.4% | ± 5.1 % | | 3500 | 257.0 | 246.8 | -4.0% | 245.3 | -4.5% | ± 5.1 % | | 3700 | 249.2 | 238.9 | -4.1% | 238.7 | -4.2% | ± 5.1 % | | 5200 | 50.8 | 51.4 | 1.3% | 51.6 | 1.7% | ± 5.1 % | | 5500 | 46.9 | 46.7 | -0.4% | 48.2 | 2.7% | ± 5.1 % | | 5800 | 48.9 | 48.6 | -0.6% | 47.1 | -3.8% | ± 5.1 % | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the Report No.: R2103A0263-H1V2 EF3DV3 - SN:4048 March 4, 2021 ## DASY/EASY - Parameters of Probe: EF3DV3 - SN:4048 Calibration Results for Modulation Response | UID | Communication System Name | | dB | B
dBõV | С | dB | WR
mV | Max
dev. | Max
Unce
(k=2) | |--------
--|---|-------|-----------------------|-------|------------|----------|-------------|----------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 148.7 | ±3.5% | ± 4.7 % | | | 100 | Y | 0.00 | 0.00 | 1.00 | 1 | 198.8 | 200 | 1000000 | | | | Z | 0.00 | 0.00 | 1.00 | | 164.9 | - | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 3.28 | 67.28 | 10.90 | 10.00 | 60.0 | ±2.2% | ± 9.6 % | | AAA | 5 Ann 19 10 Street 19 11 11 12 12 12 12 12 12 12 12 12 12 12 | Y | 8.12 | 79.17 | 17.49 | | 60.0 | 12.00 | 23246 | | | | Z | 7.23 | 77.60 | 16.41 | | 60.0 | | 400 | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1.96 | 65.62 | 9.13 | 6.99 | 80.0 | ± 0.9 % | ± 9.6 % | | AAA | March Charles and American Control | Y | 18.20 | 89.54 | 19.50 | | 80.0 | 1 | C. C. C. | | | | Z | 20.00 | 90.33 | 19.13 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 1.10 | 64.95 | 7.97 | 3.98 | 95.0 | ± 0.8 % | ± 9.6 % | | AAA | 0.3.5.3.0.1.2. 4.3.0.0.14.5.4.0.1.3.2.2.2.2 | Y | 20.00 | 0.00 91.64 18.81 95.0 | L.C. | 231636 | | | | | | | Z | 20.00 | 91.70 | 18.22 | | 95.0 | | A STATE OF | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 86.71 | 13.97 | 2.22 | 120.0 | ±0.9 % | ± 9.6 % | | AAA | | Y | 20.00 | 95.29 | 19.36 | S Common I | 120.0 | | | | | | Z | 20.00 | 94.60 | 18.33 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 2.05 | 70.87 | 17.55 | 1.00 | 150.0 | ±1.6% | ± 9.6 % | | AAA | A STATE OF THE STA | Y | 2.07 | 68.57 | 16.94 | 100 | 150.0 | | | | | | Z | 1.92 | 68.52 | 16.48 | | 150.0 | - | | | 10388- | QPSK Waveform, 10 MHz | X | 2.58 | 71.18 | 17.73 | 0.00 | 150.0 | ±0.9% | ± 9.6 % | | AAA | The second secon | Y | 2.76 | 71.18 | 17.52 | | 150.0 | 2.40,600 | 11.577 | | | | Z | 2.61 | 70.63 | 17.25 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.75 | 72.17 | 19.95 | 3.01 | 150.0 | ±0.7% | ±9.6% | | AAA | | Y | 3.87 | 75.12 | 20.96 | | 150.0 | 2 12/12 | 2374 | | | V | Z | 2.93 | 71.68 | 19.50 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.60 | 67.89 | 16.47 | 0.00 | 150.0 | ± 0.8 % | ±9.6% | | AAA | And the second s | Y | 3.69 | 67.85 | 16.39 | 1707 | 150.0 | 1000 | 522.0 | | | | Z | 3.67 | 67.82 | 16.37 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.81 | 65.86 | 15.86 | 0.00 | 150.0 | ±1.9% | ±9.6% | | AAA | The state of s | Y | 5.00 | 65.70 | 15.74 | | 150.0 | 7.70.8000 | 7 - 3 - 3 - 14 | | | | Z | 4.82 | 65.38 | 15.61 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. But Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EF3DV3 - SN:4048 March 4, 2021 ## DASY/EASY - Parameters of Probe: EF3DV3 - SN:4048 ## Sensor Frequency Model Parameters | | Sensor X | Sensor Y | Sensor Z | |----------------------|----------|----------|----------| | Frequency Corr. (LF) | 0.03 | 0.06 | 5.84 | | Frequency Corr. (HF) | 2.82 | 2.82 | 2.82 | #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|------| | X | 43.6 | 281.72 | 35.56 | 6.29 | 0.39 | 4.92 | 1.28 | 0.00 | 1.00 | | Y | 66.5 | 433.14 | 36.02 | 14.85 | 0.88 | 4.99 | 1.18 | 0.31 | 1.01 | | Z | 52.7 | 349.97 | 37.21 | 9.42 | 0.62 | 5.01 | 1.06 | 0.17 | 1.00 | ## Other Probe Parameters | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle (°) | 156.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 12 mm | | Tip Length | 25 mm | | Tip Diameter | 4 mm | | Probe Tip to Sensor X Calibration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | | Probe Tip to Sensor Z Calibration Point | 1.5 mm | Certificate No: EF3-4048_Mar21 Page 5 of 22 EF3DV3 – SN:4048 March 4, 2021 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ ## Receiving Pattern (\$\phi\$), \$\text{9} = 90° Certificate No: EF3-4048_Mar21 Page 6 of 22 EF3DV3 - SN:4048 March 4, 2021 ## Receiving Pattern (φ), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Receiving Pattern (\$\phi\$), \$\theta = 90° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EF3-4048_Mar21 Page 7 of 22 EF3DV3 - SN:4048 March 4, 2021 ## Dynamic Range f(E-field) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EF3-4048_Mar21 Page 8 of 22 EF3DV3 - SN:4048 March 4, 2021 ## Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EF3-4048_Mar21 Page 9 of 22 EF3DV3 - SN:4048 March 4, 2021 ## Appendix: Modulation Calibration Parameters Appendix: Modulation Calibration Parameters | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |-------|-----|---|-----------|-------------|---------------------------| | 0 | | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802,15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 % | | 10039 | CAA | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.10 | ± 9.6 % | | 10042 | - | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 % | | 10042 | CAB | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 % | | 10058 | CAA | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | | | 10059 | DAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | | ± 9.6 % | | 10060 | CAB | | WLAN | 2.83 | ± 9.6 % | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | | 3.60 | ± 9.6 % | | | CAD | IEEE 802.11a/h WiFi 5 GHz
(OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAD | IEEE 802.11a/n WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAD | IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 % | | 10069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 10077 | CAB | IEEE 802,11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 10097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 % | | 10098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | Certificate No: EF3-4048_Mar21 Page 10 of 22 EF3DV3 – SN:4048 March 4, 2021 | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|--|---------|-------|-----------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | 7.7.7.1.1 | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.15 | ± 9.6 % | | 10118 | - | IEEE 802.11n (HT Mixed, 13.5 Mbps, 16-QAM) | | 8.07 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.59 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10141 | CAD | | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9,28 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ±9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ±9.6% | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1,4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | _ | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TOD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | | ± 9.6 % | | | CAF | | | 5.72 | | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6% | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDO | 6,50 | ± 9.6 % | Page 11 of 22 | EF3DV3 - SN:4048 | March 4 2021 | |------------------|--------------| | | | | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | |-------|-----|---|---------|-------|---------| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6% | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6% | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6% | | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ±9.6% | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ±9,6% | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9,6% | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | |
10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1,4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6% | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TOO | 9.90 | ± 9.6 % | | 10254 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.08 | ± 9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1,4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6% | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | EF3DV3 - SN:4048 | March 4, 2021 | |------------------|---------------| | | | | 10260 | Loss | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | |-------|------|---|----------|-------|---------| | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TOD | 9.24 | ± 9.6 % | | 10262 | _ | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TOD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TOD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ± 9.6 % | | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ±9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ±9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6 % | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ±9.6% | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ±9.6% | | 10304 | CAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ±9.6% | | 10307 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WIMAX | 14.49 | ±9.6% | | 10308 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WIMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | AAD | IDEN 1:6 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ±9.6% | | 10402 | AAA | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | | 10406 | AAD | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | EF3DV3 - SN:4048 March 4, 2021 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD | 7.82 | ± 9.6 % | |-------|-------|--|----------|-------|---------| | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ±9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ±9.6% | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ±9.6% | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802,11n (HT Greenfield, 43,3 Mbps, 16-QAM) | WLAN | 8,47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 % | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG |
W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ± 9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ± 9.6 % | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9.6 % | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ± 9.6 % | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | - | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10469 | AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.32 | ±9.6% | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10472 | AAC | LTE-TOD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10473 | AAA | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10475 | AAD | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6% | | 10477 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | | 8.32 | ± 9.6 % | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.18 | ± 9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 8.45 | ± 9.6 % | | 10483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TOD | 7.71 | ± 9.6 % | | 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.39 | ± 9.6 % | | 10485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 7,59 | ±9.6% | | 10487 | AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.38 | ± 9.6 % | | | 1,010 | The state of s | LTE-TDD | 8,60 | ± 9.6 % | | EF3DV3 - SN:4048 | March 4, 2021 | |------------------|---------------| | | | | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.70 | ± 9.6 % | |-------|-----|---|---------|------|---------| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ±9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ±9.6% | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ±9.6% | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ±9.6% | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ±9.6% | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 % | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | | 10503 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8,49 | ±9.6% | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ±9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ±9.6% | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ±9.6 % | | 10515 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ±9.6% | | 10517 | AAF | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ±9.6% | | 10527 | AAF | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAE | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ±9.6 % | | 10535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ±9.6 % | | 10538 | AAF | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ±9.6% | | 10540 | AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ±9.6% | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10542 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | | | IEEE 902 14 as MEEI (BOAN) | | 0.00 | 1 5.0 % | | 10544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.47 | ±9.6% | Report No.: R2103A0263-H1V2 | F3DV3 - SN:4048 | March 4, 2021 | |-----------------|---------------| | F3DV3 - 3N,4040 | Walch 4, 2021 | | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ±9.6% | |-------|-----|---|------|------|---------| | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ±9.6% | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8,37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802,11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz,
MCS4, 99pc dc) | WLAN | 8.61 | ±9.6% | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ±9.6% | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ±9.6 % | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1,99 | ±9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ±96% | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ±9.6 % | | 10578 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ±9.6% | | 10579 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ±9.6% | | 10580 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10584 | AAD | IEEE 802 11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10585 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAA | IEEE 802 11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10590 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10596 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 10599 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10602 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ±9.6% | | | | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | | | | | EF3DV3 - SN:4048 | EF3 | BDV3 | -SN | 1:4048 | |------------------|-----|------|-----|--------| |------------------|-----|------|-----|--------| March 4, 2021 | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | |-------|-----|---|-----------|-------|---------| | 10605 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ±9.6% | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ±9.6% | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ±9.6% | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | | | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.77 | ±9.6% | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.68 | ±9.6 % | | 10624 | AAC | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | | 8.96 | ± 9.6 % | | 10627 | 1 | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ±9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10630 | AAC | | WLAN | 8.85 | ±9.6% | | 10631 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10632 | AAC | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10633 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ±9.6% | | 10634 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.79 | ±9.6% | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.85 | ±9.6 % | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10645 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10646 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ± 9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11,96 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3,45 | ± 9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3,98 | ±9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ±9.6% | | 10662 | AAC | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ±9.6% | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2,19 | ±9.6% | | 10671 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ±9.6% | Page 17 of 22 | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-----|---------------------------------------|--------|------|----------| | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802,11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0,
99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8,91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ±9.6% | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ±9.6% | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ±9.6% | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ±9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ±9.6% | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ±9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ±9.6% | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ±9.6% | | | | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | 110011 | 0.12 | 1 3.0 70 | | EF3DV3 - SN:4048 | March 4, 2021 | |------------------|---------------| | | | | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |-------|-----|---|---------------|------|---------| | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | IEEE 802,11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | IEEE 802,11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ±9.6% | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | | | | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10752 | AAC | | WLAN | 8.82 | ± 9.6 % | | 77 77 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | ±9.6% | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10757 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10759 | AAC | IEEE 802,11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6% | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ±9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6% | EF3DV3 - SN:4048 March 4, 2021 | 10784 | TAAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | |-------|------
--|---------------|------|---------| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ±9.6% | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6% | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | _ | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 % | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | ±9.6% | | 10802 | AAC | The state of s | | 7,89 | ± 9.6 % | | | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ±9.6% | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6% | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ±9.6% | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,36 | ± 9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | - | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5GNR FR1 TDD | - | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | | | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | JOHN PRI 100 | 8.36 | ± 9.6 % | EF3DV3 - SN:4048 March 4, 2021 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 NHz, QPSK, 60 kHz) | 5GNR FR1 TDD | 8.41 | ±9.6% | |-------|-----|--|---------------|---------|---------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8,41 | ± 9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-0FDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-0FDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-0FDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-0FDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-0FDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6% | | 10872 | AAD | 5G NR (DFT-s-0FDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-0FDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6% | | 10874 | AAD | 5G NR (DFT-s-0FDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ±9.69 | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 9 | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.69 | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TOD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | | | 10884 | AAD | 5G NR (DFT-s-DFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | - 10.11 | ±9.69 | | 10885 | AAD | 5G NR (DFT-s-DFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-DFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD |
6.61 | ± 9.6 9 | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | | 6.65 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | | 8.35 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ±9.6% | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ±9.6% | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | | 8.41 | ±9.69 | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ±9.6% | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 9 | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10909 | - | 5G NR (DET - OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ±9.69 | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ±9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 9 | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 9 | | 10918 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 9 | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 9 | EF3DV3 - SN.4048 March 4, 2021 | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | |-------|-----|---|---------------|-------|---------| | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5GNR FR1 TDD | 5.84 | ±96% | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ±9.6% | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±96% | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 % | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5GNR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5GNR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-0FDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5GNR FR1 FDD | 5.89 | ±9.6% | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5GNR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5GNR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±96% | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5GNR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ±96% | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8 25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ±9.6% | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ±9.6% | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6% | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ±9.6% | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ±96% | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6% | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6% | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ±9.6% | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | ⁸ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EF3-4048_Mar21 Page 22 of 22 # **ANNEX D: CD835V3 Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 TA-SH (Auden) Certificate No: CD835V3-1133_Oct20 | Object | CD835V3 - SN: 1133 | | | |--
--|--|---| | Calibration procedure(s) | QA CAL-20.v7 Calibration Procedure for Validation Sources in air | | | | Calibration date: | October 12, 2020 | | | | This calibration certificate documen | nts the traceability to nation | onal standards, which realize the physical uni | its of measurements (SI). | | ine measurements and the uncert | ainties with confidence pr | robability are given on the following pages and | d are part of the certificate. | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | 2 and humidity < 70%. | | | | | | | Calibration Equipment used (M&TE | The state of s | Salara Control of the | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Decime with AIDD | A11 40 4000 | | Scriedaled Calibration | | | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | | | Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 103244
SN: 103245 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101) | Apr-21 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 103244
SN: 103245
SN: BH9394 (20k) | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21
Apr-21 | | Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Probe EF3DV3 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EF3-4013_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EF3-4013_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Dec-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013
SN: 781 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
31-Dec-19 (No. EF3-4013_Dec19)
27-Dec-19 (No. DAE4-781_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Dec-20
Dec-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013
SN: 781 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE4-781_Dec19) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013
SN: 781 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE4-781_Dec19) Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-23 In house check: Oct-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013
SN: 781
ID#
SN: GB42420191
SN: US38485102
SN: US37295597
SN: 837633/005 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE4-781_Dec19) Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power
meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013
SN: 781
ID#
SN: GB42420191
SN: US38485102
SN: US37295597 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE4-781_Dec19) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-23 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agillent 4419B Power sensor HP E4412A Power sensor HP E442A RF generator R&S SMT-06 Network Analyzer Agillent E8358A | SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID# SN: GB42420191 SN: US38485102 SN: US37295597 SN: B37633/005 SN: US41080477 Name | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE4-781_Dec19) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Dec-20
Dec-20 | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 4013
SN: 781
ID#
SN: GB42420191
SN: US38485102
SN: US37295597
SN: US37295597
SN: US41080477 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE-4-781_Dec19) Check Date (in house) 09-Oct-09 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 Signature | | Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Probe EF3DV3 DAE4 Secondary Standards Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 4013 SN: 781 ID# SN: GB42420191 SN: US38485102 SN: US37295597 SN: B37633/005 SN: US41080477 Name | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 31-Dec-19 (No. EF3-4013_Dec19) 27-Dec-19 (No. DAE4-781_Dec19) Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Dec-20 Dec-20 Scheduled Check In house check: Oct-23 | Certificate No: CD835V3-1133_Oct20 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ## Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by | / the | |---|-------| | coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 9 | 5%. | Certificate No: CD835V3-1133_Oct20 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|-----------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | 1. | | Scan resolution | dx, dy = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | # Maximum Field values at 835 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|--------------------------| | Maximum measured above high end | 100 mW input power | 109.2 V/m = 40.76 dBV/m | | Maximum measured above low end | 100 mW input power | 106.6 V/m = 40.56 dBV/m | | Averaged maximum above arm | 100 mW input power | 107.9 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|------------------| | 800 MHz | 16.0 dB | 40.2 Ω - 10.6 jΩ | | 835 MHz | 28.4 dB | 52.3 Ω + 3.1 jΩ | | 880 MHz | 17.8 dB | 58.2 Ω - 11.3 jΩ | | 900 MHz | 17.4 dB | 50.4 Ω - 13.7 jΩ | | 945 MHz | 21.7 dB | 45.6 Ω + 6.5 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD835V3-1133_Oct20 ### Impedance Measurement Plot #### **DASY5 E-field Result** Date: 12.10.2020 Test Laboratory: SPEAG Lab2 DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1133 Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 835 MHz; Calibrated: 31.12.2019 - Sensor-Surface: (Fix Surface) -
Electronics: DAE4 Sn781; Calibrated: 27.12.2019 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 134.1 V/m; Power Drift = 0.01 dB Applied MIF = 0.00 dB RF audio interference level = 40.76 dBV/m Emission category: M3 MIF scaled E-field | Grid 1 M3 | Grid 2 M3 | Grid 3 M3 | |-------------|-------------|-------------| | 40.14 dBV/m | 40.56 dBV/m | 40.53 dBV/m | | Grid 4 M4 | Grid 5 M4 | Grid 6 M4 | | 35.8 dBV/m | 36.09 dBV/m | 36.07 dBV/m | | Grid 7 M3 | Grid 8 M3 | Grid 9 M3 | | 40.46 dBV/m | 40.76 dBV/m | 40.71 dBV/m | 0 dB = 109.2 V/m = 40.76 dBV/m Certificate No: CD835V3-1133_Oct20 Page 5 of 5 # ANNEX E: CD1800V3 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étatonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-SH (Auden) Certificate No: CD1880V3-1115_Oct20 CALIBRATION CERTIFICATE Object CD1880V3 - SN: 1115 Calibration procedure(s) QA CAL-20.v7 Calibration Procedure for Validation Sources in air Calibration date: October 12, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Probe EF3DV3 SN: 4013 31-Dec-19 (No. EF3-4013 Dec19) Dec-20 DAE4 SN: 781 27-Dec-19 (No. DAE4-781_Dec19) Dec-20 Secondary Standards Check Date (in house) Scheduled Check Power meter Agilent 4419B SN: GB42420191 09-Oct-09 (in house check Oct-20) In house check: Oct-23 Power sensor HP E4412A SN: US38485102 05-Jan-10 (in house check Oct-20) In house check: Oct-23 Power sensor HP 8482A SN: U\$37295597 09-Oct-09 (in house check Oct-20) In house check: Oct-23 RF generator R&S SMT-06 SN: 837633/005 10-Jan-19 (in house check Oct-20) In house check: Oct-23 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-21 Name Function Leif Klysner Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 13, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: CD1880V3-1115 Oct20 Calibration Laboratory of Schmid & Partner Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Report No.: R2103A0263-H1V2 Accreditation No.: SCS 0108 The state of s Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. | The reported uncertainty of measurement is stated as the standard uncertainty of me | easurement multiplied by the | |--|-------------------------------| | and the state of t | The state of the state of the | | coverage factor k=2, which for a normal distribution corresponds to a coverage prob- | ability of approximately 95%. | Certificate No: CD1880V3-1115_Oct20 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 1880 MHz ± 1 MHz | | | Input
power drift | < 0.05 dB | | ## Maximum Field values at 1880 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 87.4 V/m = 38.83 dBV/m | | Maximum measured above low end | 100 mW input power | 86.8 V/m = 38.77 dBV/m | | Averaged maximum above arm | 100 mW input power | 87.1 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|------------------| | 1730 MHz | 30.4 dB | 53.0 Ω - 0.9 jΩ | | 1880 MHz | 21.2 dB | 52.3 Ω + 8.6 jΩ | | 1900 MHz | 22.1 dB | 54.1 Ω + 7.1 jΩ | | 1950 MHz | 29.6 dB | 52.0 Ω + 2.7 jΩ | | 2000 MHz | 18.7 dB | 47.0 Ω + 10.9 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1115_Oct20 ## Impedance Measurement Plot Certificate No: CD1880V3-1115_Oct20 Page 4 of 5 #### **DASY5 E-field Result** Date: 12.10.2020 Test Laboratory: SPEAG Lab2 DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1115 Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 31.12.2019 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 27.12.2019 - Phantom: HAC Test Arch with AMCC; Type: SD HAC PO1 BA; Serial: 1070 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 155.3 V/m; Power Drift = 0,02 dB Applied MIF = 0.00 dB RF audio interference level = 38.83 dBV/m Emission category: M2 MIF scaled E-field | Grid 1 M2 | Grid 2 M2 | Grid 3 M2 | |-------------|-------------|-------------| | 38.47 dBV/m | 38.77 dBV/m | 38.68 dBV/m | | Grid 4 M2 | Grid 5 M2 | Grid 6 M2 | | 35.98 dBV/m | 36.17 dBV/m | 36.14 dBV/m | | Grid 7 M2 | Grid 8 M2 | Grid 9 M2 | | 38.56 dBV/m | 38.83 dBV/m | 38.75 dBV/m | 0 dB = 87.38 V/m = 38.83 dBV/m Certificate No: CD1880V3-1115_Oct20 Page 5 of 5 # **ANNEX F: CD2600V3 Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-SH (Auden) Certificate No: CD2600V3-1016_Jan21 | Object | CD2600V3 - SN: 1016 | | | |--|---|--|--| | Calibration procedure(s) | QA CAL-20,v7 Calibration Procedure for Validation Sources in air | | | | Calibration date: | January 18, 2021 | | | | This calibration codificate down- | ate to a terral time it a say | | | | The measurements and the uncert | tainties with confidence or | onal standards, which realize the physical uni
robability are given on the following pages an | is or measurements (SI). | | and a second | minus min sumusmoe p | occounty one given on the following pages all | a are part of the certificate. | | Il calibrations have been conduct | ad in the cheed laborates | ry facility: environment temperature (22 ± 3)°C | C1-116 700/ | | an candidations have been conduct | ied in the cosed laborator | y facility, environment temperature (22 ± 3) C | and numidity < 70%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | Primary Standards | ID# | Col Date (Contillants No.) | 0.1.4.1.10.11.11 | | Power meter NRP | SN: 104778 | Cal Date (Certificate No.)
01-Apr-20 (No. 217-03100/03101) | Scheduled Calibration | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244
SN: 103245 | 01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: 103245
SN: BH9394 (20k) | 31-Mar-20 (No. 217-03101) | Apr-21 | | Type-N mismatch combination | SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106) | Apr-21 | | Garage and a second sec | SN: 4013 | 28-Dec-20 (No. EF3-4013 Dec20) | Apr-21 | | | 014, 4010 | | Dec-21 | | 1320 0120 12 | SN: 781 | | | | 11350 -1155 -15 | SN: 781 | 23-Dec-20 (No. DAE4-781_Dec20) | Dec-21 | | DAE4 | SN: 781 | 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) | | | DAE4
Secondary Standards | | | Scheduled Check | | DAE4
Secondary Standards
Power meter Aglient 44198 | ID# | Check Date (in house) | Scheduled Check
In house check: Oct-23 | | DAE4 Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A | ID#
SN: GB42420191 | Check Date (in house)
09-Oct-09 (in house check Oct-20) | Scheduled Check
In house check: Oct-23
In house check: Oct-23 | | DAE4 Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A Power sensor HP 8482A | ID#
SN: GB42420191
SN: US38485102 | Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) | Scheduled Check
In house check: Oct-23
In house check: Oct-23
In house check: Oct-23 | | Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | ID #
SN: GB42420191
SN: US38485102
SN: US37295597 | Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) | Scheduled Check
In house check: Oct-23
In house check: Oct-23
In house check: Oct-23
In house check: Oct-23 | | Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 | ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837533/005 | Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) | Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 | | Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837533/005 SN: US41080477 Name | Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Scheduled Check
In house check: Oct-23
In house check:
Oct-23
In house check: Oct-23
In house check: Oct-23 | | DAE4 Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837533/005 SN: US41080477 | Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 Signature | | Probe EF3DV3 DAE4 Secondary Standards Power meter Aglient 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: Approved by: | ID # SN: GB42420191 SN: US38485102 SN: US37295597 SN: 837533/005 SN: US41080477 Name | Check Date (in house) 09-Oct-09 (in house check Oct-20) 05-Jan-10 (in house check Oct-20) 09-Oct-09 (in house check Oct-20) 10-Jan-19 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Scheduled Check In house check: Oct-23 In house check: Oct-23 In house check: Oct-23 In house check: Oct-21 | Certificate No: CD2600V3-1016_Jan21 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### References [1] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. #### Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CD2600V3-1016_Jan21 Page 2 of 5 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------------|------------------|----------| | Phantom | HAC Test Arch | | | Distance Dipole Top - Probe Center | 15 mm | | | Scan resolution | dx, dy = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | | Input power drift | < 0.05 dB | | ## Maximum Field values at 2600 MHz | E-field 15 mm above dipole surface | condition | Interpolated maximum | |------------------------------------|--------------------|-------------------------| | Maximum measured above high end | 100 mW input power | 86.7 V/m = 38.76 dBV/m | | Maximum measured above low end | 100 mW input power | 85.7 V/m = 38.66 dBV/m | | Averaged maximum above arm | 100 mW input power | 86.2 V/m ± 12.8 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) ## **Antenna Parameters** | Frequency | Return Loss | Impedance | |-----------|-------------|-----------------| | 2450 MHz | 20.9 dB | 43.5 Ω - 5.3 jΩ | | 2550 MHz | 30.8 dB | 48.5 Ω + 2.4 jΩ | | 2600 MHz | 35.9 dB | 50.9 Ω + 1.4 jΩ | | 2650 MHz | 35.8 dB | 51.6 Ω - 0.1 jΩ | | 2750 MHz | 22.5 dB | 48.8 Ω - 7.4 jΩ | #### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD2600V3-1016_Jan21 ### Impedance Measurement Plot Certificate No: CD2600V3-1016_Jan21 Page 4 of 5 #### **DASY5 E-field Result** Date: 18.01.2021 Test Laboratory: SPEAG Lab2 DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1016 Communication System: UID 0 - CW ; Frequency: 2600 MHz Medium parameters used: $\sigma=0$ S/m, $\epsilon_r=1$; $\rho=0$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: - Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 28.12.2020 - · Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn781; Calibrated: 23.12.2020 - Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0, 0, -6.3 mm Reference Value = 69.15 V/m; Power Drift = -0.01 dB Applied MIF = 0.00 dB RF audio interference level = 38.76 dBV/m Emission category: M2 #### MIF scaled E-field | Grid 1 M2
38.51 dBV/m | Grid 2 M2
38.66 dBV/m | Grid 3 M2
38.46 dBV/m | |--|--------------------------|--------------------------| | - C. | Grid 5 M2
38.05 dBV/m | | | - 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- | Grid 8 M2
38.76 dBV/m | | 0 db = 80.73 V/III = 38.76 db V/I Certificate No: CD2600V3-1016_Jan21 Page 5 of 5 # ANNEX G: DAE4 Calibration Certificate E-mail: cttl@chinattl.com TA(Shanghai) Http://www.chinattl.cn Certificate No: Z21-60041 ## CALIBRATION CERTIFICATE Object DAE4 - SN: 1317 Calibration Procedure(s) Client : FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics Calibration date: February 23, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Cal Date(Calibrated by, Certificate No.) **Primary Standards** ID# Scheduled Calibration Process Calibrator 753 1971018 16-Jun-20 (CTTL, No.J20X04342) Jun-21 Calibrated by: Name **Function** Yu Zongying **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: February 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60041 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel:
+86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ett/@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system, # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z21-60041 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Iel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.dinattl.cn # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100 +300 mV Low Range 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters. Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.746 ± 0.15% (k=2) | 404 512 ± 0.15% (k=2) | 403 872 ± 0 15% (k=2) | | Low Range | 3.97990 ± 0.7% (k=2) | 3.99299 ± 0.7% (k=2) | 3.96969 ± 0.7% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 333° ± 1 ° | |---|------------| | | | Certificate No: Z21-60041