

SAR TEST REPORT

Applicant ZTE Corporation

FCC ID SRQ-ZTEMF971V

Product LTE Ufi

Marketing MF971V

Model MF971V

Report No. R1808A0375-S1

Issue Date September 20, 2018

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **IEEE 1528-2013**, **ANSI C95.1**: **1992/IEEE C95.1**: **1991.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

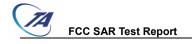
Performed by: Jiangpeng Lan

Jiang peng Lan

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3


FAX: +86-021-50791141/2/3-8000

Report No: R1808A0375-S1

Table of Contents

1 Te	st Laboratory	4
1.1	Notes of the Test Report	4
1.2	Test facility	4
1.3	Testing Location	5
1.4	Laboratory Environment	5
2 Sta	atement of Compliance	6
3 De	scription of Equipment under Test	7
4 Te	st Specification, Methods and Procedures	9
5 Op	perational Conditions during Test	10
5.1	Test Positions	10
5.2	Measurement Variability	10
5.3	Test Configuration	11
	5.3.1 GSM Test Configuration	11
	5.3.2 UMTS Test Configuration	11
	5.3.3 LTE Test Configuration	15
	5.3.4 Wi-Fi Test Configuration	
6 SA	AR Measurements System Configuration	18
6.1	SAR Measurement Set-up	
6.2	DASY5 E-field Probe System	19
6.3	SAR Measurement Procedure	
	ain Test Equipment	
8 Tis	ssue Dielectric Parameter Measurements&System Verification	23
8.1	Tissue Verification	
8.2	System Performance Check	24
9 No	ormal and Maximum Output Power	
9.1	GSM Mode	26
9.2	WCDMA Mode	
9.3	LTE Mode	
9.4	WLAN Mode	
10 Me	easured and Reported (Scaled) SAR Results	
10.1	EUT Antenna Locations	
10.2	Measured SAR Results	43
10.3	,,,,,,	
	easurement Uncertainty	
	CA: Test Layout	
	KB: System Check Results	
	C: Highest Graph Results	
	CD: Probe Calibration Certificate	
	CE: D835V2 Dipole Calibration Certificate	
	F: D1750V2 Dipole Calibration Certificate	
ANNE	CG: D1900V2 Dipole Calibration Certificate	116

FCC SAR Test Report	Report No: R1808A0375-S1
ANNEX H: D2450V2 Dipole Calibration Certificate	124
ANNEX I: D2600V2 Dipole Calibration Certificate	132
ANNEX J: D5GHzV2 Dipole Calibration Certificate	
ANNEX K:DAE4 Calibration Certificate	

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support

1.2 Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

regulatory compliance of the applicable standards stated above.

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C
Relative humidity	Min. = 30%, Max. = 70%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for the EUT are as follows: Table 2.1: Highest Reported SAR

	Highest Reported SAR (W/kg)						
Mode	1g Body-worn (Separation 10mm)	1g Hotspot SAR (Separation 10mm)					
GSM 850	0.866	0.869					
GSM 1900	0.434	0.434					
WCDMA Band II	1.135	1.135					
WCDMA Band V	1.014	1.014					
LTE FDD 2	1.125	1.125					
LTE FDD 4	1.024	1.024					
LTE FDD 5	0.959	0.959					
LTE FDD 7	1.055	1.055					
Wi-Fi (2.4G)	0.166	0.166					
Wi-Fi (5G)	0.463	0.963					
Date of Testing:	August 24, 2018~ September 11, 2018						

Note: 1) For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

Table 2.2: Highest Simultaneous Transmission SAR

Exposure Configuration	1g Body-worn (Separation 10mm)	1g Hotspot SAR (Separation 10mm)		
Highest Simultaneous Transmission SAR (W/kg)	1.598	1.598		

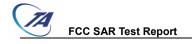
Note: 1. The detail for simultaneous transmission consideration is described in chapter 10.3.

3 Description of Equipment under Test

Client Information

Applicant	ZTE Corporation		
Applicant address	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan		
Applicant address	District, Shenzhen, Guangdong, 518057, P.R.China		
Manufacturer	ZTE Corporation		
Manufacturer address	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan		
Manufacturer address	District, Shenzhen, Guangdong, 518057, P.R.China		

General Technologies


Selierai recililologies	
Application Purpose:	Original Grant
EUT Stage	Identical Prototype
Model:	MF971V
IMEI:	869626020917227
Hardware Version:	drnA
Software Version:	BD_MF971VV1.0.0B05
Antenna Type:	Internal Antenna
Device Class:	С
Wi-Fi Hotspot	Wi-Fi 2.4G Wi-Fi 5G U-NII-1&U-NII-3
Power Class:	GSM 850:4 GSM 1900:1 UMTS Band II /V:3 LTE FDD 2/4/5/7:3
Power Level	GSM 850:level 5 GSM 1900:level 0 UMTS Band II /V:all up bits LTE FDD 2/4/5/7:max power
	EUT Accessory
Adapter 1	Manufacturer: SHENZHEN RUIJING INDUSTRIAL CO LTD Model: STC-A51A-Z
Adapter 2	Manufacturer: Jiangsu Chenyang Electron Co., Ltd. Model: STC-A51A-Z
Battery	Manufacturer: Zhongshan Tianmao Battery Co.,Ltd Model:Li3820T43P3h715345
USB Extend Cable	98cm Cable, Shielded

FCC SAR Test Report No: R1808A0375-S1

Wireless Technology and Frequency Range

Wireless Technology		Modulation	Operating mode	Tx (MHz)				
	850		☐Multi-slot Class:8-1UP ☑Multi-slot Class:10-2UP	824 ~ 849				
GSM	1900	GPRS(GMSK) EGPRS(GMSK,8PSK)	(GPRS) ⊠Multi-slot Class:12-4UP (EGPRS) □Multi-slot Class:33-4UP	1850 ~ 1910				
	Does this dev	vice support DTM (Dual Tr	ransfer Mode)? □Yes ⊠No					
UMTS	Band II	QPSK	HSDPA UE Category:24	1850 ~ 1910				
UNITS	Band V	QFSK	HSUPA UE Category:6	824 ~ 849				
	FDD 2			1850 ~ 1910				
	FDD 4 FDD 5	ODOK 100AM	Rel.10	1710 ~ 1755				
		QPSK, 16QAM,	Rei. 10	824 ~ 849				
LTE	FDD 7			2500 ~ 2570				
	Does this device support Carrier Aggregation (CA) □Yes ⊠No							
	Does this dev							
	2.40	DSSS,OFDM	802.11b/g/n HT20	2412 ~ 2462				
	2.4G	OFDM	802.11n HT40	2422 ~ 2452				
Wi-Fi	5G	OFDM	802.11a/n HT20/ HT40/ ac VHT20/ VHT40/ VHT80	5150 ~ 5250 5725 ~ 5850				
	Does this dev	vice support MIMO ⊠Yes	□No					

4 Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE 1528- 2013, ANSI C95.1: 1992/IEEE C95.1: 1991, the following FCC Published RF exposure KDB procedures:

248227 D01 802.11 Wi-Fi SAR v02r02

447498 D01 General RF Exposure Guidance v06

648474 D04 Handset SAR v01r03

865664 D01 SAR measurement 100 MHz to 6 GHz v01r04

865664 D02 RF Exposure Reporting v01r02

941225 D01 3G SAR Procedures v03r01

941225 D05 SAR for LTE Devices v02r05

941225 D06 Hotspot Mode v02r01

941225 D05A LTE Rel.10 KDB Inquiry Sheet v01r02

5 Operational Conditions during Test

5.1 Test Positions

According to the operating mode of the antenna, the report takes full account of the SAR conformance of the equipment, and evaluates the distance of all the surfaces that may be exposed to the human body at the distance of the 5mm, see Section 10.1.

5.2 Measurement Variability

Per FCC KDB Publication 865664 D01, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

5.3 Test Configuration

5.3.1 GSM Test Configuration

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot. The allowed power reduction in the multi-slot configuration is as following: Output power of reductions:

Table 5.1: The allowed power reduction in the multi-slot configuration

•	<u> </u>
Number of timeslots in uplink	Permissible nominal reduction of maximum
assignment	output power,(dB)
1	0
2	0 to 3,0
3	1,8 to 4,8
4	3,0 to 6,0

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. GSM voice and GPRS data use GMSK, which is a constant amplitude modulation with minimal peak to average power difference within the time-slot burst. For EDGE, GMSK is used for MCS 1 – MCS 4 and 8-PSK is used for MCS 5 – MCS 9; where 8-PSK has an inherently higher peak-to-average power ratio. The GMSK and 8-PSK EDGE configurations are considered separately for SAR compliance. The GMSK EDGE configurations are grouped with GPRS and considered with respect to time-averaged maximum output power to determine compliance. The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

5.3.2 UMTS Test Configuration

5.2.2.1 3G SAR Test Reduction Procedure

The default test configuration is to measure SAR with an established radio link between the EUT and a communication test set using a 12.2 kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations modes according to output power, exposure conditions and device operating capabilities. Maximum output power is verified by applying the applicable versions of 3GPP TS 34.121.

5.2.2.2 Body-worn accessory SAR

SAR for body-worn accessory configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the EUT with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding

FCC SAR Test Report No: R1808A0375-S1

spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the EUT, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC

5.2.2.3 Release 5 HSDPA Test Configuration

The 3G SAR test reduction procedure is applied to HSDPA body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices" section of this document, for the highest SAR body-worn accessory exposure configuration in 12.2 kbps RMC. EUT with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

HSDPA should be configured according to the UE category of a test device. The number of HSDSCH/ HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β c, β d), and HS-DPCCH power offset parameters (Δ ACK, Δ NACK, Δ CQI) should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Table 5.2: Subtests for UMTS Release 5 HSDPA

Sub-set	ρ	ß	β_{d}	Q /Q	eta_{hs}	CM(dB)	MPR(dB)
Sub-set	$eta_{ m c}$	β_d	(SF)	β_c/β_d	(note 1, note 2)	(note 3)	WIFK(UD)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
2	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \leftrightarrow \Delta_{hs} = \beta_{hs}/\beta_c = 30/15 \leftrightarrow \beta_{hs} = 30/15 * \beta_c$

Note2: CM=1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note3: For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

5.2.2.4 Release 6 HSUPA Test Configuration

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn accessory configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices" section of this document, for the highest body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA

FCC SAR Test Report Report Report No: R1808A0375-S1

configuration used for body-worn accessory measurements is tested for next to the ear head exposure.

Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in Table 2 and other applicable procedures described in the 'WCDMA EUT and 'Release 5 HSDPA Data Devices' sections of this document

Table 5.3: Sub-Test 5 Setup for Release 6 HSUPA

Sub- set	β_{c}	β_{d}	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	eta_{ec}	$eta_{ ext{ed}}$	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1} 47/15$ $\beta_{ed2} 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 *\beta_{c}$.
- Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.
- Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.
- Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.
- Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 5.4: HSUPA UE category

UE E-DCH Category	DCH E-DCH of HARQ DCH TIL ding		ding	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296
	2	8	2	4	2798	4 4500
2	2	4	10	4	14484	1.4592
3	2	4	10	4	14484	1.4592
	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	2		11484	5.76
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00

FCC SAR Test Report

7	4	8	2	2 SF2 & 2 SF4	22996	?
(No DPDCH)	4	4	10		20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.

UE Categories 1 to 6 supports QPSK only. UE Category 7 supports QPSK and 16QAM. (TS25.306-7.3.0)

5.2.2.5 HSPA and DC-HSDPA Test Configuration

SAR test exclusion may apply to 3GPP Rel. 6 HSPA and Rel. 8 DC-HSDPA. When SAR measurement is required for HSPA or DC-HSDPA, a KDB inquiry is required to confirm that the wireless mode configurations in the test setup have remained stable throughout the SAR measurements. Without prior KDB confirmation to determine the SAR results are acceptable, a PAG is required for equipment approval.

SAR test exclusion for HSPA and DC-HSDPA is determined according to the following:

- 1) The HSPA procedures are applied to configure 3GPP Rel. 6 HSPA devices in the required sub-test mode(s) to determine SAR test exclusion.
- 2) SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.
- 3) Regardless of whether a PBA is required, the following information must be verified and included in the SAR report for devices supporting HSPA or DC-HSDPA: a) The output power measurement results and applicable release version(s) of 3GPP TS 34.121.
- i) Power measurement difficulties due to test equipment setup or availability must be resolved between the grantee and its test lab.
- b) The power measurement results are in agreement with the individual device implementation and specifications. When Enhanced MPR (E-MPR) applies, the normal MPR targets may be modified according to the Cubic Metric (CM) measured by the device, which must be taken into consideration.
- c) The UE category, operating parameters, such as the β and Δ values used to configure the device for testing, power setback procedures described in 3GGPP TS 34.121 for the power measurements, and HSPA channel conditions (active and stable) for the entire duration of the measurement according to the required E-TFCI and AG index values.
- 4) When SAR measurement is required, the test configurations, procedures and power measurement results must be clearly described to confirm that the required test parameters are used, including E-TFCI and AG index stability and output power conditions.

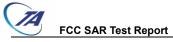


Table 5.5: HS-DSCH UE category

Table 5.1a: FDD HS-DSCH physical layer categories

HS-DSCH category	Maximum number of HS-DSCH codes received	Minimum inter-TTI interval	Maximum number of bits of an HS- DSCH transport block received within an HS-DSCH TTI NOTE 1	Total number of soft channel bits	Supported modulations without MIMO operation or dual cell operation	Supported modulatio ns with MIMO operation and without dual cell operation	Supported modulatio ns with dual cell operation
Category 1	5	3	7298	19200			
Category 2	5	3	7298	28800	1		
Category 3	5	2	7298	28800	1		
Category 4	5	2	7298	38400	1		
Category 5	5	1	7298	57600	ODOK 4004M		
Category 6	5	1	7298	67200	QPSK, 16QAM		
Category 7	10	1	14411	115200	1	Not	
Category 8	10	1	14411	134400	1	applicable (MIMO not	
Category 9	15	1	20251	172800	1		
Category 10	15	1	27952	172800	1	supported)	
Category 11	5	2	3630	14400	o Bold		
Category 12	5	1	3630	28800	QPSK		Not
Category 13	15	1	35280	259200	QPSK,		applicable
Category 14	15	1	42192	259200	16QAM, 64QAM		(dual cell operation
Category 15	15	1	23370	345600	QPSK, 16	MAG	not
Category 16	15	1	27952	345600	QPSK, TO	DQAIM	supported)
Category 17	15	1	35280	259200	QPSK, 16QAM, 64QAM	-	capponica
NOTE 2			23370	345600	_	QPSK, 16QAM	
Category 18 NOTE 3	15	1	42192	259200	QPSK, 16QAM, 64QAM	-	
NOIE 3			27952	345600	-	QPSK, 16QAM	
Category 19	15	1	35280	518400	ODEK 400A	M CAOAM	
Category 20	15	1	42192	518400	QPSK, 16QAI	VI, O4QAIVI	
Category 21	15	1	23370	345600			QPSK,
Category 22	15	1	27952	345600	1		16QAM
Category 23	15	1	35280	518400	-	-	QPSK,
Category 24	15	1	42192	518400			16QAM, 64QAM
					_		

5.3.3 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer

FCC SAR Test Report No: R1808A0375-S1

target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

C)A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

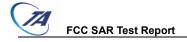
4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > $\frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the *reported* SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

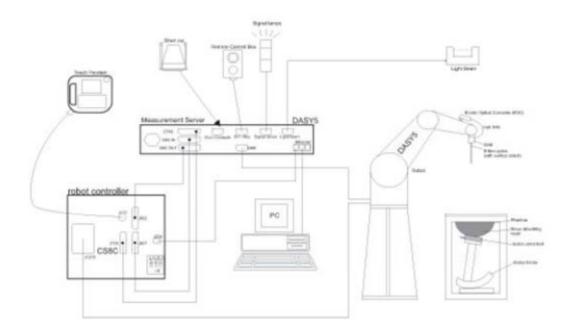
5.3.4 Wi-Fi Test Configuration


SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the initial test position(s) by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is \leq 0.8 W/kg or all required test positions are tested.
 - ♦ For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - ♦ The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.

To determine the initial test position, Area Scans were performed to determine the position with the Maximum Value of SAR (measured). The position that produced the highest Maximum Value of SAR is considered the worst case position; thus used as the initial test position.


A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

6 SAR Measurements System Configuration

6.1 SAR Measurement Set-up

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- ➤ The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY software.
- > Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.2 DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4(manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

EX3DV4 Probe Specification

Construction Symmetrical design with triangular core

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration

service available

Frequency 10 MHz to > 6 GHz

Linearity: ± 0.2 dB (30 MHz to 6 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe

axis) ± 0.5 dB in tissue material (rotation

normal to probe axis)

Dynamic 10 μ W/g to > 100 mW/g Linearity: Range \pm 0.2dB (noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip

diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole

centers: 1 mm

Application High precision dosimetric

measurements in any exposure Scenario (e.g., very strong gradient fields). Only probe which enables

compliance testing for frequencies up to

6 GHz with precision of better 30%.

Report No: R1808A0375-S1

E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based

FCC SAR Test Report Report No: R1808A0375-S1

temperature probe is used in conjunction with the E-field probe.

SAR=CAT/At

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

Or

SAR=IEI²σ/ρ

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m³).

6.3 SAR Measurement Procedure

Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest		
measurement point (geometric center of	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
probe sensors) to phantom surface		
Maximum probe angle from probe axis to		
phantom surface normal at the	30° ± 1°	20° ± 1°
measurement location		
	≤ 2 GHz: ≤ 15 mm	3 – 4 GHz: ≤ 12 mm
	2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm
	When the x or y dimens	sion of the test device, in
Maximum area scan spatial resolution:	the measurement plar	ne orientation, is smaller
ΔxArea, ΔyArea	than the above, the m	neasurement resolution
	must be ≤ the correspo	nding x or y dimension of
	the test device with at	least one measurement
	point on the	e test device.

Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3GHz	> 3 GHz
Maximum zoom	2000 000	tial recolution: A v	≤2GHz: ≤8mm	3 – 4GHz: ≤5mm*
Waxiiiiuiii 200iii	scan spa	tial resolution: $\triangle x_{zoom} \triangle y_{zoom}$	2 – 3GHz: ≤5mm*	4 – 6GHz: ≤4mm*
Maximum				3 – 4GHz: ≤4mm
Maximum	Uı	niform grid: $\triangle z_{zoom}(n)$	≤5mm	4 – 5GHz: ≤3mm
zoom scan				5 – 6GHz: ≤2mm
spatial		$\triangle z_{zoom}(1)$: between 1 st two		3 – 4GHz: ≤3mm
resolution, normal to	Cradad	points closest to phantom	≤4mm	4 – 5GHz: ≤2.5mm
	Graded	surface		5 – 6GHz: ≤2mm
phantom surface	grid	△z _{zoom} (n>1): between	<1 F. ∧ -	7 (n 1)
Surface		subsequent points	≥1.5•△△	z _{zoom} (n-1)
Minimum				3 – 4GHz: ≥28mm
zoom scan		X, y, z	≥30mm	4 – 5GHz: ≥25mm
volume				5 – 6GHz: ≥22mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4W/kg, ≤8mm, ≤7mm and ≤5mm zoom scan resolution may be applied, respectively, for 2GHz to 3GHz, 3GHz to 4GHz and 4GHz to 6GHz.

Report No: R1808A0375-S1

7 Main Test Equipment

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Cal.	Cal. Due Date
Network analyzer	Agilent	E5071B	MY42404014	2018-05-20	2019-05-19
Dielectric Probe Kit	HP	85070E	US44020115	2018-05-20	2019-05-19
Power meter	Agilent	E4417A	GB41291714	2018-05-21	2019-05-20
Power sensor	Agilent	N8481H	MY50350004	2018-05-21	2019-05-20
Power sensor	Agilent	E9327A	US40441622	2018-05-20	2019-05-19
Dual directional coupler	Agilent	778D-012	50519	2018-05-21	2019-05-20
Dual directional coupler	Agilent	777D	50146	2018-05-20	2019-05-19
Amplifier	INDEXSAR	IXA-020	0401	2018-05-20	2019-05-19
Wideband radio communication tester	R&S	CMW 500	113645	2018-05-20	2019-05-19
E-field Probe	SPEAG	EX3DV4	3677	2018-05-29	2019-05-28
DAE	SPEAG	DAE4	1317	2018-03-23	2019-03-22
Validation Kit 835MHz	SPEAG	D835V2	4d020	2017-08-28	2020-08-27
Validation Kit 1750MHz	SPEAG	D1750V2	1033	2017-01-10	2020-01-09
Validation Kit 1900MHz	SPEAG	D1900V2	5d060	2017-08-26	2020-08-25
Validation Kit 2450MHz	SPEAG	D2450V2	786	2017-08-29	2020-08-28
Validation Kit 2600MHz	SPEAG	D2600V2	1025	2018-05-02	2021-05-01
Validation Kit 5GHz	SPEAG	D5GHzV2	1151	2017-01-05	2020-01-04
Temperature Probe	Tianjin jinming	JM222	AA1009129	2018-05-17	2019-05-16
Hygrothermograph	Anymetr	NT-311	20150731	2018-05-17	2019-05-16
Software for Test	Speag	DASY5	52.8.8.1222	1	1
Softwarefor Tissue	Agilent	85070	E06.01.36	1	1

8 Tissue Dielectric Parameter Measurements&System Verification

8.1 Tissue Verification

The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within $\pm~2^{\circ}\text{C}$ of the temperature when the tissue parameters are characterized. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3-4 days of use; or earlier if the dielectric parameters can become out of tolerance.

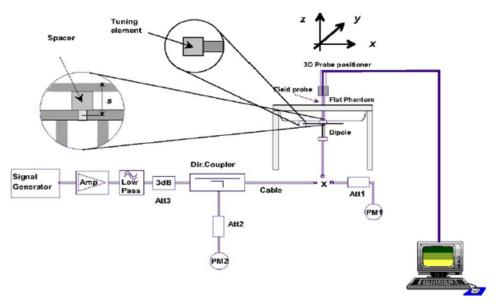
Target values

Freque (MH	-	Water (%)	Salt (%)	Sugar (%)	Glycol (%)	Preventol (%)	Cellulose (%)	٤r	σ(s/m)
	835	52.5	1.4	45	0	0.1	1.0	55.2	0.97
	1750	69.91	0.12	0	29.97	0	0	53.4	1.49
Body	1900	69.91	0.13	0	29.96	0	0	53.3	1.52
	2450	73.2	0.1	0	26.7	0	0	52.7	1.95
	2600	72.6	0.1	0	27.3	0	0	52.5	2.16
Freque (MH	-	Water (%)		Diethylenglycol nonohexylether		Triton	X-100	٤r	σ(s/m)
Pody	5250	72.52		13.74		13.74		48.9	5.36
Body	5750	72.52		13.74		13	.74	48.3	5.94

Measurements results

Frequ	uency	Took Date	Temp	Measured Dielectric Parameters		Target Dielectric Parameters		Limit (Within ±5%)	
(M	Hz)	Test Date	ပ္	٤r	σ(s/m)	٤r	σ(s/m)	Dev ε _r (%)	Dev σ(%)
835	Body	8/31/2018	21.5	53.8	0.97	55.2	0.97	-2.54	0.00
1750	Body	8/24/2018	21.5	52.9	1.50	53.4	1.49	-0.94	0.67
1900	Body	8/25/2018	21.5	52.8	1.51	53.3	1.52	-0.94	-0.66
2450	Body	8/24/2018	21.5	51.8	1.93	52.7	1.95	-1.71	-1.03
2600	Body	8/27/2018	21.5	51.4	2.12	52.5	2.16	-2.10	-1.85
5250	Body	9/11/2018	21.5	47.9	5.42	48.9	5.36	-2.04	1.12
5750	Body	9/11/2018	21.5	47.7	6.07	48.3	5.94	-1.24	2.19

Note: The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm for measurements > 3 GHz.



FCC SAR Test Report No: R1808A0375-S1

8.2 System Performance Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured using the dielectric probe kit and the network analyzer. A system check measurement for every day was made following the determination of the dielectric parameters of the Tissue simulates, using the dipole validation kit. The dipole antenna was placed under the flat section of the twin SAM phantom.

System check is performed regularly on all frequency bands where tests are performed with the DASY system.

Picture 1System Performance Check setup

Picture 2 Setup Photo

CC SAR Test Report No: R1808A0375-S1

Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 3 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole		Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ
Dipole	Body	1/10/2017	-35.0	/	44.7	1
D1750V2 SN: 1033	Liquid	1/9/2018	-34.7	0.9%	44.9	-0.2Ω
Dipole D5GHzV2	Body	1/5/2017	-24.7	1	50.4	1
SN: 1151 (5250MHz)	Liquid	1/4/2018	-24.4	1.2%	49.9	-0.5Ω
Dipole D5GHzV2	Body	1/5/2017	-24.9	/	56.0	1
SN: 1151 (5750MHz)	Liquid	1/4/2018	-25.2	-1.2%	56.4	0.4Ω

System Check results

•	uency Hz)	Test Date Temp C Measured SAR _{1g} (W/kg) (W/kg)		1W Normalized SAR _{1g} (W/kg)	1W Target SAR _{1g} (W/kg)	Δ % (Limit ±10%)	Plot No.	
835	Body	8/31/2018	21.5	2.41	9.64	9.75	-1.13	1
1750	Body	8/24/2018	21.5	9.24	36.96	37.60	-1.70	2
1900	Body	8/25/2018	21.5	9.93	39.72	39.50	0.56	3
2450	Body	8/24/2018	21.5	12.50	50.00	50.80	-1.57	4
2600	Body	8/27/2018	21.5	13.50	54.00	54.50	-0.92	5
5250	Body	9/11/2018	21.5	7.46	74.60	75.60	-1.32	6
5750	Body	9/11/2018	21.5	7.15	71.50	74.60	-4.16	7
						_		

Note: Target Values used derive from the calibration certificate Data Storage and Evaluation.

9 Normal and Maximum Output Power

KDB 447498 D01 at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

9.1 GSM Mode

		Burst-Ave	eraged ou	utput pow	ver(dBm)	D	Frame-A	veraged o	output pov	ver(dBm)
GSN	И 850	Tune-up	Channe	l/Frenqu	cy(MHz)	Division	Tune-up	Channe	el/Frenquo	cy(MHz)
		MAX	128 /824.2	190 /836.6	251 /848.8	Factors	MAX	128 /824.2	190 /836.6	251 /848.8
GPRS	1 Tx Slot	31.50	31.15	30.76	31.28	9.03	22.47	22.12	21.73	22.25
(GMSK)	2 Tx Slots	28.50	28.46	27.76	27.93	6.02	22.48	22.44	21.74	21.91
	1 Tx Slot	31.50	31.14	31.09	31.30	9.03	22.47	22.11	22.06	22.27
EGPRS	2 Tx Slots	28.50	28.45	27.80	27.92	6.02	22.48	22.43	21.78	21.90
(GMSK)	3 Tx Slots	26.50	25.57	25.40	24.88	4.26	22.24	21.31	21.14	20.62
	4 Tx Slots	25.00	23.40	22.74	22.90	3.01	21.99	20.39	19.73	19.89
	1 Tx Slot	27.00	25.93	25.61	25.81	9.03	17.97	16.90	16.58	16.78
EGPRS	2 Tx Slots	25.00	23.75	23.72	23.74	6.02	18.98	17.73	17.70	17.72
(8PSK)	3 Tx Slots	23.50	21.82	21.66	21.81	4.26	19.24	17.56	17.40	17.55
	4 Tx Slots	22.50	20.96	20.65	21.16	3.01	19.49	17.95	17.64	18.15
7 17 0.00		22.00	20.00	20.00	21.10	0.01	10.10	17.00	17.07	10.10
	· · · · · · · · · · · · · · · · · · ·	Burst-Ave						veraged o		
GSM	1 1900		eraged ou		ver(dBm)	Division		veraged o		ver(dBm)
GSM		Burst-Ave	Channe	utput pow I/Frenque	ver(dBm) cy(MHz) 810		Frame-A	veraged of Channel	output pov el/Frenquo 661	ver(dBm) cy(MHz) 810
	1 1900	Burst-Ave Tune-up MAX	Channe 512 /1850.2	utput pow I/Frenquo 661 /1880	ver(dBm) cy(MHz) 810 /1909.8	Division	Frame-A Tune-up MAX	Channe 512 /1850.2	el/Frenquo 661 /1880	ver(dBm) cy(MHz) 810 /1909.8
GPRS	1 1900 1 Tx Slot	Burst-Ave Tune-up MAX 30.50	Channe 512 /1850.2 29.18	l/Frenque 661 /1880 29.16	ver(dBm) cy(MHz) 810 /1909.8 29.07	Division Factors 9.03	Frame-A Tune-up MAX 21.47	Veraged of Channel 512 /1850.2 20.15	el/Frenquo 661 /1880 20.13	ver(dBm) cy(MHz) 810 /1909.8 20.04
	1 1900 1 Tx Slot 2 Tx Slots	Burst-Ave Tune-up MAX 30.50 28.50	Channe 512 /1850.2 29.18 27.44	1/Frenque 661 /1880 29.16 27.35	ver(dBm) 810 /1909.8 29.07 27.24	Division Factors 9.03 6.02	Frame-A Tune-up MAX 21.47 22.48	Channe 512 /1850.2 20.15 21.42	661 /1880 20.13 21.33	ver(dBm) cy(MHz) 810 /1909.8 20.04 21.22
GPRS (GMSK)	1 1900 1 Tx Slot 2 Tx Slots 1 Tx Slot	Burst-Ave Tune-up MAX 30.50 28.50 30.50	Channe 512 /1850.2 29.18 27.44 29.77	1/Frenque 661 /1880 29.16 27.35 29.10	ver(dBm) 810 /1909.8 29.07 27.24 29.02	Division Factors 9.03 6.02 9.03	Frame-A Tune-up MAX 21.47 22.48 21.47	Channe 512 /1850.2 20.15 21.42 20.74	661 /1880 20.13 21.33 20.07	wer(dBm) 810 /1909.8 20.04 21.22 19.99
GPRS (GMSK) EGPRS	1 Tx Slot 2 Tx Slots 1 Tx Slot 2 Tx Slots	Burst-Ave Tune-up MAX 30.50 28.50 30.50 28.50	Channe 512 /1850.2 29.18 27.44 29.77 27.43	1/Frenque 661 /1880 29.16 27.35 29.10 27.35	ver(dBm) 810 /1909.8 29.07 27.24 29.02 27.21	Division Factors 9.03 6.02 9.03 6.02	Frame-A Tune-up MAX 21.47 22.48 21.47 22.48	Channe 512 /1850.2 20.15 21.42 20.74 21.41	661 /1880 20.13 21.33 20.07 21.33	ver(dBm) 810 /1909.8 20.04 21.22 19.99 21.19
GPRS (GMSK)	1 Tx Slot 2 Tx Slots 1 Tx Slot 2 Tx Slots 3 Tx Slots	Burst-Ave Tune-up MAX 30.50 28.50 30.50 28.50 26.00	Channe 512 /1850.2 29.18 27.44 29.77 27.43 25.34	1/Frenque 661 /1880 29.16 27.35 29.10 27.35 25.25	ver(dBm) 810 /1909.8 29.07 27.24 29.02 27.21 25.12	Division Factors 9.03 6.02 9.03 6.02 4.26	Frame-A Tune-up MAX 21.47 22.48 21.47 22.48 21.74	Channe 512 /1850.2 20.15 21.42 20.74 21.41 21.08	661 /1880 20.13 21.33 20.07 21.33 20.99	wer(dBm) 810 /1909.8 20.04 21.22 19.99 21.19 20.86
GPRS (GMSK) EGPRS	1 Tx Slot 2 Tx Slots 1 Tx Slot 2 Tx Slots 3 Tx Slots 4 Tx Slots	Burst-Ave Tune-up MAX 30.50 28.50 30.50 28.50 26.00 25.00	Channe 512 /1850.2 29.18 27.44 29.77 27.43 25.34 24.26	1/Frenque 661 /1880 29.16 27.35 29.10 27.35 25.25 24.17	ver(dBm) 810 /1909.8 29.07 27.24 29.02 27.21 25.12 24.01	9.03 6.02 9.03 6.02 4.26 3.01	Frame-A Tune-up MAX 21.47 22.48 21.47 22.48 21.74 21.99	Channe 512 /1850.2 20.15 21.42 20.74 21.41 21.08 21.25	el/Frenque 661 /1880 20.13 21.33 20.07 21.33 20.99 21.16	ver(dBm) 810 /1909.8 20.04 21.22 19.99 21.19 20.86 21.00
GPRS (GMSK) EGPRS (GMSK)	1 Tx Slot 2 Tx Slots 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slot	Burst-Ave Tune-up MAX 30.50 28.50 30.50 28.50 26.00 25.00 26.00	Channe 512 /1850.2 29.18 27.44 29.77 27.43 25.34 24.26 25.34	1/Frenque 661 /1880 29.16 27.35 29.10 27.35 25.25 24.17 25.25	ver(dBm) 810 /1909.8 29.07 27.24 29.02 27.21 25.12 24.01 25.12	Division Factors 9.03 6.02 9.03 6.02 4.26 3.01 9.03	Frame-A Tune-up MAX 21.47 22.48 21.47 22.48 21.74 21.99 16.97	Channel 512 /1850.2 20.15 21.42 20.74 21.41 21.08 21.25 16.31	661 /1880 20.13 21.33 20.07 21.33 20.99 21.16 16.22	ver(dBm) 810 /1909.8 20.04 21.22 19.99 21.19 20.86 21.00 16.09
GPRS (GMSK) EGPRS (GMSK)	1 Tx Slot 2 Tx Slots 1 Tx Slot 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slot 2 Tx Slots	Burst-Ave Tune-up MAX 30.50 28.50 30.50 28.50 26.00 25.00 26.00 24.00	Channe 512 /1850.2 29.18 27.44 29.77 27.43 25.34 24.26 25.34 23.02	1/Frenque 661 /1880 29.16 27.35 29.10 27.35 25.25 24.17 25.25 23.05	ver(dBm) 810 /1909.8 29.07 27.24 29.02 27.21 25.12 24.01 25.12 23.09	9.03 6.02 9.03 6.02 4.26 3.01 9.03 6.02	Frame-A Tune-up MAX 21.47 22.48 21.47 22.48 21.74 21.99 16.97 17.98	Channe 512 /1850.2 20.15 21.42 20.74 21.41 21.08 21.25 16.31 17.00	el/Frenque 661 /1880 20.13 21.33 20.07 21.33 20.99 21.16 16.22 17.03	ver(dBm) 810 /1909.8 20.04 21.22 19.99 21.19 20.86 21.00 16.09 17.07
GPRS (GMSK) EGPRS (GMSK)	1 Tx Slot 2 Tx Slots 1 Tx Slots 2 Tx Slots 3 Tx Slots 4 Tx Slots 1 Tx Slot	Burst-Ave Tune-up MAX 30.50 28.50 30.50 28.50 26.00 25.00 26.00	Channe 512 /1850.2 29.18 27.44 29.77 27.43 25.34 24.26 25.34	1/Frenque 661 /1880 29.16 27.35 29.10 27.35 25.25 24.17 25.25	ver(dBm) 810 /1909.8 29.07 27.24 29.02 27.21 25.12 24.01 25.12	Division Factors 9.03 6.02 9.03 6.02 4.26 3.01 9.03	Frame-A Tune-up MAX 21.47 22.48 21.47 22.48 21.74 21.99 16.97	Channel 512 /1850.2 20.15 21.42 20.74 21.41 21.08 21.25 16.31	661 /1880 20.13 21.33 20.07 21.33 20.99 21.16 16.22	ver(dBm) 810 /1909.8 20.04 21.22 19.99 21.19 20.86 21.00 16.09

Notes: The worst-case configuration and mode for SAR testing is determined to be as follows:

^{1.} Standalone: GSM 850 GMSK (GPRS) mode with 2 time slots for Max power, GSM 1900 GMSK (GPRS) mode with 2 time slots for Max power, based on the output power measurements above.

9.2 WCDMA Mode

5.2 WCDIMA Mode

The following tests were completed according to the test requirements outlined in the 3GPP TS34.121 specification.

WCE	OMA		Band II	(dBm)		Band V(dBm)			
Tx Ch	annel	9262	9400	9538	Tune-up	4132	4183	4233	Tune-up
Frequency(MHz)		1852.4	1880	1907.6	Limit	826.4	836.6	846.6	Limit
RMC	12.2kbps	23.06	23.08	23.14	23.50	22.86	22.76	22.90	23.50
AMR	12.2kbps	22.99	23.03	23.06	23.50	22.79	22.71	22.82	23.50
	Sub 1	22.52	22.50	22.58	23.00	22.32	22.18	22.34	23.00
HSDPA	Sub 2	22.51	22.52	22.55	23.00	22.31	22.20	22.31	23.00
ПООРА	Sub 3	21.98	22.02	22.07	22.50	21.78	21.70	21.83	22.50
	Sub 4	21.99	22.03	22.05	22.50	21.79	21.71	21.81	22.50
	Sub 1	22.48	22.49	22.53	23.00	22.28	22.17	22.29	23.00
	Sub 2	21.47	21.47	21.52	22.00	21.27	21.15	21.28	22.00
HSUPA	Sub 3	21.94	21.95	22.01	22.50	21.74	21.63	21.77	22.50
	Sub 4	21.40	21.44	21.49	22.00	21.20	21.12	21.25	22.00
	Sub 5	22.41	22.42	22.47	23.00	22.21	22.10	22.23	23.00
	Sub 1	22.40	22.44	22.48	23.00	22.20	22.12	22.24	23.00
DC-	Sub 2	22.39	22.43	22.47	23.00	22.19	22.11	22.23	23.00
HSDPA	Sub 3	21.97	21.92	21.98	22.50	21.77	21.60	21.74	22.50
	Sub 4	21.96	21.91	21.97	22.50	21.76	21.59	21.73	22.50

Note: 1.Per KDB 941225 D01, SAR for each exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

FCC SAR Test Report No: R1808A0375-S1

9.3 LTE Mode

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	N _{RB})	MPR (dB)							
	1.4 MHz									
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1			
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1			
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2			

	LTE FDD B	and 2		Conducted Power(dBm)			T
Donada da la	Madulatian	DD ei-e	DD offeet	Chanr	Channel/Frequency		Tune-up Limit
Bandwidth	Modulation	RB size	RB offset	18607/1850.7	18900/1880	19193/1909.3	Limit
		1	0	22.95	22.85	22.99	23.00
		1	2	22.36	22.29	22.46	23.00
		1	5	22.19	22.23	22.39	23.00
	QPSK	3	0	22.40	22.32	22.35	23.00
		3	2	22.19	22.20	22.20	23.00
		3	3	22.13	22.04	22.10	23.00
1.4MHz		6	0	21.31	21.40	21.49	22.00
1.4WITZ		1	0	21.59	22.10	22.23	22.50
		1	2	21.57	21.63	21.87	22.50
	16QAM	1	5	21.34	21.49	21.42	22.50
		3	0	21.32	21.37	21.53	22.50
		3	2	21.16	21.32	21.28	22.50
		3	3	21.02	21.10	21.18	22.50
		6	0	20.26	20.43	20.43	21.50
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up
Balluwiutii	Modulation	IND SIZE	IND Ollset	18615/1851.5	18900/1880	19185/1908.5	Limit
		1	0	22.87	22.79	22.92	23.00
		1	7	22.29	22.24	22.40	23.00
		1	14	22.12	22.18	22.33	23.00
	QPSK	8	0	21.50	21.44	21.48	22.00
		8	4	21.31	21.30	21.32	22.00
3MHz		8	7	21.23	21.15	21.20	22.00
		15	0	21.34	21.44	21.52	22.00
		1	0	21.62	22.12	22.26	22.50
	16QAM	1	7	21.60	21.68	21.91	22.50
	IUQAWI	1	14	21.36	21.53	21.45	22.50
		8	0	20.43	20.50	20.65	21.50
	out (Chanalasi)			TA MD 04 0000		Dawa 20	

TA Technology (Shanghai) Co., Ltd.

TA-MB-04-003S

Page 28 of 158

FCC SAR Test Report Report No: R1808A0375-S1

FCC	SAR Test Repor	τ				Report No: R1808	103/5-51
		8	4	20.27	20.45	20.40	21.50
		8	7	20.12	20.22	20.31	21.50
		15	0	20.29	20.47	20.46	21.50
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Danawiatii	Modulation	ND SIZE	ND Ollaet	18625/1852.5	18900/1880	19175/1907.5	Limit
		1	0	22.94	22.87	22.98	23.00
		1	13	22.37	22.30	22.47	23.00
		1	24	22.19	22.23	22.39	23.00
	QPSK	12	0	21.47	21.39	21.44	22.00
		12	6	21.29	21.26	21.27	22.00
		12	13	21.21	21.13	21.16	22.00
5MHz		25	0	21.32	21.43	21.50	22.00
JIVII 12		1	0	21.59	22.08	22.23	22.50
		1	13	21.57	21.66	21.88	22.50
		1	24	21.33	21.51	21.41	22.50
	16QAM	12	0	20.41	20.46	20.62	21.50
		12	6	20.24	20.40	20.36	21.50
		12	13	20.09	20.17	20.27	21.50
		25	0	20.27	20.43	20.41	21.50
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Danawiatii	Modulation	ND 3120	ND OHSEL	18650/1855	18900/1880	19150/1905	Limit
		1	0	22.86	22.78	22.91	23.00
		1	25	22.30	22.25	22.41	23.00
		1	49	22.11	22.17	22.32	23.00
	QPSK	25	0	21.50	21.44	21.48	22.00
		25	13	21.32	21.31	21.31	22.00
		25	25	21.23	21.17	21.21	22.00
10MHz		50	0	21.40	21.45	21.54	22.00
10111112		1	0	21.61	22.11	22.25	22.50
		1	25	21.60	21.70	21.91	22.50
		1	49	21.36	21.53	21.44	22.50
	16QAM	25	0	20.44	20.51	20.66	21.50
		25	13	20.26	20.44	20.39	21.50
		25	25	20.12	20.22	20.31	21.50
		50	0	20.30	20.48	20.45	21.50
Bandwidth	Modulation	RB size	RB offset		nel/Frequency	,	Tune-up
Danamati	Modulation		TID OHOU	18675/1857.5	18900/1880	19125/1902.5	Limit
		1	0	22.95	22.84	22.99	23.00
		1	38	22.38	22.34	22.48	23.00
15MHz	QPSK	1	74	22.18	22.22	22.38	23.00
10111112	QPSK	36	0	21.48	21.40	21.45	22.00
		36	18	21.29 21.20	21.26 21.14	21.27	22.00

FCC	SAR Test Repor	rt				Report No: R1808/	A0375-S1
		75	0	21.38	21.41	21.49	22.00
		1	0	21.56	22.09	22.23	22.50
		1	38	21.58	21.67	21.89	22.50
		1	74	21.33	21.49	21.41	22.50
	16QAM	36	0	20.41	20.49	20.63	21.50
		36	18	20.23	20.39	20.35	21.50
		36	39	20.10	20.18	20.28	21.50
		75	0	20.27	20.43	20.41	21.50
Dandudath	Modulation	RB size	RB offset	Chani	nel/Frequency	(MHz)	Tune-up
Bandwidth	IVIOQUIALION	RD SIZE	RD Ollset	18700/1860	18900/1880	19100/1900	Limit
	QPSK	1	0	22.92	22.94	22.96	23.00
		1	50	22.37	22.30	22.46	23.00
		1	99	22.16	22.21	22.35	23.00
		50	0	21.45	21.35	21.41	22.00
		50	25	21.27	21.22	21.24	22.00
		50	50	21.17	21.09	21.13	22.00
20MHz		100	0	21.35	21.36	21.45	22.00
ZUIVITZ		1	0	22.17	22.05	22.18	22.50
		1	50	21.54	21.65	21.85	22.50
		1	99	21.31	21.46	21.39	22.50
	16QAM	50	0	20.38	20.45	20.60	21.50
		50	25	20.20	20.37	20.32	21.50
		50	50	20.07	20.13	20.24	21.50
		100	0	20.25	20.39	20.38	21.50

	LTE FDD B	and 4		Conducted Power(dBm)			Tung un
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up Limit
Danuwidin	iviodulation	KD SIZE	KD Ullset	19957/1710.7	20175/1732.5	20393/1754.3	LIIIII
		1	0	22.78	22.85	22.88	23.00
		1	2	21.94	21.90	22.28	23.00
		1	5	22.13	21.89	22.01	23.00
	QPSK	3	0	22.35	22.24	22.24	23.00
		3	2	21.99	21.98	21.97	23.00
		3	3	21.93	21.80	22.13	23.00
1.4MHz		6	0	21.39	21.17	21.05	22.00
1.4111172		1	0	21.35	22.26	22.29	22.50
		1	2	21.33	21.26	21.49	22.50
		1	5	21.19	21.07	21.12	22.50
	16QAM	3	0	21.34	21.25	21.28	22.50
		3	2	20.91	20.86	20.88	22.50
		3	3	20.91	20.87	21.00	22.50
		6	0	20.27	20.15	20.10	21.50

FCC SAR Test Report Report No: R1808A0375-S1

FCC SAR Test Report					Report No: R1808A		
Bandwidth	Modulation	RB size	RB offset		nel/Frequency (, , , , , , , , , , , , , , , , , , ,	Tune-up
- 4.14.11411	Moderation	710 0120		19965/1711.5	20175/1732.5	20385/1753.5	Limit
		1	0	22.77	22.87	22.87	23.00
		1	7	21.95	21.91	22.29	23.00
		1	14	22.13	21.89	22.01	23.00
	QPSK	8	0	21.42	21.31	21.33	22.00
		8	4	21.09	21.04	21.04	22.00
		8	7	21.01	20.89	21.19	22.00
3MHz		15	0	21.40	21.20	21.06	22.00
OWNIZ		1	0	21.35	22.24	22.29	22.50
		1	7	21.33	21.29	21.50	22.50
		1	14	21.18	21.09	21.11	22.50
	16QAM	8	0	20.43	20.34	20.37	21.50
		8	4	19.99	19.94	19.96	21.50
		8	7	19.98	19.94	20.09	21.50
		15	0	20.28	20.15	20.08	21.50
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (nel/Frequency (MHz)	
Danuwidin	Modulation	ND SIZE	KD 011961	19975/1712.5	20175/1732.5	20375/1752.5	Limit
		1	0	22.80	22.89	22.91	23.00
	QPSK	1	13	21.97	21.95	22.32	23.00
		1	24	22.16	21.94	22.05	23.00
		12	0	21.45	21.36	21.37	22.00
		12	6	21.11	21.08	21.09	22.00
		12	13	21.03	20.91	21.23	22.00
5MHz		25	0	21.42	21.21	21.08	22.00
SIVITZ		1	0	21.38	22.28	22.32	22.50
		1	13	21.36	21.31	21.53	22.50
		1	24	21.21	21.11	21.15	22.50
	16QAM	12	0	20.45	20.38	20.40	21.50
		12	6	20.02	19.99	20.00	21.50
		12	13	20.01	19.99	20.13	21.50
		25	0	20.30	20.19	20.13	21.50
Danada di di	Madulation	DD sins	DD affact	Chan	nel/Frequency (MHz)	Tune-up
Bandwidth	Modulation	RB size	RB offset	20000/1715	20175/1732.5	20350/1750	Limit
		1	0	22.78	22.84	22.88	23.00
		1	25	21.96	21.95	22.30	23.00
		1	49	22.12	21.88	22.00	23.00
	QPSK	25	0	21.43	21.32	21.34	22.00
10MHz		25	13	21.09	21.04	21.04	22.00
		25	25	21.00	20.90	21.20	22.00
		50	0	21.46	21.18	21.05	22.00
	400.111	1	0	21.32	22.25	22.29	22.50
	16QAM	1	25	21.34	21.30	21.51	22.50
	l .		l	1	J	-	

FC	FCC SAR Test Report No: R1808A037								
		1	49	21.18	21.07	21.11	22.50		
		25	0	20.43	20.37	20.38	21.50		
		25	13	19.98	19.93	19.95	21.50		
		25	25	19.99	19.95	20.10	21.50		
		50	0	20.28	20.15	20.08	21.50		
Bandwidth	Modulation	RB size	RB offset	Chan	nel/Frequency (MHz)	Tune-up		
Danuwium	iviodulation	KD SIZE	KD Ullset	20025/1717.5	20175/1732.5	20325/1747.5	Limit		
		1	0	22.79	22.88	22.90	23.00		
		1	38	21.98	21.96	22.33	23.00		
		1	74	22.15	21.93	22.04	23.00		
	QPSK	36	0	21.45	21.36	21.37	22.00		
		36	18	21.12	21.09	21.08	22.00		
		36	39	21.03	20.93	21.24	22.00		
45001-		75	0	21.48	21.22	21.10	22.00		
15MHz		1	0	21.37	22.27	22.31	22.50		
		1	38	21.36	21.33	21.53	22.50		
	16QAM	1	74	21.21	21.11	21.14	22.50		
		36	0	20.46	20.39	20.41	21.50		
		36	18	20.01	19.98	19.99	21.50		
		36	39	20.01	19.99	20.13	21.50		
		75	0	20.31	20.20	20.12	21.50		
Bandwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)			Tune-up		
Balluwiutii	iviodulation	KD SIZE	KD Ullset	20050/1720	20175/1732.5	20300/1745	Limit		
		1	0	22.75	22.80	22.85	23.00		
		1	50	21.95	21.91	22.28	23.00		
		1	99	22.10	21.87	21.97	23.00		
	QPSK	50	0	21.40	21.27	21.30	22.00		
		50	25	21.07	21.00	21.01	22.00		
		50	50	20.97	20.85	21.16	22.00		
20MH-		100	0	21.43	21.13	21.01	22.00		
20MHz		1	0	22.19	22.21	22.24	22.50		
		1	50	21.30	21.28	21.47	22.50		
		1	99	21.16	21.04	21.09	22.50		
	16QAM	50	0	20.40	20.33	20.35	21.50		
		50	25	19.95	19.91	19.92	21.50		
		50	50	19.96	19.90	20.06	21.50		
		100	0	20.26	20.11	20.05	21.50		

Report No: R1808A0375-S1 LTE FDD Band 5 Conducted Power(dBm) Tune-up Channel/Frequency (MHz) **Bandwidth** Modulation RB size RB offset Limit 20407/824.7 20525/836.5 20643/848.3 22.72 0 22.65 22.64 1 23.50 1 2 22.39 22.23 22.54 23.50 1 5 22.41 22.63 22.39 23.50 3 **QPSK** 0 22.33 22.33 22.34 23.50 3 2 22.33 22.38 22.42 23.50 3 3 22.36 22.32 22.29 23.50 6 0 21.27 21.51 21.42 22.50 1.4MHz 1 0 22.08 22.50 22.15 22.11 1 2 22.19 22.13 22.00 22.50 1 5 21.73 21.84 21.71 22.50 3 16QAM 0 21.26 21.23 21.26 22.50 2 3 21.45 21.43 21.47 22.50 3 3 21.39 21.39 21.34 22.50 6 20.34 20.45 20.42 21.50 Channel/Frequency (MHz) Tune-up Modulation **Bandwidth** RB size RB offset 20415/825.5 20525/836.5 20635/847.5 Limit 0 22.65 22.71 22.64 23.50 1 1 22.41 22.28 22.56 7 23.50 1 14 22.40 22.62 22.38 23.50 **QPSK** 8 0 21.41 21.41 21.44 22.50 4 22.50 8 21.43 21.44 21.49 8 7 21.43 21.42 21.36 22.50 15 0 21.34 21.52 21.42 22.50 3MHz 1 0 22.12 22.10 22.08 22.50 1 7 22.14 22.04 22.21 22.50 1 14 21.72 21.84 21.70 22.50 8 0 20.35 20.36 16QAM 20.35 21.50 4 8 20.52 20.50 20.54 21.50 8 7 20.47 20.47 20.44 21.50 15 20.35 20.45 20.40 21.50 Channel/Frequency (MHz) Tune-up **Bandwidth** Modulation RB size **RB** offset 20425/826.5 20525/836.5 20625/846.5 Limit

QPSK

5MHz

1

1

1

12

12

12

25

22.64

22.40

22.41

21.40

21.43

21.44

21.28

22.74

22.24

22.63

21.40

21.44

21.41

21.54

23.50

23.50

23.50

22.50

22.50

22.50

22.50

22.63

22.55

22.39

21.43

21.49

21.35

21.43

0

13

24

0

6

13

0

IA	FOO SAR Took Roman
	FCC SAR Test Report

Report No: R1808A0375-S1 1 0 22.15 22.09 22.08 22.50 1 13 22.20 22.50 22.13 22.03 1 24 21.72 21.70 22.50 21.86 12 0 16QAM 20.35 20.32 20.35 21.50 12 20.55 6 20.53 20.51 21.50 12 13 20.46 20.46 20.43 21.50 25 0 20.35 20.45 20.40 21.50 Channel/Frequency (MHz) Tune-up **RB** offset **Bandwidth** Modulation RB size 20525/836.5 20450/829 20600/844 Limit 1 0 22.62 22.67 22.61 23.50 1 25 22.40 22.24 22.54 23.50 1 49 22.38 22.35 22.61 23.50 **QPSK** 25 0 21.38 21.36 21.40 22.50 25 13 21.41 21.40 21.46 22.50 25 25 21.40 21.37 21.32 22.50 0 21.38 22.50 50 21.31 21.47 10MHz 1 0 22.04 22.06 22.03 22.50 22.17 1 25 22.10 22.02 22.50 49 1 21.70 21.81 21.68 22.50 21.50 16QAM 25 0 20.32 20.31 20.33 25 20.49 20.51 13 20.48 21.50 25 25 20.44 20.42 20.40 21.50 50 0 20.33 20.41 20.37 21.50

	LTE FDD B	and 7		Conducted Power(dBm)			Tung un
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up Limit
Danuwidin	IVIOGUIALIOIT	RD SIZE	KD UIISEL	20775/2502.5	21100/2535	21425/2567.5	LIIIII
		1	0	22.52	22.59	22.66	23.00
		1	13	22.59	22.56	22.79	23.00
		1	24	22.41	22.13	22.31	23.00
	QPSK	12	0	21.59	21.59	21.59	22.00
		12	6	21.50	21.56	21.75	22.00
		12	13	21.32	21.38	21.48	22.00
5MHz		25	0	21.47	21.59	21.54	22.00
SIVITZ		1	0	21.94	21.76	21.81	22.50
		1	13	21.96	21.91	21.96	22.50
		1	24	21.59	21.46	21.53	22.50
	16QAM	12	0	20.58	20.58	20.58	21.50
		12	6	20.61	20.62	20.73	21.50
		12	13	20.41	20.45	20.50	21.50
		25	0	20.50	20.57	20.54	21.50

FCC SAR Test Report						Report No: R1808	
Bandwidth	Modulation	RB size	RB offset		nel/Frequency	,	Tune-up
		,		20800/2505	21100/2535	21400/2565	Limit
		1	0	22.53	22.63	22.68	23.00
		1	25	22.61	22.57	22.82	23.00
		1	49	22.44	22.18	22.35	23.00
	QPSK	25	0	21.61	21.63	21.62	22.00
		25	13	21.53	21.61	21.79	22.00
		25	25	21.35	21.41	21.52	22.00
10MHz		50	0	21.49	21.63	21.59	22.00
1011112		1	0	21.99	21.78	21.83	22.50
		1	25	21.98	21.94	21.98	22.50
		1	49	21.62	21.50	21.56	22.50
	16QAM	25	0	20.61	20.60	20.61	21.50
		25	13	20.64	20.67	20.77	21.50
		25	25	20.43	20.49	20.53	21.50
		50	0	20.53	20.62	20.58	21.50
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Banawiath	Modulation	TO SIZE	TO Oliset	20825/2507.5	21100/2535	21375/2562.5	Limit
		1	0	22.51	22.62	22.65	23.00
	QPSK	1	38	22.58	22.52	22.78	23.00
		1	74	22.42	22.14	22.32	23.00
		36	0	21.58	21.58	21.58	22.00
		36	18	21.50	21.56	21.75	22.00
		36	39	21.33	21.37	21.47	22.00
15MHz		75	0	21.41	21.61	21.55	22.00
13141112	16QAM	1	0	21.97	21.75	21.81	22.50
		1	38	21.95	21.90	21.95	22.50
		1	74	21.59	21.48	21.53	22.50
		36	0	20.58	20.55	20.57	21.50
		36	18	20.62	20.63	20.74	21.50
		36	39	20.40	20.44	20.49	21.50
		75	0	20.50	20.57	20.54	21.50
Bandwidth	Modulation	RB size	RB offset	Chanr	nel/Frequency	(MHz)	Tune-up
Danuwidin	Modulation	KD SIZE	KD Ullset	20850/2510	21100/2535	21350/2560	Limit
		1	0	22.49	22.55	22.63	23.00
		1	50	22.58	22.52	22.77	23.00
		1	99	22.39	22.12	22.28	23.00
	QPSK	50	0	21.56	21.54	21.55	22.00
20MHz		50	25	21.48	21.52	21.72	22.00
		50	50	21.29	21.33	21.44	22.00
		100	0	21.44	21.54	21.50	22.00
	160 4 4	1	0	21.69	21.72	21.76	22.50
	16QAM	1	50	21.92	21.89	21.92	22.50
			1	I			

FCC SAR Test Report Report No: R1808A0375-S1

1	99	21.57	21.43	21.51	22.50
50	0	20.55	20.54	20.55	21.50
50	25	20.58	20.60	20.70	21.50
50	50	20.38	20.40	20.46	21.50
100	0	20.48	20.53	20.51	21.50
·	50 50	1 99 50 0 50 25 50 50	1 99 21.57 50 0 20.55 50 25 20.58 50 50 20.38	1 99 21.57 21.43 50 0 20.55 20.54 50 25 20.58 20.60 50 50 20.38 20.40	1 99 21.57 21.43 21.51 50 0 20.55 20.54 20.55 50 25 20.58 20.60 20.70 50 50 20.38 20.40 20.46

Report No: R1808A0375-S1

9.4 WLAN Mode

Wi-Fi 2.4G ANT 1 Mode	Channel	Frequency (MHz)	Data Rates (bps)	Tune-up Limit(dBm)	Average Conducted Power Measured (dBm)	TX Power Setting level
	1	2412	1M	18.00	17.45	/
802.11b	6	2437	1M	18.00	17.15	1
	11	2462	1M	18.00	17.22	1
	1	2412	6M	16.50	15.57	/
802.11g	6	2437	6M	16.50	15.60	/
	11	2462	6M	16.50	15.53	/
000 44.5	1	2412	6.5M	16.50	15.50	/
802.11n (HT20)	6	2437	6.5M	16.50	15.38	/
(11120)	11	2462	6.5M	16.50	15.24	/
	3	2422	13.5M	16.50	14.65	/
802.11n (HT40)	6	2437	13.5M	16.50	14.93	/
(1140)	9	2452	13.5M	16.50	15.06	/

Wi-Fi 2.4G ANT 2 Mode	Channel	Frequency (MHz)	Data Rates (bps)	Tune-up Limit(dBm)	Average Conducted Power Measured (dBm)	TX Power Setting level
	1	2412	1M	16.50	16.02	/
802.11b	6	2437	1M	16.50	15.74	/
	11	2462	1M	16.50	15.82	/
	1	2412	6M	15.00	14.17	/
802.11g	6	2437	6M	15.00	14.20	/
	11	2462	6M	15.00	14.09	/
000 44.5	1	2412	6.5M	15.00	14.10	/
802.11n (HT20)	6	2437	6.5M	15.00	14.17	/
(1120)	11	2462	6.5M	15.00	14.03	/
802.11n	3	2422	13.5M	15.00	13.59	/
	6	2437	13.5M	15.00	13.63	/
(HT40)	9	2452	13.5M	15.00	13.46	/

Wi-Fi 2.4G MIMO Mode	Channel	Frequency (MHz)	Data Rates (bps)	Tune-up Limit(dBm)	Average Conducted Power Measured (dBm)	TX Power Setting level
802.11n	1	2412	6.5M	18.50	17.87	1
(HT20)	6	2437	6.5M	18.50	17.83	/

M	5000457 45
	FCC SAR Test Repor

Report No: R1808A0375-S1 rt 6.5M 11 2462 18.50 17.69 3 2422 13.5M 18.00 17.16 / 802.11n 6 2437 13.5M 18.00 17.33 / (HT40) 9 2452 13.5M 18.00 17.34 /

Note: Initial test configuration is 802.11n(HT20) mode, since the highest maximum output power.

5GHz Wi-Fi	Channel	Average Conducted Power Measured (dBm)			
(U-NII-1) ANT 1	/ Frequency (MHz)	Tune-up Limit(dBm)	Meas.	TX Power Setting level	
	36/5180	13.50	12.79	/	
802.11a	40/5200	13.50	12.73	/	
(6M)	44/5220	13.50	12.67	/	
	48/5240	13.50	12.69	/	
	36/5180	13.50	12.85	/	
802.11n-HT20	40/5200	13.50	12.90	/	
(MCS0)	44/5220	13.50	12.89	/	
	48/5240	13.50	12.94	/	
802.11n-HT40	38/5190	13.00	10.54	10	
(MCS0)	46/5230	13.00	12.96	13	
	36/5180	13.50	12.83	/	
802.11ac-VHT20	40/5200	13.50	12.89	/	
(6M)	44/5220	13.50	12.76	/	
	48/5240	13.50	12.79	/	
802.11ac-VHT40	38/5190	14.00	13.49	/	
(MCS0)	46/5230	14.00	13.51	/	
802.11ac-VHT80 (MCS0)	42/5210	13.50	12.34	1	
Note: Initial test configur	ation is 802.11ac-VI	HT40 mode, since	the highest maximum output po	wer.	

5GHz Wi-Fi	Channel	Average Conducted Power Measured (dBm)		
(U-NII-3) ANT 1	/ Frequency (MHz)	Tune-up Limit(dBm)	Meas.	TX Power Setting level
	149/5745	13.50	12.84	/
802.11a	157/5785	13.50	12.83	/
(6M)	165/5825	13.50	13.02	/
802.11n-HT20	149/5745	13.50	13.08	/
(MCS0)	157/5785	13.50	12.98	/
(IVICSU)	165/5825	13.50	13.23	/
802.11n-HT40	151/5755	14.00	13.71	/
(MCS0)	159/5795	14.00	13.58	/

FCC SAR Test Report

Report No: R1808A0375-S1 149/5745 13.50 13.10 802.11ac-VHT20 157/5785 13.50 13.04 / (6M) 165/5825 13.50 13.17 802.11ac-VHT40 151/5755 14.00 13.59 / 159/5795 14.00 / (MCS0) 13.54 802.11ac-VHT80 155/5775 13.50 12.37 (MCS0)

Note: Initial test configuration is 802.11n-HT40 mode, since the highest maximum output power, the largest channel bandwidth, and lowest order.

5GHz Wi-Fi	Channel / Fraguency	Average Conducted Power Measured (dBm)			
(U-NII-1) ANT 2	/ Frequency (MHz)	Tune-up Limit(dBm)	Meas.	TX Power Setting level	
	36/5180	13.00	12.19	/	
902 11a (GM)	40/5200	13.00	12.17	/	
802.11a (6M)	44/5220	13.00	12.15	1	
	48/5240	13.00	12.23	/	
	36/5180	13.00	12.42	/	
802.11n-HT20	40/5200	13.00	12.39	/	
(MCS0)	44/5220	13.00	12.38	/	
	48/5240	13.00	12.44	/	
802.11n-HT40	38/5190	13.00	10.13	10	
(MCS0)	46/5230	13.00	12.57	13	
	36/5180	13.00	12.46	/	
802.11ac-VHT20	40/5200	13.00	12.35	/	
(6M)	44/5220	13.00	12.34	1	
	48/5240	13.00	12.47	1	
802.11ac-VHT40	38/5190	13.50	12.96	1	
(MCS0)	46/5230	13.50	13.04	1	
802.11ac-VHT80 (MCS0)	42/5210	13.00	11.83	1	
Note: Initial test configur	ation is 802.11ac-VI	HT40 mode, since	the highest maximum output po	wer.	

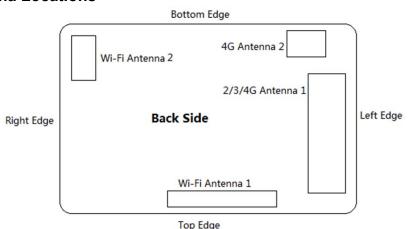
5GHz Wi-Fi (U-NII-3) ANT 2	Channel	Average Conducted Power Measured (dBm)		
	/ Frequency (MHz)	Tune-up Limit(dBm)	Meas.	TX Power Setting level
802.11a (6M)	149/5745	13.00	12.06	1
	157/5785	13.00	12.16	1
	165/5825	13.00	12.27	1

FCC SAR Test Report			Report No: R1808A0375-S1_		
000 44° LITO0	149/5745	13.00	12.40	1	
802.11n-HT20 (MCS0)	157/5785	13.00	12.44	1	
(IVICSO)	165/5825	13.00	12.53	1	
802.11n-HT40	151/5755	13.50	12.97	1	
(MCS0)	159/5795	13.50	13.05	1	
802.11ac-VHT20	149/5745	13.00	12.35	1	
(6M)	157/5785	13.00	12.46	1	
(OIVI)	165/5825	13.00	12.42	1	
802.11ac-VHT40	151/5755	13.50	12.98	/	
(MCS0)	159/5795	13.50	12.93	1	
802.11ac-VHT80 (MCS0)	155/5775	13.00	11.71	/	

Note: Initial test configuration is 802.11n-HT40 mode, since the highest maximum output power, the largest channel bandwidth, and lowest order.

5GHz Wi-Fi	Channel / Fraguency			
(U-NII-1) MIMO	/ Frequency (MHz)	Tune-up Limit(dBm)	Meas.	TX Power Setting leve
	36/5180	16.00	15.65	1
802.11n-HT20	40/5200	16.00	15.66	1
(MCS0)	44/5220	16.00	15.65	1
	48/5240	16.00	15.71	1
802.11n-HT40	38/5190	16.00	13.35	10
(MCS0)	46/5230	16.00	15.78	13
	36/5180	16.00	15.66	1
802.11ac-VHT20	40/5200	16.00	15.64	/
(6M)	44/5220	16.00	15.57	1
	48/5240	16.00	15.64	1
802.11ac-VHT40	38/5190	16.50	16.24	1
(MCS0)	46/5230	16.50	16.29	1
802.11ac-VHT80 (MCS0)	42/5210	16.00	15.10	/

5GHz Wi-Fi (U-NII-3) MIMO	Channel	Average Conducted Power Measured (dBm)			
	/ Frequency (MHz)	Tune-up	Meas.	TX Power	
	(1711 12)	Limit(dBm)	ivicas.	Setting level	
802.11n-HT20(MCS0)	149/5745	16.00	15.77	1	
	157/5785	16.00	15.73	1	
	165/5825	16.00	15.91	/	


902 445 LIT40/MCCO)	151/5755	16.50	16.36	1
802.11n-HT40(MCS0)	159/5795	16.50	16.33	/
802.11ac-VHT20(6M)	149/5745	16.00	15.75	1
	157/5785	16.00	15.77	1
	165/5825	16.00	15.82	1
802.11ac-VHT40(MCS0)	151/5755	16.50	16.31	1
	159/5795	16.50	16.26	1
802.11ac-VHT80(MCS0)	155/5775	16.00	15.06	1

Note: Initial test configuration is 802.11n-HT40 mode, since the highest maximum output power, the largest channel bandwidth, and lowest order.

10 Measured and Reported (Scaled) SAR Results

10.1 EUT Antenna Locations

2/3/4G Antenna 1 support GSM850/1900; WCDMA II/V; LTE 2/4/5, 4G Antenna 2 support LTE 7,

The device can transmit from either 2/3/4G Antenna 1 or 4G Antenna 2, and only one antenna can be used for 2G/3G/4G transmission at a time.

antenna can be used for 25/35/45 transmission at a time.											
Overall (Len	gth x Width):	108 mm x 66	mm								
Ove	erall Diagonal	: 115 mm									
Distance of the	Antenna to th	ne EUT surfac	ce/edge								
Antenna Back Side Front side Left Edge Right Edge Top Edge Bottom Edge											
2/3/4G Antenna 1 <25mm <25mm >25mm >25mm >25mm											
4G Antenna 2 <25mm <25mm >25mm >25mm >25mm											
Wi-Fi Antenna 1 <25mm <25mm >25mm >25mm >25mm >25mm											
<25mm	<25mm	>25mm	<25mm	>25mm	<25mm						
Hotspot m	ode, Position	s for SAR tes	sts								
Back Side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge						
Yes	Yes	Yes	N/A	Yes	N/A						
Yes	Yes	Yes	N/A	N/A	Yes						
Yes	Yes	N/A	N/A	Yes	N/A						
Yes	Yes	N/A	Yes	N/A	Yes						
Yes	Yes	N/A	Yes	Yes	Yes						
	Overall (Len Ove Overall (Len Ove Distance of the Back Side <25mm <25mm <25mm Hotspot m Back Side Yes Yes Yes Yes	Overall (Length x Width): Overall Diagonal: Distance of the Antenna to the Back Side Front side <25mm <25mm <25mm <25mm <25mm <25mm <25mm Hotspot mode, Position Back Side Front side Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Overall (Length x Width): 108 mm x 66 Overall Diagonal: 115 mm Distance of the Antenna to the EUT surface Back Side Front side Left Edge <25mm <25mm <25mm <25mm <25mm >25mm <25mm >25mm <25mm >25mm Equiv Side Front side Side Side Front Side Side Side Side Side Side Side Side	Overall (Length x Width): 108 mm x 66 mm Overall Diagonal: 115 mm Distance of the Antenna to the EUT surface/edge Back Side Front side Left Edge Right Edge <25mm <25mm >25mm >25mm <45mm >25mm >25mm <45mm >25mm >25mm <45mm >25mm <45mm <45mm	Overall (Length x Width): 108 mm x 66 mm Overall Diagonal: 115 mm Distance of the Antenna to the EUT surface/edge Back Side Front side Left Edge Right Edge Top Edge <25mm <25mm <25mm >25mm >25mm >25mm <25mm >25mm >25mm >25mm >25mm <25mm >25mm >25mm >25mm >25mm <45mm >25mm >25mm >25mm <45mm >25mm >25mm >25mm >25mm >25mm >25mm >25mm <45mm >25mm						

Note: 1. Per KDB 941225 D06, when the overall device length and width are ≥ 9cm*5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.

Per FCC KDB 447498 D01,

for each exposure position, testing of other requised channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- a) ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100MHz
- b) ≤0.6 W/kg or 1.5 W/kg, for1-g or 10-g respectively, when the transmission band is between 100 MHz and 200MHz.
- c) \leq 0.4 W/kg or 1.0 Wkg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz.
- 3.When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

10.2 Measured SAR Results

Table 1: GSM 850

Toot	Cover	Time	Dute	Channel/	Tune-up	Measured	Limi	t of SAR 1.6	W/kg (mV	/ /g)	Plot
Test Position	Type	Time slot	Duty Cycle	Frequency (dBm) (power (dBm)	Measured SAR1g	Power Drift (dB)	Scaling Factor	Report SAR1g	No.	
				Body-worn 8	& Hotspot	(Distance 1	0mm)				
		2Txslots	1:4.15	128/824.2	28.50	28.46	0.858	0.010	1.01	0.866	/
Back Side	standard	2Txslots	1:4.15	190/836.6	28.50	27.76	0.697	-0.020	1.19	0.826	/
		2Txslots	1:4.15	251/848.8	28.50	27.93	0.661	-0.060	1.14	0.754	/
		2Txslots	1:4.15	128/824.2	28.50	28.46	0.856	-0.020	1.01	0.864	/
Front Side	standard	2Txslots	1:4.15	190/836.6	28.50	27.76	0.706	0.059	1.19	0.837	/
		2Txslots	1:4.15	251/848.8	28.50	27.93	0.662	0.000	1.14	0.755	/
Left Edge	standard	2Txslots	1:4.15	190/836.6	28.50	27.56	0.024	-0.080	1.24	0.030	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	2Txslots	1:4.15	190/836.6	28.50	27.76	0.423	-0.160	1.19	0.502	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	Repeated	2Txslots	1:4.15	128/824.2	28.50	28.46	0.861	0.090	1.01	0.869	8

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.} When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

		Measurement Variability											
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio									
Back Side	128/824.2	0.858	0.861	1.00									

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (\sim 10% from the 1-g SAR limit).

²⁾ A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 2: GSM 1900

Test	Cover	Time	Duty	Channel/	Tune-up	Measured	Limi	t of SAR 1.6	W/kg (mW	/ /g)	Plot
Position	Type	slot	Cycle	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
1 osition	Турс	3101	Oyolo	(MHz)	(aBiii)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	140.
Body-worn & Hotspot (Distance 10mm)											
Back Side	standard	2Txslots	1:4.15	661/1880	28.50	27.35	0.333	0.000	1.30	0.434	9
Front Side	standard	2Txslots	1:4.15	661/1880	28.50	27.35	0.287	0.010	1.30	0.374	/
Left Edge	standard	2Txslots	1:4.15	661/1880	28.50	27.35	0.027	0.027	1.30	0.035	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	2Txslots	1:4.15	661/1880	28.50	27.35	0.126	0.020	1.30	0.164	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. When multiple slots are used, SAR should be tested to account for the maximum source-based time-averaged output power.

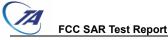


Table 3: UMTS Band II

Bottom Edge

Back Side

N/A

		Duna n									
Test	Cover	Channel	Duty	Channel/	Tune-up	Measured	Limit o	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	Type	Cycle	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
rosition	.,,,,,	туре	Cycle	(MHz)	(dBIII)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	NO.
Body-worn & Hotspot (Distance 10mm)											
		RMC 12.2K	1:1	9262/1852.4	23.50	23.06	0.383	0.037	1.11	0.424	/
Back Side	standard	RMC 12.2K	1:1	9400/1880	23.50	23.08	0.945	0.076	1.10	1.041	/
	RMC 12.2K	1:1	9538/1907.6	23.50	23.14	0.828	0.036	1.09	0.900	/	
		RMC 12.2K	1:1	9262/1852.4	23.50	23.06	0.645	-0.180	1.11	0.714	/
Front Side	standard	RMC 12.2K	1:1	9400/1880	23.50	23.08	0.838	-0.080	1.10	0.923	/
		RMC 12.2K	1:1	9538/1907.6	23.50	23.14	0.730	0.070	1.09	0.793	/
Left Edge	standard	RMC 12.2K	1:1	9400/1880	23.50	23.08	0.054	0.000	1.10	0.059	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	RMC 12.2K	1:1	9400/1880	23.50	23.08	0.329	-0.050	1.10	0.362	/
						•					

Note: 1. The value with blue color is the maximum SAR Value of each test band.

N/A

1:1

N/A

9400/1880

N/A

Repeated RMC 12.2K

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

N/A

23.50

N/A

23.08

N/A

1.030

N/A

-0.037

N/A

1.10

N/A

1.135

N/A

10

		Measurement Variability		
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio
Back Side	9400/1880	0.945	1.030	1.09

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

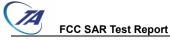


Table 4: UMTS Band V

Front Side

Test	Cover	Channel	Duty	Channel/	Tune-up	Measured	Limit o	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	Type	Cycle	Frequency	(dBm)	power	Measured	Power	Scaling	Report	
Position	туре	туре	Cycle	(MHz)	(dBiii)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	
	Body-worn & Hotspot (Distance 10mm)										
		RMC 12.2K	1:1	4132/826.4	23.50	22.86	0.871	0.020	1.16	1.009	/
Back Side	standard	RMC 12.2K	1:1	4183/836.6	23.50	22.76	0.841	-0.080	1.19	0.997	/
	RMC 12.2K	1:1	4233/846.6	23.50	22.90	0.821	-0.025	1.15	0.943	/	
		RMC 12.2K	1:1	4132/826.4	23.50	22.86	0.875	0.050	1.16	1.014	11
Front Side	standard	RMC 12.2K	1:1	4183/836.6	23.50	22.76	0.833	0.040	1.19	0.988	/
		RMC 12.2K	1:1	4233/846.6	23.50	22.90	0.856	0.090	1.15	0.983	/
Left Edge	standard	RMC 12.2K	1:1	4183/836.6	23.50	22.76	0.025	0.067	1.19	0.030	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	RMC 12.2K	1:1	4183/836.6	23.50	22.76	0.368	0.090	1.19	0.436	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Note: 1.The value with blue color is the maximum SAR Value of each test band.

1:1

4132/826.4

Repeated RMC 12.2K

2. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

23.50

22.86

0.849

0.010

1.16

0.984

		Measurement Variability	Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio									
Front Side	4132/826.4	0.875	0.849	1.03									

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 5: LTE Band 2

Toot	Cover	Durtur	RB	RB	Channel/	T	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Test Position	Cover Type	Duty Cycle	alloc	offset	Frequency	Tune-up (dBm)	power	Measured	Power	Scaling	Report	No.
FOSILIOII	туре	Cycle	ation	Oliset	(MHz)	(dBill)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	140.
	Body-worn & Hotspot (Distance 10mm)											
		1:1	1	0	18700/1860	23.00	22.92	1.040	-0.160	1.02	1.059	1
Back Side	standard	1:1	1	0	18900/1880	23.00	22.94	1.110	-0.080	1.01	1.125	12
		1:1	1	0	19100/1900	23.00	22.96	0.936	-0.020	1.01	0.945	1
Front Side	standard	1:1	1	0	19100/1900	23.00	22.96	0.419	0.020	1.01	0.423	/
Left Edge	standard	1:1	1	0	19100/1900	23.00	22.96	0.036	-0.102	1.01	0.036	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	1:1	1	0	19100/1900	23.00	22.96	0.218	0.167	1.01	0.220	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	50%	0	18700/1860	22.00	21.45	0.673	-0.069	1.14	0.764	1
Front Side	standard	1:1	50%	0	18700/1860	22.00	21.45	0.606	-0.180	1.14	0.688	/
Left Edge	standard	1:1	50%	0	18700/1860	22.00	21.45	0.034	0.057	1.14	0.039	1
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	1:1	50%	0	18700/1860	22.00	21.45	0.196	-0.134	1.14	0.222	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	100%	0	19100/1900	22.00	21.45	0.825	0.080	1.14	0.936	/
Back Side	Repeated	1:1	1	0	18900/1880	23.00	22.94	1.000	-0.080	1.01	1.014	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 0.8 W/kg.

		Measurement Variability		
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio
Back Side	18900/1880	1.110	1.000	1.11

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 6: LTE Band 4

Toef	Cover	Durtu	RB	DD.	Channel/	Tuna un	Measured	Limit	of SAR 1.6	W/kg (m)	N/g)	Dist
Test Position	Cover	Duty	alloc	RB	Frequency	Tune-up	power	Measured	Power	Scaling	Report	Plot No.
Position	Туре	Cycle	ation	onset	(MHz)	(dBm)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	NO.
	Body-worn & Hotspot (Distance 10mm)											
		1:1	1	0	20050/1720	23.00	22.75	0.967	-0.13	1.06	1.024	/
Back Side	standard	1:1	1	0	20175/1732.5	23.00	22.80	0.947	-0.16	1.05	0.992	/
		1:1	1	0	20300/1745	23.00	22.85	0.986	-0.150	1.04	1.021	/
Front Side	standard	1:1	1	0	20300/1745	23.00	22.85	0.732	0.010	1.04	0.758	/
Left Edge	standard	1:1	1	0	20300/1745	23.00	22.85	0.066	0.028	1.04	0.068	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	1:1	1	0	20300/1745	23.00	22.85	0.316	0.110	1.04	0.327	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		1:1	50%	0	20050/1720	22.00	21.40	0.707	-0.080	1.15	0.812	/
Back Side	standard	1:1	50%	0	20175/1732.5	22.00	21.27	0.735	-0.090	1.18	0.870	1
		1:1	50%	0	20300/1745	22.00	21.30	0.743	-0.130	1.17	0.873	/
Front Side	standard	1:1	50%	0	20050/1720	22.00	21.40	0.568	-0.110	1.15	0.652	/
Left Edge	standard	1:1	50%	0	20050/1720	22.00	21.40	0.044	0.110	1.15	0.051	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	1:1	50%	0	20050/1720	22.00	21.40	0.230	0.040	1.15	0.264	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	100%	0	20050/1720	22.00	21.43	0.652	-0.100	1.14	0.743	/
Back Side	Repeated	1:1	1	0	20300/1745	23.00	22.85	0.987	-0.110	1.04	1.022	13

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2.For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 0.8 W/kg.

		Measurement Variability										
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio								
Back Side	20300/1745	0.986	0.987	1.00								

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

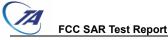


Table 7: LTE Band 5

Table 7: LTE Band 5												
Test	Cover	Duty	RB	RB	Channel/	Tune-up	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Type	Cycle	alloc	offset	Frequency	(dBm)	power	Measured	Power	Scaling	Report	No.
rosition	туре	Cycle	ation	Oliset	(MHz)	(dBill)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	140.
				В	ody-worn & H	otspot (Dis	tance 10mr	n)				
		1:1	1	0	20450/829	23.50	22.62	0.783	0.040	1.22	0.959	14
Back Side	standard	1:1	1	0	20525/836.5	23.50	22.67	0.763	0.070	1.21	0.924	1
		1:1	1	0	20600/844	23.50	22.61	0.705	0.040	1.23	0.865	/
		1:1	1	0	20450/829	23.50	22.62	0.768	0.020	1.22	0.941	/
Front Side	standard	1:1	1	0	20525/836.5	23.50	22.67	0.750	0.040	1.21	0.908	/
		1:1	1	0	20600/844	23.50	22.61	0.687	0.110	1.23	0.843	/
Left Edge	standard	1:1	1	0	20525/836.5	23.50	22.67	0.033	0.150	1.21	0.040	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	1:1	1	0	20525/836.5	23.50	22.67	0.374	-0.100	1.21	0.453	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	50%	13	20600/844	22.50	21.46	0.548	0.020	1.27	0.696	/
Front Side	standard	1:1	50%	13	20600/844	22.50	21.46	0.512	0.050	1.27	0.651	/
Left Edge	standard	1:1	50%	13	20600/844	22.50	21.46	0.025	0.120	1.27	0.032	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	1:1	50%	13	20600/844	22.50	21.46	0.232	-0.020	1.27	0.295	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Back Side	standard	1:1	100%	0	20525/836.5	22.50	21.47	0.592	0.020	1.27	0.750	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

100%

Front Side

standard

1:1

22.50

21.47

0.557

0.040

1.27

0.706

/

20525/836.5

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 0.8 W/kg.

Table 8: LTE Band 7

Test	Cayon	Duty	RB	RB	Channel/	Tuna un	Measured	Limit	of SAR 1.6	W/kg (mV	V/g)	Plot
Position	Cover Type	Duty Cycle	alloc	offset	Frequency	Tune-up (dBm)	power	Measured	Power	Scaling	Report	No.
FOSITION	туре	Cycle	ation	Oliset	(MHz)	(dBiii)	(dBm)	SAR1g	Drift (dB)	Factor	SAR1g	NO.
				E	Body-worn & Ho	otspot (Dist	ance 10mm)				
		1:1	1	50	20850/2510	23.00	22.58	0.878	-0.190	1.10	0.967	1
Back Side	standard	1:1	1	0	21100/2535	23.00	22.55	0.951	-0.023	1.11	1.055	15
		1:1	1	50	21350/2560	23.00	22.77	0.907	-0.035	1.05	0.956	/
Front Side	standard	1:1	1	50	21350/2560	23.00	22.77	0.607	0.060	1.05	0.640	/
Left Edge	standard	1:1	1	50	21350/2560	23.00	22.77	0.091	0.030	1.05	0.096	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	1	50	21350/2560	23.00	22.77	0.518	0.110	1.05	0.546	1
		1:1	50%	0	20850/2510	22.00	21.56	0.731	-0.080	1.11	0.809	1
Back Side	standard	1:1	50%	0	21100/2535	22.00	21.54	0.769	-0.041	1.11	0.855	1
		1:1	50%	25	21350/2560	22.00	21.72	0.751	-0.022	1.07	0.801	1
Front Side	standard	1:1	50%	25	21350/2560	22.00	21.72	0.494	-0.040	1.07	0.527	/
Left Edge	standard	1:1	50%	25	21350/2560	22.00	21.72	0.074	0.036	1.07	0.079	/
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	1:1	50%	25	21350/2560	22.00	21.72	0.429	0.100	1.07	0.458	/
Back Side	standard	1:1	100%	0	21100/2535	22.00	21.54	0.719	0.130	1.11	0.799	/
Back Side	Repeated	1:1	1	0	21100/2535	23.00	22.55	0.912	0.010	1.11	1.012	/

Note: 1.The value with blue color is the maximum SAR Value of each test band.

^{2.}For QPSK with 100% RB allocation, SAR is required when and the highest reported SAR for 1 RB and 50% RB allocation in are ≥ 0.8 W/kg.

	Measurement Variability											
Test Position	Channel/ Frequency(MHz)	MAX Measured SAR _{1g} (W/kg)	1 st Repeated SAR _{1g} (W/kg)	Ratio								
Back Side	21100/2535	0.951	0.912	1.04								

Note: 1) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).

2) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.



Table 9: Wi-Fi (2.4G) (Wi-Fi Antenna 1)

Note: 1. The value with blue color is the maximum SAR Value of each test band.

I al	JIC J. 111-	11(2.40)	(441-1 1 7	Antenna ij								
				Channel/	Tune-up	Measured power (dBm)	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	Mode 802.11b	Duty Cycle	Frequency (MHz)			Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	140.
	Body-worn & Hotspot (Distance 10mm) (Wi-Fi Antenna 1)											
Back Side	standard	DSSS	99.12%	1/2412	18.00	17.45	0.124	0.145	0.130	1.15	0.166	16
Front Side	standard	DSSS	99.12%	1/2412	18.00	17.45	0.117	0.116	-0.030	1.15	0.133	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	DSSS	99.12%	1/2412	18.00	17.45	0.113	0.112	0.050	1.15	0.128	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

	MAX Adjusted SAR											
Mode Test Position		Channel/ Frequency(MHz)	MAX Reported SAR _{1g}	802.11b Tune-up	Tune-up limit	Scaling Factor	Adjusted SAR _{1g}					
	FOSILIOII	Frequency(wiriz)	(W/kg)	limit (dBm)	(dBm)	Factor	(W/kg)					
802.11g	Back Side	1/2412	0.166	18.00	16.50	0.71	0.118					
802.11n HT20	Back Side	1/2412	0.166	18.00	16.50	0.71	0.118					
802.11n HT40	Back Side	1/2412	0.166	18.00	16.50	0.71	0.118					

Note:

SAR is not required for OFDM when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSSspecifiedmaxi mum output power and the adjusted SAR is ≤ 1.2 W/kg.

				Frequency		Measured	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	Mode 802.11b	Duty Cycle		Tune-up dBm)		Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	140.
			Body-	worn & Hots	pot (Dista	nce 10mm)	(Wi-Fi Anto	enna 2)				
Back Side	standard	DSSS	99.12%	1/2412	16.50	16.02	0.110	0.110	-0.029	1.13	0.124	17
Front Side	standard	DSSS	99.12%	1/2412	16.50	16.02	0.081	0.081	0.010	1.13	0.091	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	DSSS	99.12%	1/2412	16.50	16.02	0.006	0.006	-0.027	1.13	0.007	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	DSSS	99.12%	1/2412	16.50	16.02	0.111	0.084	-0.043	1.13	0.095	/
Note: 1. The v	alue with b	lue color is	s the maxi	mum SAR Va	lue of eac	h test band.			•	•		

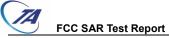
	MAX Adjusted SAR											
Mode Test Position		Channel/ Frequency(MHz)	MAX ReportedSAR _{1g}			Scaling Factor	Adjusted SAR _{1g}					
	FOSILIOII	i requericy(wiriz)	(W/kg)	limit (dBm)	(dBm)	i actor	(W/kg)					
802.11g	Back Side	1/2412	0.124	16.50	15.00	0.71	0.088					
802.11n HT20	Back Side	1/2412	0.124	16.50	15.00	0.71	0.088					
802.11n HT40	Back Side	1/2412	0.124	16.50	15.00	0.71	0.088					

Note:

SAR is not required for OFDM when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSSspecifiedmaxi mum output power and the adjusted SAR is ≤ 1.2 W/kg.

Table	11:	Wi-Fi	(2.4G)	(MIMO)	
IUNIC		**!-! !	\ _	\ 1411141 \(\cdot \)	

		Mode		Channel/		Measured	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	802.11n- HT20	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	NO.
			E	Body-worn &	Hotspot (Distance 10	mm) (MIM	0)				
Back Side	standard	DSSS	95.24%	1/2412	18.50	17.87	0.105	0.109	0.020	1.21	0.132	/
Front Side	standard	DSSS	95.24%	1/2412	18.50	17.87	0.111	0.113	0.080	1.21	0.137	18
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	DSSS	95.24%	1/2412	18.50	17.87	0.047	0.047	0.020	1.21	0.057	/
Top Edge	standard	DSSS	95.24%	1/2412	18.50	17.87	0.078	0.078	-0.110	1.21	0.095	/
Bottom Edge	standard	DSSS	95.24%	1/2412	18.50	17.87	0.055	0.068	-0.099	1.21	0.083	/
Note: 1. The v	ote: 1. The value with blue color is the maximum SAR Value of each test band.											


	MAX Adjusted SAR											
	Toot	Channel	MAX	802.11n-HT20	Tune-up	Caaling	Adjusted					
Mode	Test	Channel/	ReportedSAR _{1a}	Tune-up	limit	Scaling	SAR ₁₀					

 Mode
 Test Position
 Channel/Frequency(MHz)
 ReportedSAR_{1g} (W/kg)
 Tune-up limit (dBm)
 Scaling Factor (W/kg)
 SAR_{1g} (W/kg)

 802.11n HT40
 Front Side
 1/2412
 0.137
 18.50
 18.00
 0.89
 0.122

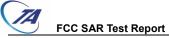
Note:

SAR is not required for OFDM when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSSspecifiedmaxi mum output power and the adjusted SAR is ≤ 1.2 W/kg.

Report No: R1808A0375-S1

Table 12: Wi-Fi (5G,U-NII-1) (Wi-Fi Antenna 1)

		Mode	Channel/		Measured	L	imit of S	AR 1.6 W/k	g (mW/g)			
Test Position	Cover Type	802.11ac -VHT40	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor		NO.
			Body-	worn & Hots	pot (Dista	nce 10mm)	(Wi-Fi Ant	enna 1)				
Back Side	standard	OFDM	91.18%	46/5230	14.00	13.51	0.391	0.377	0.026	1.23	0.463	/
Front Side	standard	OFDM	91.18%	46/5230	14.00	13.51	0.125	0.129	-0.094	1.23	0.158	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ton Edge	atom doud	OFDM	91.18%	38/5190	14.00	13.49	0.698	0.781	0.024	1.23	0.963	19
Top Edge	standard	OFDM	91.18%	46/5230	14.00	13.51	0.850	0.763	0.117	1.23	0.937	/
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Note: 1. The v	Note: 1. The value with blue color is the maximum SAR Value of each test band.											


Table 13: Wi-Fi (5G,U-NII-1) (Wi-Fi Antenna 2)

		Mode		Channel/		Measured	Limit of SAR 1.6 W/		NR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	802.11a c-VHT4 0	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	Plot No.
			Body-	worn & Hots	pot (Dista	nce 10mm)	(Wi-Fi Anto	enna 2)				
Back Side	standard	OFDM	91.18%	46/5230	13.50	13.04	0.130	0.097	-0.040	1.22	0.118	20
Front Side	standard	OFDM	91.18%	46/5230	13.50	13.04	0.110	0.083	-0.040	1.22	0.101	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	OFDM	91.18%	46/5230	13.50	13.04	0.004	0.007	0.029	1.22	0.009	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	OFDM	91.18%	46/5230	13.50	13.04	0.092	0.049	-0.034	1.22	0.060	/
Note: 1. The v	alue with b	lue color is	s the maxi	imum SAR Va	lue of eacl	h test band.						

Table 14: Wi-Fi (5G,U-NII-1) (MIMO)

		Mode		Channel/		Measured	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	802.11 ac-VH T40	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	Plot No.
			В	ody-worn &	Hotspot (I	Distance 10	mm) (MIMC	D)				
Back Side	standard	OFDM	91.18%	46/5230	16.50	16.29	0.405	0.381	0.028	1.15	0.438	/
Front Side	standard	OFDM	91.18%	46/5230	16.50	16.29	0.106	0.074	0.020	1.15	0.085	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	OFDM	91.18%	46/5230	16.50	16.29	0.029	0.014	0.027	1.15	0.031	/
Top Edge	standard	OFDM	91.18%	46/5230	16.50	16.29	0.725	0.673	0.020	1.15	0.774	21
Bottom Edge	standard	OFDM	91.18%	46/5230	16.50	16.29	0.062	0.042	-0.150	1.15	0.048	/
Note: 1. The va	alue with blu	e color is	the maxir	num SAR Val	ue of each	test band.				•	•	

Report No: R1808A0375-S1

Table 15: Wi-Fi (5G,U-NII-3) (Wi-Fi Antenna 1)

		Mode		Channel/		Measured	L	imit of SA	AR 1.6 W/kg (mW/g)			
Test Position	Cover Type	802.11n -HT40	Duty Cycle	cy (MHz)	Tune-up dBm)		Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	Plot No.
			Body-v	vorn & Hot	spot (Dist	ance 10mm)	(Wi-Fi An	tenna 1)				
Back Side	standard	OFDM	90.80%	151/5755	14.00	13.71	0.382	0.323	0.026	1.18	0.380	/
Front Side	standard	OFDM	90.80%	151/5755	14.00	13.71	0.117	0.098	0.100	1.18	0.115	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Top Edge	standard	OFDM	90.80%	151/5755	14.00	13.71	0.455	0.371	0.062	1.18	0.437	22
Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Note: 1. The v	alue with b	lue color is	s the maxi	mum SAR \	/alue of ea	ch test band	l.					

Report No: R1808A0375-S1

Table 16: Wi-Fi (5G,U-NII-3) (Wi-Fi Antenna 2)

	Mode Channel/			Measured	Limit of SAR 1.6 W/kg (mW/g)							
Test Position	Cover Type	802.11n -HT40	Duty Cycle	Frequency (MHz)	Tune-up dBm)	power (dBm)	Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	140.
			Body-	worn & Hots	pot (Dista	nce 10mm)	(Wi-Fi Anto	enna 2)				
Back Side	standard	OFDM	90.80%	159/5795	13.50	13.05	0.120	0.105	0.027	1.22	0.128	23
Front Side	standard	OFDM	90.80%	159/5795	13.50	13.05	0.096	0.082	0.043	1.22	0.100	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	OFDM	90.80%	159/5795	13.50	13.05	0.002	0.012	0.100	1.22	0.014	/
Top Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Bottom Edge	standard	OFDM	90.80%	159/5795	13.50	13.05	0.129	0.086	-0.040	1.22	0.105	/
Note: 1. The v	alue with b	lue color is	s the maxi	imum SAR Va	lue of eac	h test band.						

Table 17: Wi-Fi (5G,U-NII-3) (MIMO)

		Mode		Channel/		Measured	L	imit of SA	AR 1.6 W/kg	g (mW/g)		
Test Position	Cover Type	802.11n -HT40	Duty Cycle	Frequen cy (MHz)	Tune-up dBm)		Area Scan SAR 1g	Zoom Scan SAR 1g	Power Drift (dB)	Scaling Factor	Report SAR 1g	Plot No.
			В	ody-worn &	k Hotspot	(Distance 1	0mm) (MIN	IO)				
Back Side	standard	OFDM	90.80%	151/5755	16.50	16.36	0.330	0.362	0.028	1.14	0.411	/
Front Side	standard	OFDM	90.80%	151/5755	16.50	16.36	0.087	0.115	-0.112	1.14	0.131	/
Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Right Edge	standard	OFDM	90.80%	151/5755	16.50	16.36	0.013	0.021	0.100	1.14	0.023	/
Top Edge	standard	OFDM	90.80%	151/5755	16.50	16.36	0.444	0.373	0.043	1.14	0.424	24
Bottom Edge	standard	OFDM	90.80%	151/5755	16.50	16.36	0.123	0.109	-0.099	1.14	0.124	/
Note: 1. The v	alue with b	lue color is	s the maxi	mum SAR \	Value of ea	ach test band	d.					

10.3 Simultaneous Transmission Analysis

Simultaneous Transmission Configurations	Body-worn & Hotspot
GPRS/EDGE(Data) + Wi-Fi-2.4GHz(data)	Yes
WCDMA(Data) + Wi-Fi-2.4GHz(data)	Yes
LTE(Data) + Wi-Fi-2.4GHz(data)	Yes
GPRS/EDGE(Data) + Wi-Fi-5GHz(data)	Yes
WCDMA(Data) + Wi-Fi-5GHz(data)	Yes
LTE(Data) + Wi-Fi-5GHz(data)	Yes

General Note:

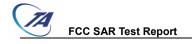
- 1. The Scaled SAR summation is calculated based on the same configuration and test position.
- 2. Per KDB 447498 D01, simultaneous transmission SAR is compliant if,
- i) Scalar SAR summation < 1.6W/kg, simultaneously transmission SAR measurement is not necessary.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.

The maximum SAR_{1q} Value for 2/3/4G Antenna

	SAR _{1g} (W/kg)	GSM	GSM	WCDMA	WCDMA	LTE	LTE	LTE	LTE	MAX.
Test Positio	n	850	1900	Band II	Band V	FDD 2	FDD 4	FDD 5	FDD 7	SAR _{1g}
	Back Side	0.869	0.434	1.135	1.009	1.125	1.024	0.959	1.055	1.135
	Front Side	0.864	0.374	0.923	1.014	0.688	0.758	0.941	0.640	1.014
Body-worn	Left Edge	0.030	0.035	0.059	0.030	0.039	0.068	0.040	0.096	0.096
& Hotspot	Right Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Top Edge	0.502	0.164	0.362	0.436	0.222	0.327	0.453	N/A	0.502
	Bottom Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.546	0.546

The maximum SAR_{1g} Value for Wi-Fi

Test Position	SAR _{1g} (W/kg)	2.4G ANT 1	2.4G ANT 2	2.4G MIMO	5G ANT 1 U-NII-1	5G ANT 2 U-NII-1	5G MIMO U-NII-1	5G ANT 1 U-NII-1	5G ANT 2 U-NII-1	5G MIMO U-NII-1	MAX. SAR _{1g}
	Back Side	0.166	0.124	0.132	0.463	0.118	0.438	0.380	0.128	0.411	0.463
	Front Side	0.133	0.091	0.137	0.158	0.101	0.085	0.115	0.100	0.131	0.158
Body-worn	Left Edge	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
& Hotspot	Right Edge	N/A	0.007	0.057	N/A	0.009	0.031	N/A	0.014	0.023	0.057
	Top Edge	0.128	N/A	0.095	0.963	N/A	0.774	0.437	N/A	0.424	0.963
	Bottom Edge	N/A	0.095	0.083	N/A	0.060	0.048	N/A	0.105	0.124	0.124


About Wi-Fi and 2/3/4G Antenna

Test Position	SAR _{1g} (W/kg)	2/3/4G Antenna	Wi-Fi	MAX. ΣSAR _{1g}
	Back Side	1.135	0.463	1.598
	Front Side	1.014	0.158	1.172
Body-worn	Left Edge	0.096	N/A	0.096
& Hotspot	Right Edge	N/A	0.057	0.057
	Top Edge	0.502	0.963	1.465
	Bottom Edge	0.546	0.124	0.670

Note: 1. The value with blue color is the maximum ΣSAR_{1g} Value.

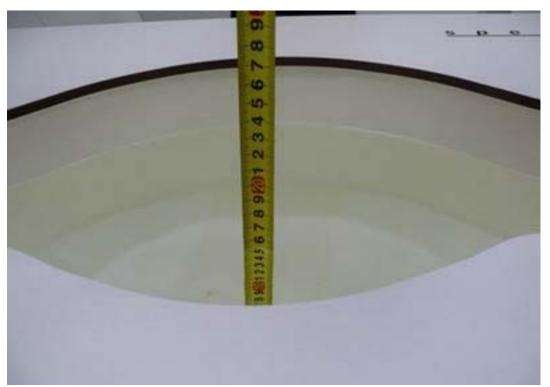
2.MAX. ΣSAR_{1g} =Unlicensed SAR_{MAX} +Licensed SAR_{MAX}

MAX. $\Sigma SAR_{1g} = 1.598W/kg < 1.6W/kg$, so the Simultaneous transimition SAR with volum scan are not required for Wi-Fi and 2/3/4G Antenna.

11 Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528- 2013 is not required in SAR reports submitted for equipment approval.

Report No: R1808A0375-S1


ANNEX A: Test Layout

Tissue Simulating Liquids

For the measurement of the field distribution inside the flat phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For Body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Picture 3.

Picture 3: Liquid depth in the flat Phantom

ANNEX B: System Check Results

Plot1 System Performance Check at 835 MHz Body TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020

Date: 8/31/2018

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.97 mho/m; ϵ_r = 53.8; ρ = 1000 kg/m³

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.32, 9.32, 9.32); Calibrated: 5/29/2018;

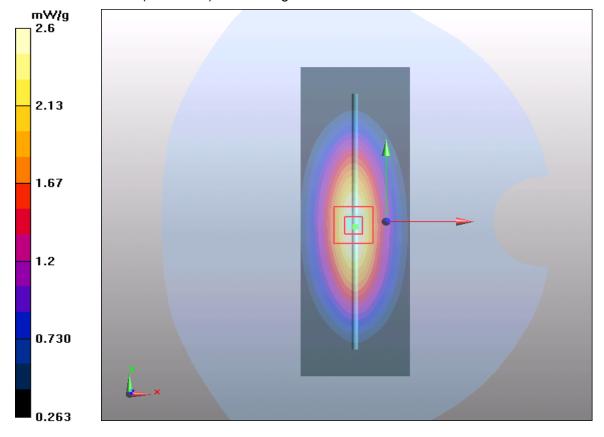
Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=15mm, Pin=250mW/Area Scan (41x121x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 2.58 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,


dz=5mm

Reference Value = 51.9 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 3.5 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.6 mW/g

Plot2 System Performance Check at 1750 MHz Body TSL DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033

Date: 8/24/2018

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.50 \text{ mho/m}$; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.7 ℃

DASY5 Configuration:

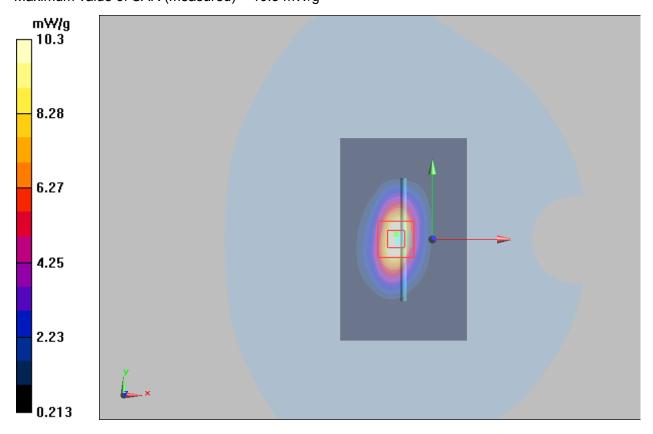
Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.91, 7.91, 7.91); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (51x81x1): Measurement grid: dx=15 mm, dy=15 mm


Maximum value of SAR (interpolated) = 10.6 mW/g

d=10mm, Pin=250mW/Area Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.7 V/m; Power Drift = 0.097 dB

Peak SAR (extrapolated) = 16.8 W/kg

SAR(1 g) = 9.24 mW/g; SAR(10 g) = 4.9 mW/gMaximum value of SAR (measured) = 10.3 mW/g

Plot3 System Performance Check at 1900 MHz Body TSL DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Date: 8/25/2018

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

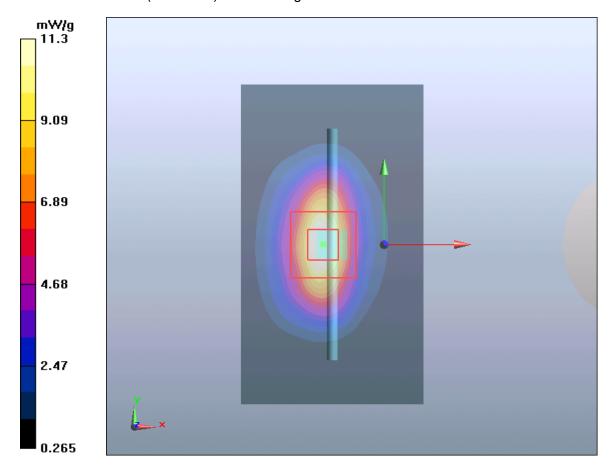
Probe: EX3DV4 - SN3677; ConvF(7.70, 7.70, 7.70); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 12.2 mW/g


d=10mm, Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,

dz=5mm

Reference Value = 82.3 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g Maximum value of SAR (measured) = 11.3 mW/g

Plot4 System Performance Check at 2450 MHz Body TSL DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Date: 8/24/2018

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.93 \text{mho/m}$; $\epsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

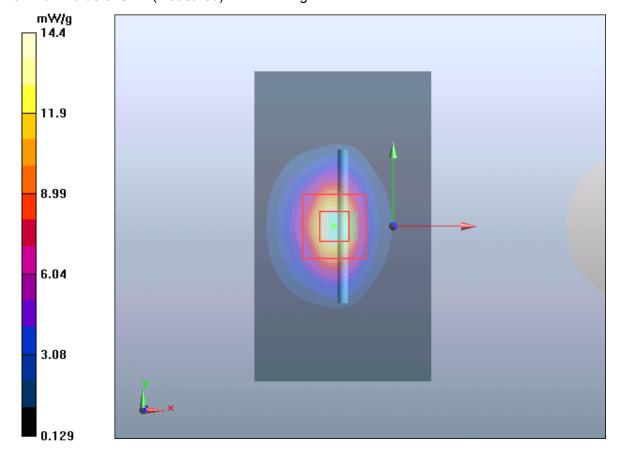
Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (41x71x1): Measurement grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 16 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.003 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g Maximum value of SAR (measured) = 14.4 mW/g

Plot5 System Performance Check at 2600 MHz Body TSL DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058

Date: 8/27/2018

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2600 MHz; $\sigma = 2.12 \text{ mho/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

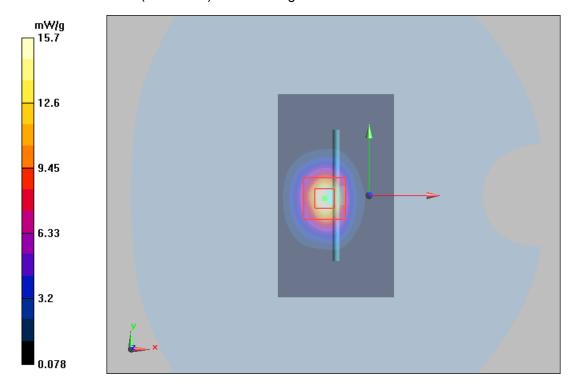
Sensor-Surface: 4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.16, 7.16, 7.16); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW /Area Scan (41x71x1): Measurement grid: dx=12 mm, dy=12 mm


Maximum value of SAR (interpolated) = 17.7 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 74 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 5.99 mW/g Maximum value of SAR (measured) = 15.7 mW/g

Plot 6System Performance Check at 5250 MHz Body TSL DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 9/11/2018

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5250 MHz; $\sigma = 5.42 \text{ mho/m}$; $\varepsilon_r = 47.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 5/29/2018;

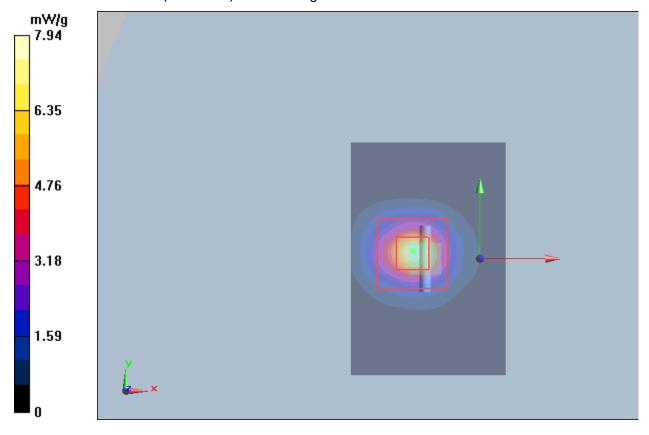
Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 7.69 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,


dz=2mm

Reference Value = 36.3 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 47.7 W/kg

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.26 mW/g

Maximum value of SAR (measured) = 7.94 mW/g

Plot 7System Performance Check at 5750 MHz Body TSL DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151

Date: 9/11/2018

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5750 MHz; $\sigma = 6.07 \text{ mho/m}$; $\varepsilon_r = 47.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

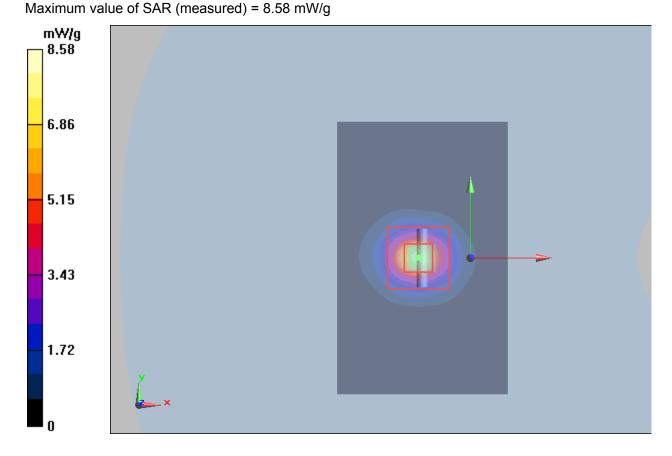
Probe: EX3DV4 - SN3677; ConvF(4.43, 4.43, 4.43); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

d=10mm, Pin=250mW/Area Scan (61x101x1): Measurement grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 7.84 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

Reference Value = 38 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 7.15 mW/g; SAR(10 g) = 1.99 mW/g

ANNEX C: Highest Graph Results

Plot 8GSM 850 GPRS (2Txslots) Back Side Low (Repeated SAR)

Date: 8/31/2018

Communication System: UID 0, 2 slot GPRS (0); Frequency: 824.2 MHz; Duty Cycle: 1:4.14954 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.963$ S/m; $\varepsilon_r = 53.905$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

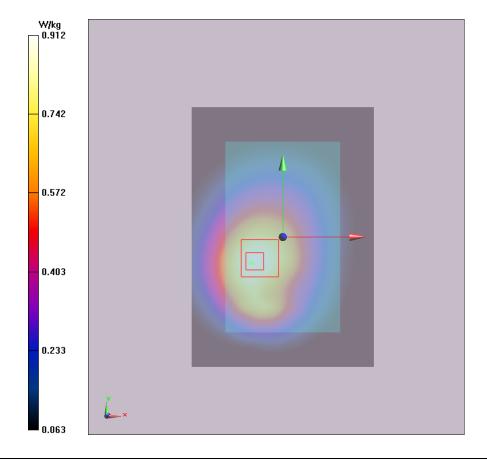
Probe: EX3DV4 - SN3677; ConvF(9.32, 9.32, 9.32); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Low/Area Scan (71x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.913 W/kg


Back Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.37 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.861 W/kg; SAR(10 g) = 0.599 W/kg

Maximum value of SAR (measured) = 0.912 W/kg

FCC SAR Test Report No: R1808A0375-S1

Plot 9GSM 1900 GPRS (2Txslots) Back Side Middle

Date: 8/25/2018

Communication System: UID 0, 2 slot GPRS (0); Frequency: 1880 MHz; Duty Cycle: 1:4.14954

Medium parameters used: f = 1880 MHz; σ = 1.489 S/m; ϵ_r = 52.896; ρ = 1000 kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

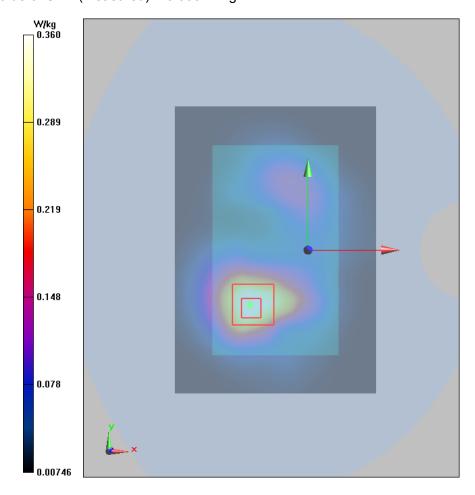
Probe: EX3DV4 - SN3677; ConvF(7.70, 7.70, 7.70); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (71x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.383 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.016 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.524 W/kg

SAR(1 g) = 0.333 W/kg; SAR(10 g) = 0.198 W/kg

Maximum value of SAR (measured) = 0.360 W/kg

Plot 10 UMTS Band II Back Side Middle (Repeated SAR)

Date: 8/25/2018

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.489$ S/m; $\epsilon_r = 52.896$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

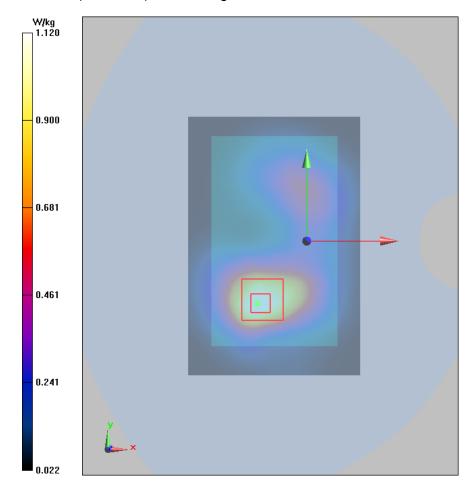
Probe: EX3DV4 - SN3677; ConvF(7.70, 7.70, 7.70); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x91x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.23 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.68 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 1.63 W/kg

SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.614 W/kg

Maximum value of SAR (measured) = 1.12 W/kg

Plot 11 UMTS Band V Front Side Low

Date: 8/31/2018

Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 0.965 \text{ S/m}$; $\varepsilon_r = 53.888$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

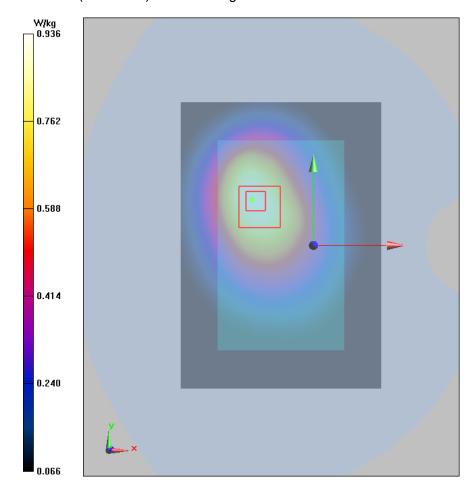
Probe: EX3DV4 - SN3677; ConvF(9.32, 9.32, 9.32); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side Low/Area Scan (71x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.936 W/kg


Front Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.85 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.875 W/kg; SAR(10 g) = 0.608 W/kg

Maximum value of SAR (measured) = 0.936 W/kg

Plot 12 LTE Band 2 1RB Back Side Middle

Date: 8/25/2018

Communication System: UID 0, LTE_FDD (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.489$ S/m; $\epsilon_r = 52.896$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

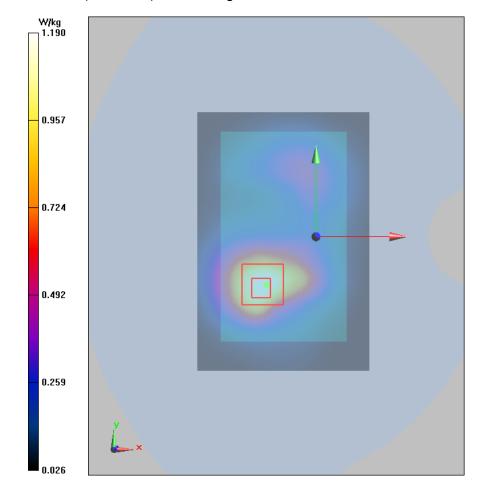
Probe: EX3DV4 - SN3677; ConvF(7.70, 7.70, 7.70); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (61x91x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.24 W/kg


Back Side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.69 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 1.11 W/kg; SAR(10 g) = 0.664 W/kg

Maximum value of SAR (measured) = 1.19 W/kg

Plot 13 LTE Band 4 1RB Back Side High (Repeated SAR)

Date: 8/24/2018

Communication System: UID 0, LTE_FDD (0); Frequency: 1745 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1745 MHz; $\sigma = 1.491$ S/m; $\epsilon_r = 52.877$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

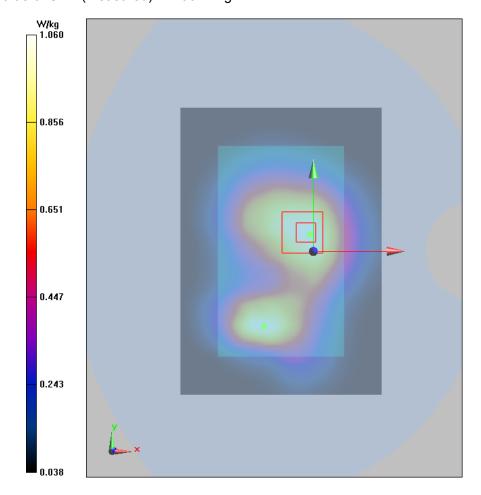
Probe: EX3DV4 - SN3677; ConvF(7.91, 7.91, 7.91); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side High/Area Scan (71x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 1.08 W/kg


Back Side High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.77 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.987 W/kg; SAR(10 g) = 0.647 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

Plot 14 LTE Band 5 1RB Back Side Low

Date: 8/31/2018

Communication System: UID 0, LTE_FDD (0); Frequency: 829 MHz;Duty Cycle: 1:1 Medium parameters used: f = 829 MHz; $\sigma = 0.967$ S/m; $\epsilon_r = 53.861$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

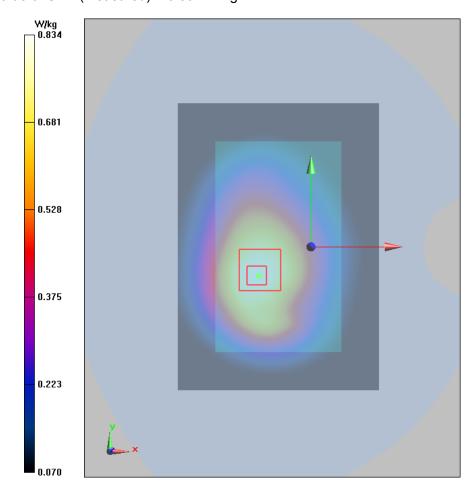
Probe: EX3DV4 - SN3677; ConvF(9.32, 9.32, 9.32); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Low/Area Scan (71x101x1): Interpolated grid: dx=15 mm, dy=15 mm

Maximum value of SAR (interpolated) = 0.835 W/kg


Back Side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.51 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.783 W/kg; SAR(10 g) = 0.559 W/kg

Maximum value of SAR (measured) = 0.834 W/kg

Plot 15 LTE Band 7 1RB Back Side Middle

Date: 8/27/2018

Communication System: UID 0, LTE_FDD (0); Frequency: 2535 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2535 MHz; $\sigma = 2.037$ S/m; $\epsilon_r = 51.583$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

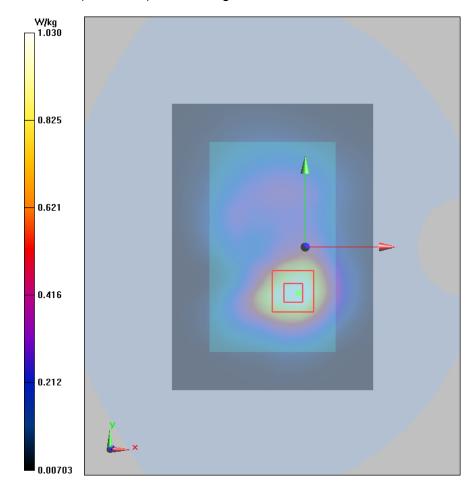
Probe: EX3DV4 - SN3677; ConvF(7.16, 7.16, 7.16); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Middle/Area Scan (91x131x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 1.12 W/kg


Back Side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.85 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.951 W/kg; SAR(10 g) = 0.529 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

FCC SAR Test Report No: R1808A0375-S1

Plot 16 802.11b Back Side Low (Wi-Fi Antenna 1)

Date: 8/24/2018

Communication System: UID 0, WiFi (0); Frequency: 2412 MHz; Duty Cycle: 1:1.009 Medium parameters used: f = 2412 MHz; $\sigma = 1.882$ S/m; $\epsilon_r = 51.942$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

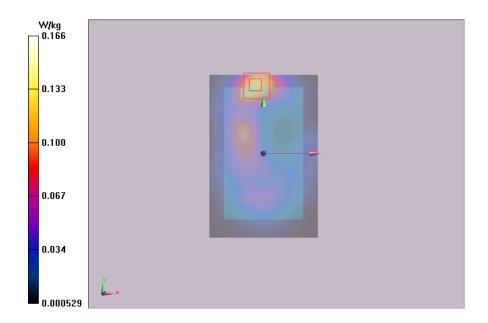
Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Low/Area Scan (81x121x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.152 W/kg


Back Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.804 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.145 W/kg; SAR(10 g) = 0.074 W/kg

Maximum value of SAR (measured) = 0.166 W/kg

FCC SAR Test Report No: R1808A0375-S1

Plot 17 802.11b Back Side Low (Wi-Fi Antenna 2)

Date: 8/24/2018

Communication System: UID 0, WiFi (0); Frequency: 2412 MHz; Duty Cycle: 1:1.009 Medium parameters used: f = 2412 MHz; $\sigma = 1.882$ S/m; $\epsilon_r = 51.942$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

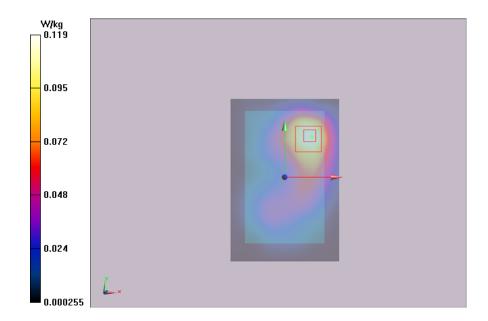
Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side Low/Area Scan (81x121x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.122 W/kg


Back Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.008 V/m; Power Drift = -0.029 dB

Peak SAR (extrapolated) = 0.199 W/kg

SAR(1 g) = 0.110 W/kg; SAR(10 g) = 0.061 W/kg

Maximum value of SAR (measured) = 0.119 W/kg

Plot 18 802.11n-HT20 Front Side Low (MIMO)

Date: 8/24/2018

Communication System: UID 0, WiFi (0); Frequency: 2412 MHz; Duty Cycle: 1:1.008 Medium parameters used: f = 2412 MHz; $\sigma = 1.882$ S/m; $\epsilon_r = 51.942$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Sensor-Surface: 4mm (Mechanical Surface Detection)

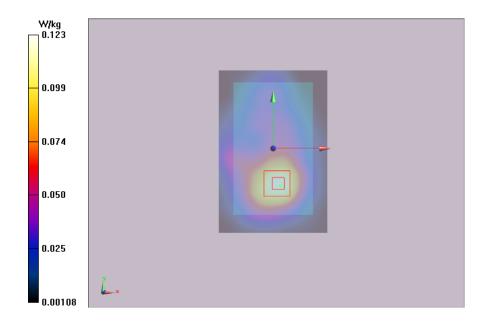
Probe: EX3DV4 - SN3677; ConvF(7.53, 7.53, 7.53); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Front Side Low/Area Scan (81x121x1): Interpolated grid: dx=12 mm, dy=12 mm

Maximum value of SAR (interpolated) = 0.122 W/kg


Front Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.393 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.197 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.065W/kg

Maximum value of SAR (measured) = 0.123 W/kg

Plot 19 802.11ac-VHT40 U-NII-1 Top Edge CH38 (Wi-Fi Antenna 1)

Date: 9/11/2018

Communication System: UID 0, WiFi (0); Frequency: 5190 MHz; Duty Cycle: 1:1.097

Medium parameters used (extrapolated): f = 5190 MHz; $\sigma = 5.322 \text{ S/m}$; $\varepsilon_r = 46.893$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

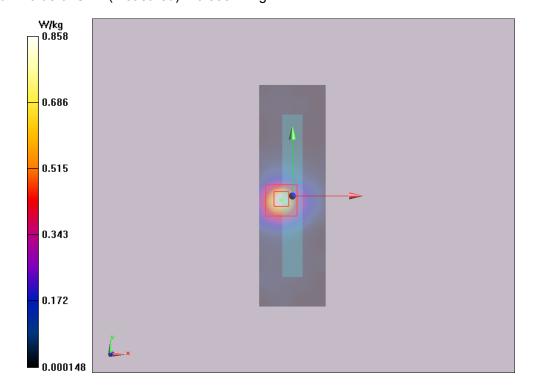
Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Top Edge CH38/Area Scan (51x151x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.808 W/kg


Top Edge CH38/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.16 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 3.32 W/kg

SAR(1 g) = 0.781 W/kg; SAR(10 g) = 0.270 W/kg

Maximum value of SAR (measured) = 0.858 W/kg

Plot 20 802.11ac-VHT40 U-NII-1 Back Side CH46 (Wi-Fi Antenna 2)

Date: 9/11/2018

Communication System: UID 0, WiFi (0); Frequency: 5230 MHz; Duty Cycle: 1:1.097 Medium parameters used: f = 5230 MHz; $\sigma = 5.386$ S/m; $\epsilon_r = 46.764$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

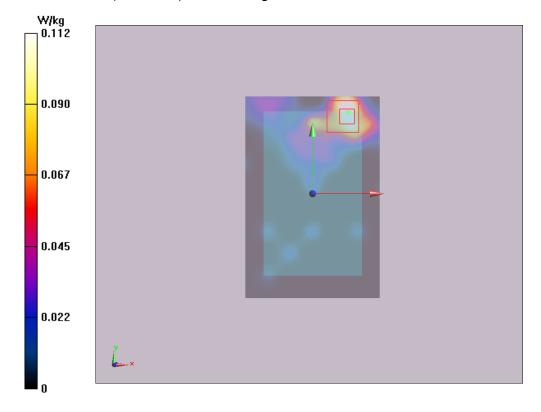
Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side CH46/Area Scan (91x141x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.140 W/kg


Back Side CH46 /Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.799 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 0.258 W/kg

SAR(1 g) = 0.097 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.112 W/kg

Plot 21 802.11ac-VHT40 U-NII-1 Top Edge CH46 (MIMO)

Date: 9/11/2018

Communication System: UID 0, WiFi (0); Frequency: 5230 MHz; Duty Cycle: 1:1.097 Medium parameters used: f = 5230 MHz; $\sigma = 5.386$ S/m; $\epsilon_r = 46.764$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

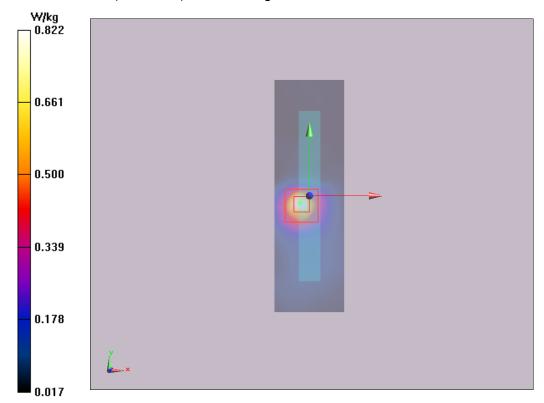
Probe: EX3DV4 - SN3677; ConvF(5.04, 5.04, 5.04); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Top Edge CH46/Area Scan (51x151x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.908 W/kg


Top Edge CH46/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.75 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 1.88 W/kg

SAR(1 g) = 0.673 W/kg; SAR(10 g) = 0.254 W/kg

Maximum value of SAR (measured) = 0.822 W/kg

FCC SAR Test Report No: R1808A0375-S1

Plot 22 802.11n-HT40 U-NII-3 Top Edge CH151 (Wi-Fi Antenna 1)

Date: 9/11/2018

Communication System: UID 0, WiFi (0); Frequency: 5755 MHz; Duty Cycle: 1:1.101 Medium parameters used: f = 5755 MHz; $\sigma = 6.071$ S/m; $\epsilon_r = 47.721$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

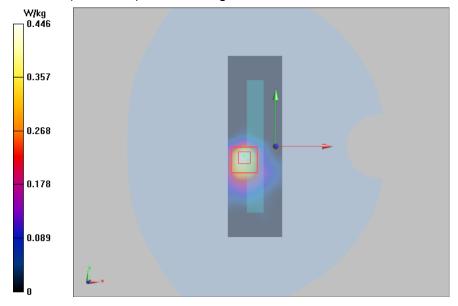
Probe: EX3DV4 - SN3677; ConvF(4.43, 4.43, 4.43); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Top Edge CH151/Area Scan (51x151x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.467 W/kg


Top Edge CH151/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.192 V/m; Power Drift = 0.062 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.371 W/kg; SAR(10 g) = 0.135 W/kg

Maximum value of SAR (measured) = 0.446 W/kg

Plot 23 802.11n-HT40 U-NII-3 Back Side CH159 (Wi-Fi Antenna 2)

Date: 9/11/2018

Communication System: UID 0, WiFi (0); Frequency: 5795 MHz; Duty Cycle: 1:1.101 Medium parameters used: f = 5795 MHz; $\sigma = 6.129$ S/m; $\epsilon_r = 47.605$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

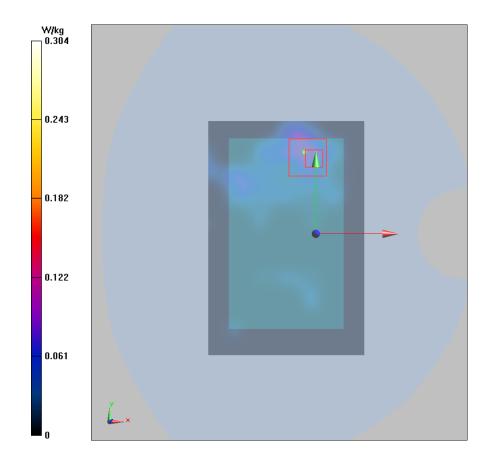
Probe: EX3DV4 - SN3677; ConvF(4.43, 4.43, 4.43); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Back Side CH159/Area Scan (91x141x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.319 W/kg


Back Side CH159/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.198 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.487 W/kg

SAR(1 g) = 0.105 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.304 W/kg

Plot 24 802.11n-HT40 U-NII-1 Top Edge CH151 (MIMO)

Date: 9/11/2018

Communication System: UID 0, WiFi (0); Frequency: 5755 MHz; Duty Cycle: 1:1.101 Medium parameters used: f = 5755 MHz; $\sigma = 6.071$ S/m; $\epsilon_r = 47.721$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY4 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

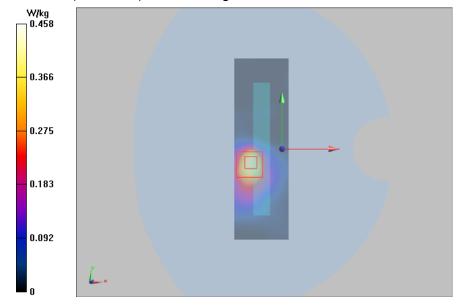
Probe: EX3DV4 - SN3677; ConvF(4.43, 4.43, 4.43); Calibrated: 5/29/2018;

Electronics: DAE4 SN1317; Calibrated: 3/23/2018 Phantom: SAM1; Type: SAM; Serial: TP-1534

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Top Edge CH151/Area Scan (51x151x1): Interpolated grid: dx=10 mm, dy=10 mm

Maximum value of SAR (interpolated) = 0.415 W/kg


Top Edge CH151/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.928 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.373 W/kg; SAR(10 g) = 0.138 W/kg

Maximum value of SAR (measured) = 0.458 W/kg

ANNEX D: Probe Calibration Certificate

Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Http://www.chinattl.cn

Certificate No: Z18-60093

Report No: R1808A0375-S1

Client

TA(shanghai)

CALIBRATION CERTIFICATE

EX3DV4 - SN:3677

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

Object

May 29, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
Power Meter NRP2	101919	27-Jun-17 (CTTL, No.J17X05857)	Jun-18	
Power sensor NRP-Z91	101547	27-Jun-17 (CTTL, No.J17X05857)	Jun-18	
Power sensor NRP-Z91	101548	27-Jun-17 (CTTL, No.J17X05857)	Jun-18	
Reference10dBAttenuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20	
Reference20dBAttenuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20	
Reference Probe EX3DV4	SN 3846	25-Jan-18(SPEAG,No.EX3-3846_Jan18)	Jan-19	
DAE4	SN 777	15-Dec-17(SPEAG, No.DAE4-777_Dec17)	Dec -18	
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration	
SignalGeneratorMG3700A	6201052605	27-Jun-17 (CTTL, No.J17X05858)	Jun-18	
Network Analyzer E5071C	MY46110673	14-Jan-18 (CTTL, No.J18X00561)	Jan -19	
	Name	Function	Signature	

Calibrated by:

Yu Zongying SAR Test Engineer

Reviewed by:

Lin Hao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: May 31, 20 ₹

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60093

Page 1 of 11

In Collaboration with

S D E A G

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z18-60093

Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Probe EX3DV4

SN: 3677

Calibrated: May 29, 2018

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z18-60093

Page 3 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²)A	0.41	0.46	0.41	±10.0%
DCP(mV) ⁸	99.9	102.7	102.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)	
0 CW	cw	Х	0.0	0.0	1.0	0.00	152.4	±2.4%	
			Y	0.0	0.0	1.0		161.7	
			Z	0.0	0.0	1.0		152.2	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60093

^AThe uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

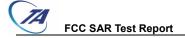
E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

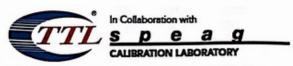
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.40	9.40	9.40	0.40	0.80	±12.1%
835	41.5	0.90	9.10	9.10	9.10	0.15	1.41	±12.1%
1750	40.1	1.37	8.19	8.19	8.19	0.21	1.15	±12.1%
1900	40.0	1.40	7.96	7.96	7.96	0.25	1.01	±12.1%
2300	39.5	1.67	7.91	7.91	7.91	0.40	0.78	±12.1%
2450	39.2	1.80	7.57	7.57	7.57	0.53	0.76	±12.1%
2600	39.0	1.96	7.28	7.28	7.28	0.64	0.70	±12.1%
5250	35.9	4.71	5.60	5.60	5.60	0.40	1.15	±13.3%
5600	35.5	5.07	4.87	4.87	4.87	0.45	1.05	±13.3%
5750	35.4	5.22	4.99	4.99	4.99	0.45	1.35	±13.3%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


Certificate No: Z18-60093

Page 5 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677

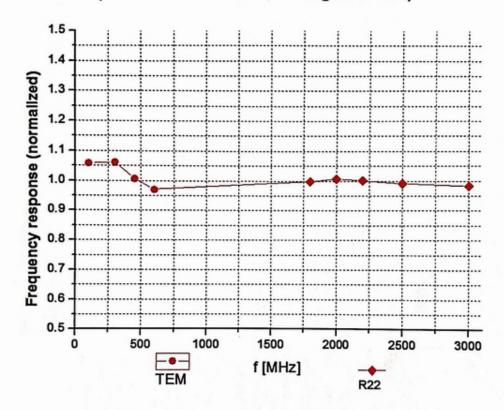
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.79	9.79	9.79	0.40	0.80	±12.1%
835	55.2	0.97	9.32	9.32	9.32	0.15	1.51	±12.1%
1750	53.4	1.49	7.91	7.91	7.91	0.23	1.09	±12.1%
1900	53.3	1.52	7.70	7.70	7.70	0.20	1.18	±12.1%
2300	52.9	1.81	7.65	7.65	7.65	0.53	0.82	±12.1%
2450	52.7	1.95	7.53	7.53	7.53	0.37	1.10	±12.1%
2600	52.5	2.16	7.16	7.16	7.16	0.55	0.80	±12.1%
5250	48.9	5.36	5.04	5.04	5.04	0.50	1.55	±13.3%
5600	48.5	5.77	4.27	4.27	4.27	0.51	1.66	±13.3%
5750	48.3	5.94	4.43	4.43	4.43	0.50	1.81	±13.3%


^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z18-60093

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Report No: R1808A0375-S1

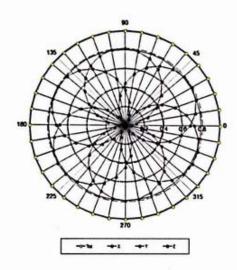
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

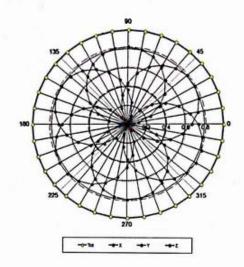
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

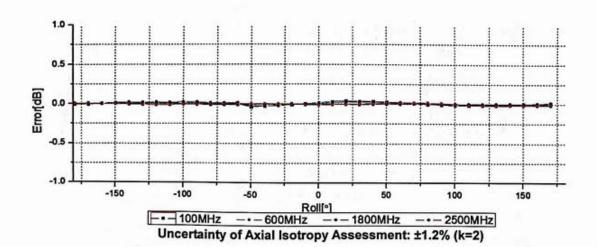
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No: Z18-60093

Page 7 of 11



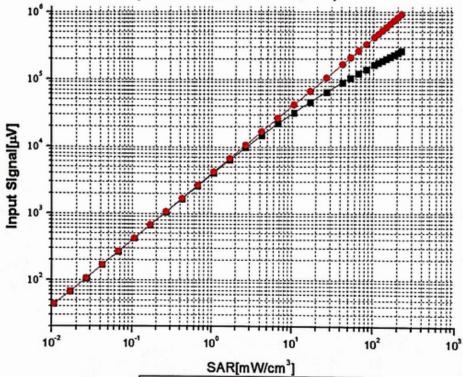

Add: No.51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

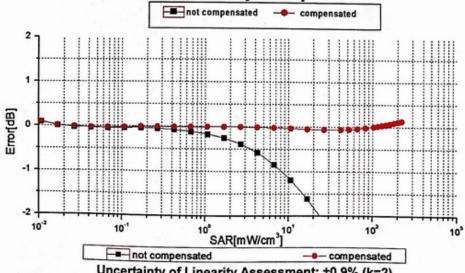

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Certificate No: Z18-60093


Page 8 of 11



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

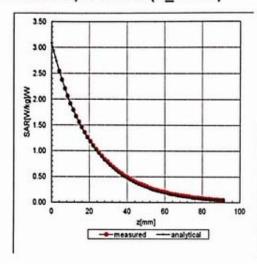
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

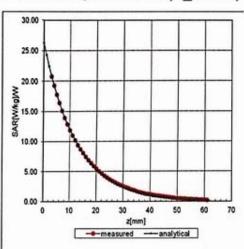
Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: Z18-60093

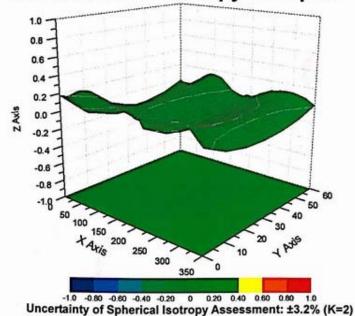
Page 9 of 11

SAR Test Report Report No: R1808A0375-S1




Add: No.51 Xueyuan Road, Haidian District, Beijing. 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz, WGLS R9(H_convF)

f=1750 MHz, WGLS R22(H_convF)



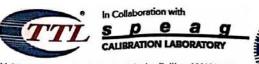
Deviation from Isotropy in Liquid

Certificate No: Z18-60093

Page 10 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 3677


Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	118.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z18-60093

ANNEX E: D835V2 Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com

CNAS L0570

Report No: R1808A0375-S1

TA(Shanghai)

Certificate No:

Z17-97114

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d020

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 28, 2017

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Name

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102083	22-Sep-16 (CTTL, No.J16X06809)	Sep-17
Power sensor NRV-Z5	sensor NRV-Z5 100595 22-Sep-16 (CTTL, No.J16X06809)		Sep-17
Reference Probe EX3DV4	SN 3617	23-Jan-17(SPEAG,No.EX3-3617_Jan17)	Jan-18
DAE4	SN 1331	19-Jan-17(CTTL-SPEAG,No.Z17-97015)	Jan-18
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-17 (CTTL, No.J17X00286)	Jan-18
Network Analyzer E5071C	MY46110673	13-Jan-17 (CTTL, No.J17X00285)	Jan-18

Calibrated by:

Function

Zhao Jing SAR Test Engineer

Reviewed by:

Lin Hao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: August 31,

This calibration certificate shall not be reproduced except in full without written approval of the laborat

Certificate No: Z17-97114

Page 1 of 8