HAC TEST REPORT **Applicant** ZTE Corporation FCC ID SRQ-Z6252CA LTE/WCDMA/GSM(GPRS) Multi-Mode **Product** Digital Mobile Phone Model Z6252CA **Report No.** R2108A0747-H2 Issue Date October 8, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **ANSI C63.19-2011**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. IWW Zhao Prepared by: Yurui Zhao Approved by: Guangchang Fan Guangchang Fan # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **Table of Contents** | 1 | Te | st Laboratory | 3 | | | | | |----|--|--|-----|--|--|--|--| | | 1.1 | Notes of the Test Report | 3 | | | | | | | 1.2. | Test facility | 3 | | | | | | | 1.2 | Testing Location | 3 | | | | | | | 1.3 | Laboratory Environment | 4 | | | | | | 2 | Sta | atement of Compliance | 5 | | | | | | 3 | De | escription of Equipment under Test | 6 | | | | | | 4 | Te | st Specification and Operational Conditions | 9 | | | | | | | 4.1 | Test Specification | 9 | | | | | | 5 | Te | st Information | 10 | | | | | | | 5.1 | Operational Conditions during Test | 10 | | | | | | | 5.1.1 | General Description of Test Procedures | 10 | | | | | | | 5.2 | T-Coil Measurements System Configuration | 10 | | | | | | | 5.2.1 | T-coil Measurement Set-up | 10 | | | | | | | 5.2.2 | 2 AM1D Probe | 13 | | | | | | | 5.2.3 | B Audio Magnetic Measurement Instrument (AMMI) | 14 | | | | | | | 5.2.4 | Helmholtz Calibration Coil (AMCC) | 15 | | | | | | | 5.2.5 | 5 Test Arch Phantom & Phone Positioner | 15 | | | | | | | 5.3 | T-Coil measurement points and reference plane | 16 | | | | | | | 5.4 | T-Coil Test Procedueres | 17 | | | | | | 6 | T-0 | Coil Performance Requirements | 19 | | | | | | | 6.1 | T-Coil coupling field intensity | 19 | | | | | | | 6.2 | Frequency response | 19 | | | | | | | 6.3 | Signal quality | 20 | | | | | | 7 | Co | odec Investigation | 21 | | | | | | 8 | Air | ir Interface Investigation | | | | | | | 9 | Au | udio Level and Gain Measurements | 29 | | | | | | 10 |) Me | easurement Uncertainty | 30 | | | | | | 11 | Ma | ain Test Instruments | 31 | | | | | | Α | | X A: Test Layout | | | | | | | | | X B: Graph Results | | | | | | | | NNEX C: Probe Calibration Certificate 93 | | | | | | | | | | X D: DAE4 Calibration Certificate | | | | | | | | | X E: The EUT Appearance | | | | | | | | | Y E: Toet Satur Photos | 100 | | | | | Report No.: R2108A0747-H2 # 1 Test Laboratory ### 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd). The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. # 1.2. Test facility # FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. #### A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. # 1.2 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Fan Guangchang Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: fanguangchang@ta-shanghai.com Report No.: R2108A0747-H2 # **Laboratory Environment** | Temperature | Min. = 18°C, Max. = 28 °C | | |--|---------------------------|--| | Relative humidity | Min. = 0%, Max. = 80% | | | Ground system resistance | < 0.5 Ω | | | Ambient noise is checked and found very low and in compliance with requirement of standards. | | | Reflection of surrounding objects is minimized and in compliance with requirement of standards. # 2 Statement of Compliance Table 2.1: T-Coil signal quality categories of each tested Mode | Band | Category | |-----------------------|----------| | GSM850 | Т3 | | GSM1900 | T4 | | WCDMA Band II | T4 | | WCDMA Band IV | T4 | | WCDMA Band V | T4 | | LTE FDD 2 | T4 | | LTE FDD 4 | T4 | | LTE FDD 5 | T4 | | LTE FDD 7 | T4 | | LTE FDD 12 | T4 | | LTE FDD 13 | T4 | | LTE FDD 66 | T4 | | WIFI2.4G 802.11b | T4 | | WIFI2.4G 802.11g | T4 | | WIFI2.4G 802.11n HT20 | T4 | | WIFI2.4G 802.11n HT20 | T4 | ## The Total T-Coil rating is T3 Date of Testing: August 25, 2021~ September 2, 2021 Date of Sample Received: August 20, 2021 Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. # 3 Description of Equipment under Test # **Client Information** | Applicant | ZTE Corporation | | |----------------------|---|--| | Applicant address | ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan | | | Applicant address | District, Shenzhen, Guangdong, 518057, P.R.China | | | Manufacturer | ZTE Corporation | | | Manufacturar address | ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan | | | Manufacturer address | District, Shenzhen, Guangdong, 518057, P.R.China | | # **General Technologies** | Device Type: | Portable Device | | | |------------------|--|-------------|--| | State of Sample: | Prototype Unit | | | | Model: | Z6252CA | | | | IMEI: | 860032050000985 | | | | Hardware Version | Z6252CAHW1.0 | | | | Software Version | Z6252CAV1.0.0B03 | | | | Antenna Type: | Internal Antenna | | | | Power Class: | GSM850/1900:3
WCDMA Band II/IV/V:3 | | | | | LTE FDD Band 2/4/5/7/12/ | /13/66 3 | | | | GSM850/1900:max power | | | | Power Level | WCDMA Band II/IV/V: max | c power | | | | LTE FDD Band 2/4/5/7/12/13/66: max power | | | | | (GSM) GMSK EGPRS; | | | | Test Modulation: | (WCDMA) QPSK, 16QAM; | | | | | (LTE) QPSK, 16QAM, 64QAM; | | | | | (Wi-Fi 2.4G) DSSS, OFDM | | | | | Band | Tx (MHz) | | | | GSM850 | 824 ~ 849 | | | | GSM1900 | 1850 ~ 1910 | | | | WCDMA Band II | 1850 ~ 1910 | | | Operating | WCDMA Band IV | 1710 ~ 1755 | | | Frequency | WCDMA Band V | 824 ~ 849 | | | Range(s): | LTE FDD 2 | 1850 ~ 1910 | | | rango(o). | LTE FDD 4 | 1710 ~ 1755 | | | | LTE FDD 5 | 824 ~ 849 | | | | LTE FDD 7 | 2500~2570 | | | | LTE FDD 12 | 699 ~ 716 | | | | LTE FDD 13 | 777~ 787 | | TA Technology (Shanghai) Co., Ltd. TA-MB-04-002H Page 6 of 100 Report No.: R2108A0747-H2 | MAG Test Report No.: N2 100A0747-112 | | | | |--|---------------------------|-------------|--| | | LTE FDD 66 | 1710~1780 | | | | Wi-Fi 2.4G | 2412 ~ 2462 | | | | BT | 2402 ~2480 | | | Accessory Equipment | | | | | Pottony | Manufacturer: VEKEN | | | | Battery | Model: Li3931T44P8h806139 | | | | Note:1. The EUT is sent from the applicant to TA and the information of the EUT is declared by | | | | | | | | | IAC Test Report Report No.: R2108A0747-H2 | Air- | Band | Туре | ANSI C63.19 | Simultaneous | Name of Voice | Power | | | | |-------------------|--------------|--------------------|------------------|----------------------|-------------------|--------------------------------------|-------|-------|----------------| | Interface | (MHz) | 3 1 | tested | Transmissions | Service | Reduction | | | | | | 850 | vo | Yes | | | | | | | | GSM | 1900 | VO | 165 | BT or Wi-Fi | N/A | No | | | | | | GPRS/EGPRS | DT | No | | | Reduction | | | | | | 850 | VO | Yes | | | N/A No N/A No VolTE No O Wi-Fi No | | | | | WCDMA | 1900 | VO | res | BT or Wi-Fi | N/A | | | | | | | HSPA | DT | No | | | | | | | | | 1900(B2) | | | | | Reduction No No No No No | | | | | | 1700(B4/B66) | | | | | | | | | | LTE-FDD | 850(B5) | VD Yes BT or Wi-Fi | VD Yes BT or Wi- | Yes BT or Wi-Fi VoLT | Yes BT or Wi-Fi V | VD Yes BT or Wi-Fi | VoLTE | VoLTE | No
No
No | | | 2600(B7) | | | | | | | | | | | 700(B12/13) | | | | | | | | | | Wi-Fi | 2450 | VD | Yes | WWAN | Vo Wi-Fi | No | | | | | Bluetooth
(BT) | 2450 | DT | No | WWAN | N/A | No | | | | VO= legacy Cellular Voice Service from Table 7.1 in 7.4.2.1 of ANSI C63.19-2011 DT= Digital Transport only (no voice) VD= IP voice service over digital transport. #: Ref Lev in accordance with 7.4.2.1 of ANSI C63.19-2011 ##: Ref Lev in accordance with the July 2012 VoLTE interpretation. # Remark: 1. It applies the low power exemption based on ANSI C63.19-2011 # 4 Test Specification and Operational Conditions # 4.1 Test Specification The tests documented in this report were performed in accordance with the following: FCC CFR47 Part 20.19 ANSI C63.19-2011 KDB 285076 D01 HAC Guidance v05 KDB 285076 D02 T-Coil Testing v03 KDB 285076 D03 HAC FAQ v01r03 # 5 Test Information ## 5.1 Operational Conditions during Test ### **5.1.1 General Description of Test Procedures** The phone was tested in all normal configurations for the ear use. The EUT is mounted in the device holder equivalent as for classic dosimeter measurements. The acoustic output of the EUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame The EUT shall be
moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete. EUT holder on the yellow base plate of the Test Arch phantom. During the test, the EUT is selected on T-Coil mode, the LCD backlight is turn off and volume is adjusted to maximum level. A communication link is set up with a System Simulator (SS) by RF cable, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to Ch Middle respectively in the case of Band. T-Coil configurations is measured using System Simulator (SS) of CMU200/ CMW 500, at the same time the EUT shall be operated at its maximum RF output power setting. ## 5.2 T-Coil Measurements System Configuration #### 5.2.1 T-coil Measurement Set-up These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. Cell controller systems contain the power supply, robot controller, teach pendant (Joystick) and remote control, and are used to drive the robot motors. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Report No.: R2108A0747-H2 Figure 1 T-Coil Test Measurement Set-up The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. Figure 2 T-Coil Test Measurement Set-up #### 5.2.2 AM1D Probe The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards). ### Specification | frequency range | 0.1 - 20 kHz (RF sensitivity <-100 dB, fully RF shielded) | | | |-----------------|--|--|--| | sensitivity | <-50 dB A/m @ 1 kHz | | | | pre-amplifier | 40 dB, symmetric | | | | dimensions | tip diameter / length: 6 / 290 mm, sensor according to ANSI-C63.19 | | | Figure 3 AM1D Probe AC Test Report Report No.: R2108A0747-H2 ## 5.2.3 Audio Magnetic Measurement Instrument (AMMI) The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface. Figure 4 AMMI front panel ### Port description: | Audio Out | BNC, audio signal to the base station simulator, for >5000hm load | |-----------|---| | Cail Out | BNC, test and calibration signal to the AMCC (top connector), for 500hm | | Coil Out | load | | Coil In | XLR, monitor signal from the AMCC BNO connector, 600 Ohm | | Probe In | XLR, probe signal and phantom supply to the probe Lemo connector | Figure 5 AMMI rear side | Sampling rate | 48 kHz / 24 bit | |------------------------|---| | Dynamic range | 85 dB | | Test signal generation | User selectable and predefined (vis PC) | | Calibration | Auto-calibration / full system calibration using AMCC with monitor output | | Dimensions | 482 x 65 x 270 mm | # 5.2.4 Helmholtz Calibration Coil (AMCC) The Audio Magnetic Calibration coil is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 50Ohm, and a shunt resistor of 10Ohm permits monitoring the current with a scale of 1:10 Figure 6 AMCC ### Port description: | Signal | Connector | Resistance | |--------------|-----------|---| | Coil In | BNC | Typically 50Ohm | | Coil Monitor | BNO | 100hm \pm 1% (100mV corresponding to 1 A/m) | ### Specification: | Dimensions | 370 x 370 x 196 mm, according to ANSI-C63.19 | |------------|--| | | , , , | ### 5.2.5 Test Arch Phantom & Phone Positioner The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: 370 x 370 x 370 mm). The Device reference point is set for the EUT at 6.3 mm, the Grid reference point is on the upper surface at the origin of the coordinates, and the "user point \Height Check 0.5 mm" is 0.5mm above the center, allowing verication of the gap of 0.5mm while the probe is positioned there. The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field <±0.5 dB. Figure 7 T-coil Phantom & Device Holder ### 5.3 T-Coil measurement points and reference plane The following figure illustrates the standard probe orientations. Position 1 is the perpendicular orientation of the probe coil; orientation 2 is the transverse orientation. The space between the measurement positions is not fixed. It is recommended that a scan of the WD be performed for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil. - 1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear. - 2) The measurement plane is parallel to, and 10 mm in front of, the reference plane. - 3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section (or the center of the hole array); or may be centered on a secondary inductive source. The actual location of the measurement point shall be noted in the test report as the measurement reference point. - 4) The measurement points may be located where the axial and radial field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near the acoustic output of the EUT and shall be located in the same half of the phone as the EUT receiver. In a EUT handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide. 5) The relative spacing of each measurement orientation is not fixed. The axial and two radial orientations should be chosen to select the optimal position. - 6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. - 7) The actual location of the measurement point shall be noted in test reports and designated as the measurement reference point. Figure 8 Axis and planes for EUT audio frequency magnetic field measurements #### 5.4 T-Coil Test Procedueres #### The following illustrate a typical test scan over a wireless communications device: - 1) Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch. - 2) Set the reference drive level of signal voice defined in C63.19 per 7.4.2.1. - 3) The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at least 10dB below the limit of C63.19 per 8.3.2. - 4) The EUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe. - 5) The EUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The EUT audio output was positioned tangent (as physically possible) to the measurement plane. - 6) The EUT's RF emission field was eliminated from T-coil results by
using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility. - 7) Determined the optimal measurement locations for the EUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 7.4.4.2. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan. - 8) All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of there samples. - 9) At an optimal point measurement, the SNR (ABM1/ABM2) was calculated for axial,radial transverse and radial longitudinal orientation, and the frequency response was measured in axial axis. - 10) Corrected for the frequency response after the EUT measurement since the DASY5 system had known the spectrum of the input signal by using a reference job. - 11) In SEMCAD postprocessing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report. # 6 T-Coil Performance Requirements In order to be rated for T-Coil use, a EUT shall meet the requirements for signal level and signal quality contained in this part. # 6.1 T-Coil coupling field intensity When measured as specified in ANSI C63.19, the T-Coil signal shall be \geq –18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations. ### 6.2 Frequency response The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. The following figures provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings. NOTE-Frequency response is between 300 Hz and 3000 Hz. Figure 9 Magnetic field frequency response for EUTs with a field ≤ −15 dB (A/m) at 1 kHz NOTE-Frequency response is between 300 Hz and 3000 Hz. Figure 10 Magnetic field frequency response for EUTs with a field that exceeds –15 dB(A/m) at 1 kHz # 6.3 Signal quality This part provides the signal quality requirement for the intended T-Coil signal from a EUT. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels. The worst signal quality of the twoT-Coil signal measurements shall be used to determine the T-Coil mode category per Table 1 Table 1: T-Coil signal quality categories | Category | Telephone parameters WD signal quality [(signal + noise) – to – noise ratio in decibels] | |-------------|---| | Category T1 | 0 dB to 10 dB | | Category T2 | 10 dB to 20 dB | | Category T3 | 20 dB to 30 dB | | Category T4 | > 30 dB | # 7 Codec Investigation An investigation between the various codec configurations (Low/Mid/High bit rates for Narrowband, Wideband and EVS) and specific parameters are documented (ABM1,ABM2, S+N/N, frequency response) to determine the worst-case bit rates for each voice service type. The table below compares the varying codec configurations. A codec case bit rates for each voice service type. The table below compares the varying codec configurations. A codec investigation was performed on one band of each W-CDMA, LTE, VOWIFi. The highlighted results below were determined to be the worst-case codec configuration(s) for LTE ,W-CDMA and VOWIFi . ### **WCDMA Codec Investigation** | WCDMA Codec Investigation | | | | | | | | | | | | |---------------------------|----------|------------------------------|--------|-------------|---------|---------|--|--|--|--|--| | Cadaa Cattina | NB AMR | NB AMR | NB AMR | Oriontation | Dond | | | | | | | | Codec Setting | 12.2kbps | 7.4kbps 4.75kbps Orientation | | Orientation | Band | Channel | | | | | | | ABM1 (dBA/m) | 0.84 | 0.8 | 0.98 | | D 1 II | | | | | | | | ABM2 (dBA/m) | -45.97 | -46.04 | -45.95 | ₹ (Aviol): | | 9400 | | | | | | | Frequency Response | Pass | Pass | Pass | z (Axial): | Band II | 9400 | | | | | | | Signal Quality (dB) | 46.81 | 46.84 | 46.93 | | | | | | | | | | WCDMA Codec Investigation | | | | | | | | | | | | |---------------------------|-----------|-----------|--------------------|-------------|---------|----------|--|--|--|--|--| | Codec Setting | WB AMR | WB AMR | WB AMR Orientation | | Band | Channel | | | | | | | Codec Setting | 23.85kbps | 15.85kbps | 6.6kbps | Orientation | Dallu | Chailnei | | | | | | | ABM1 (dBA/m) | 0.87 | 5.75 | 5.85 | | | | | | | | | | ABM2 (dBA/m) | -44.45 | -39.93 | -39.86 | - (Avial) | Band II | 0400 | | | | | | | Frequency Response | Pass | Pass | Pass | z (Axial): | | 9400 | | | | | | | Signal Quality (dB) | 45.32 | 45.68 | 45.71 | | | | | | | | | # **VoLTE Codec Investigation** | | AMR Codec Investigation - VoLTE over IMS | | | | | | | | | | | | |-----------------------|--|---------------------|-------------------|-------------------|--------------------|-------------------|-------------|-----------------|---------|--|--|--| | Codec Setting | WB
AMR
23.85k | WB
AMR
15.85k | WB
AMR
6.60 | NB
AMR
12.2 | NB
AMR
7.4kb | NB
AMR
4.75 | Orientation | Band
/BW | Channel | | | | | | bps | bps | kbps | kbps | ps | kbps | | | | | | | | ABM1 (dBA/m) | -0.94 | -1.33 | -1.61 | -1.38 | -0.44 | -1.49 | | | | | | | | ABM2 (dBA/m) | -43.17 | -43.73 | -43.6 | -43.7 | -42.42 | -43.17 | | Band2/ | | | | | | Frequency
Response | pass | pass | pass | pass | pass | pass | z (Axial): | Band2/
20MHz | 18900 | | | | | Signal Quality (dB) | 42.23 | 42.4 | 41.99 | 42.32 | 41.98 | 41.68 | | | | | | | | | EVS Codec Investigation - VoLTE over IMS | | | | | | | | | | | | | |----------------|--|-----------|----------|-----------------|-------------|---------|--|--|--|--|--|--|--| | Codec Setting | 24.4kbps | 9.60 kbps | 5.9 kbps | Orientati
on | Band
/BW | Channel | | | | | | | | | ABM1 (dBA/m) | -1.17 | -0.83 | -2.65 | | | | | | | | | | | | ABM2 (dBA/m) | -42.73 | -43.02 | -44.52 | | | | | | | | | | | | Frequency | nace | nace | nace | z (Axial): | Band2/ | 18900 | | | | | | | | | Response | pass | pass | pass | Z (Axiai). | 20MHz | 10900 | | | | | | | | | Signal Quality | 41.56 | 42.19 | 41.87 | | | | | | | | | | | | (dB) | 41.50 | 42.19 | 41.07 | | | | | | | | | | | # Note(s): - 1. For W-CDMA, it is observed that 23.85 kbps is the worst-case. - 2. For LTE FDD, it is observed that 4.75 kbps is the worst-case. # **VoWi-Fi Codec Investigation** | | AMR Codec Investigation - Wi-Fi over IMS | | | | | | | | | | | | |---------------------|--|---------------------|-------------------|-------------------|--------------------|-------------------|-------------|-------------|---------|--|--|--| | Codec Setting | WB
AMR
23.85k | WB
AMR
15.85k | WB
AMR
6.60 | NB
AMR
12.2 | NB
AMR
7.4kb | NB
AMR
4.75 | Orientation | Band
/BW | Channel | | | | | | bps | bps | kbps | kbps | ps | kbps | | | | | | | | ABM1 (dBA/m) | 1.74 | 3.32 | 1.54 | -0.49 | -0.48 | -0.17 | | | | | | | | ABM2 (dBA/m) | -45.62 | -42.62 | -44.08 | -46.51 | -47.03 | -44.71 | | | | | | | | Frequency | nacc | nace | nace | nace | nace | nacc | z (Axial): | 2.4GHz | 6 | | | | | Response | pass | pass | pass | pass | pass | pass | | | | | | | | Signal Quality (dB) | 47.36 | 45.94 | 45.62 | 46.02 | 46.55 | 44.54 | | | | | | | | | 802.11b Ra | idio configurat | ion investigati | on | | | | | | | | |-----------------------------------|---|---------------------|-------------------|-------------------|------------------------|--|--|--|--|--|--| | Mode | Channel | Data Rate
[Mbps] | ABM1
[dB(A/m)] | ABM2
[dB(A/m)] | Signal
Quality [dB] | | | | | | | | WIFI2.4G: 802.11b | 6 | 1 | -0.17 | -44.71 | 44.54 | | | | | | | | Voice NB AMR
Codec: 4.75kbit/s | 6 | 11 | 1.04 | -44.54 | 45.58 | | | | | | | | | 802.11g Radio configuration investigation | | | | | | | | | | | | Mode | Channel | Data Rate
[Mbps] | ABM1
[dB(A/m)] | ABM2
[dB(A/m)] | Signal
Quality [dB] | | | | | | | | WIFI2.4G: 802.11g | 6 | 6 | 0.41 | -45.43 | 45.84 | | | | | | | | Voice NB AMR
Codec: 4.75kbit/s | 6 | 54 | -0.29 | -46.94 | 46.65 | | | | | | | | | 802.11n HT20 | Radio configu | ration investig | ation | | | | | | | | | Mode | Channel | Data Rate
[Mbps] | ABM1
[dB(A/m)] | ABM2
[dB(A/m)] | Signal
Quality [dB] | | | | | | | | WIFI2.4G: 802.11n | 6 | MCS0 | 1.12 | -46.95 | 48.07 | | | | | | | | Voice NB AMR
Codec: 4.75kbit/s | 6 | MCS7 | 0.55 | -48.1 | 48.65 | | | | | | | ## Note(s): 1. For Wi-Fi 2.4G, it is observed that 4.75 kbps is the worst-case. Report No.: R2108A0747-H2 # 8 Air Interface Investigation A limited set of bands/channels/bandwidths were tested to confirm that there is no effect to the T-rating when changing the band/channel/bandwidth. # **GSM Air Interface Investigation** | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) |
Frequency
Response | T-Rating | |------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | | 128/824.2 | y (Radial): | -5.86 | -36.34 | 30.48 | / | / | T4 | | CCM 050 | 120/024.2 | z (Axial): | 5.77 | -26.59 | 32.36 | 2.00 | pass | T4 | | GSM 850
Voice Coder | 190/836.6 | y (Radial): | -10.15 | -39.76 | 29.61 | / | / | Т3 | | Speechcodec | | z (Axial): | 5.44 | -26.30 | 31.74 | 1.68 | pass | T4 | | Low | 251/040 0 | y (Radial): | -9.77 | -40.01 | 30.24 | / | 1 | T4 | | | 251/848.8 | z (Axial): | 5.72 | -27.11 | 32.83 | 2.00 | pass | T4 | | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |-----------------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | GSM 850 | | y (Radial): | -10.15 | -39.76 | 29.61 | / | / | T3 | | Voice Coder
Speechcodec
Low | 190/836.6 | z (Axial): | 5.44 | -26.30 | 31.74 | 1.68 | pass | T4 | | PCS 1900
Voice Coder | 661/1880 | y (Radial): | -5.64 | -42.36 | 36.72 | 1 | 1 | T4 | | Speechcodec
Low | 001/1000 | z (Axial): | 1.11 | -38.48 | 39.59 | 1.81 | pass | T4 | **WCDMA** Air Interface Investigation 6 z (Axial): 1.19 | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |------------------|--|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | | 9262/1852. | y (Radial): | -2.36 | -42.02 | 39.66 | / | / | T4 | | WCDMA B2 | WCDMA B2 Voice Coder Speechcodec Low 4 9400/1880 | z (Axial): | 0.51 | -44.81 | 45.32 | 1.91 | pass | T4 | | | | y (Radial): | 1.97 | -38.10 | 40.07 | / | / | T4 | | l ' . | | z (Axial): | 5.48 | -39.89 | 45.37 | 1.34 | pass | T4 | | Codec:12.2kbit/s | 9538/1907. | y (Radial): | -0.97 | -41.94 | 40.97 | 1 | 1 | T4 | -44.62 45.81 1.83 | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |---|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | WCDMA B2 | | y (Radial): | -2.36 | -42.02 | 39.66 | / | / | T4 | | Voice Coder Speech AMR WB 23.85kbps | 9262/1852.
4 | z (Axial): | 0.51 | -44.81 | 45.32 | 1.91 | pass | T4 | | WCDMA B4
Voice Coder | 1312/1712. | y (Radial): | -1.92 | -42.53 | 40.61 | / | / | T4 | | Speech
AMR WB 23.85kbps | 4 | z (Axial): | -0.06 | -47.19 | 47.13 | 1.76 | pass | T4 | | WCDMA B5 | | y (Radial): | -1.76 | -42.46 | 40.70 | / | / | T4 | | Voice Coder
Speech
AMR WB 23.85kbps | 4132/826.4 | z (Axial): | 0.89 | -45.90 | 46.79 | 1.46 | Pass | T4 | Note: For all subsequent tests for W-CDMA, Middle channel was used in conjunction with the worst-case bit rate found in Chapter 8. Report No.: R2108A0747-H2 pass T4 Report No.: R2108A0747-H2 # **VoLTE Air interface investigation** | | | | А | ir interface | investigati | on for LTE B | 32 | | | |------------|-------------|--------------------|---------|--------------------|--------------------|--------------------------------|---|------------------------|-----------------------| | Mode | Orientation | Bandwidth
(MHz) | Channel | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | Ambient
Noise
[dB (A/m)] | Frequency
Response
Variation (dB) | Signal
Quality (dB) | C63.19-2011
Rating | | | | 20 | 18900 | -1.49 | -43.17 | -59.13 | 1.83 | 41.68 | T4 | | | | 15 | 18900 | -0.63 | -44.5 | -59.13 | 1.40 | 43.87 | T4 | | | ₹ (Avial): | 10 | 18900 | -0.41 | -42.39 | -59.13 | 1.02 | 41.98 | T4 | | LTE FDD | z (Axial): | 5 | 18900 | -0.79 | -42.7 | -59.13 | 1.46 | 41.91 | T4 | | B2 | | 3 | 18900 | -0.11 | -41.96 | -59.13 | 0.77 | 41.85 | T4 | | Voice NB | | 1.4 | 18900 | -1.71 | -43.74 | -59.13 | 1.75 | 42.03 | T4 | | AMR | | 20 | 18900 | -1.7 | -41.03 | -60.07 | 1 | 39.33 | T4 | | Codec: | | 15 | 18900 | -1.76 | -40.78 | -60.07 | 1 | 39.02 | T4 | | 4.75kbit/s | | 10 | 18900 | -5.46 | -43.49 | -60.07 | 1 | 38.03 | T4 | | | y (Radial): | 5 | 18900 | -3.03 | -41.9 | -60.07 | 1 | 38.87 | T4 | | | | 3 | 18900 | -2.57 | -41.11 | -60.07 | 1 | 38.54 | T4 | | | | 1.4 | 18900 | -3.64 | -41.85 | -60.07 | 1 | 38.21 | T4 | | | Air interface investigation for LTE B2 | | | | | | | | | | | | | |------------|--|--------------------|---------|---------|-----------|--------------------|-------------------|------------------------|--|--|--|--|--| | Mode | Orientation | Bandwidth
(MHz) | Channel | RB Size | RB Offset | ABM1
[dB (A/m)] | ABM2
[dB(A/m)] | Signal Quality
[dB] | | | | | | | | | 20 | 18900 | 1 | 0 | -1.49 | -43.17 | 41.68 | | | | | | | | | 20 | 18900 | 1 | 50 | -3.67 | -45.51 | 41.84 | | | | | | | | | 20 | 18900 | 1 | 99 | -2.91 | -45.18 | 42.27 | | | | | | | | B2 | 20 | 18900 | 50 | 0 | -1.52 | -44.17 | 42.65 | | | | | | | LTE FDD | | 20 | 18900 | 50 | 25 | -1.29 | -43.62 | 42.33 | | | | | | | B2 | | 20 | 18900 | 50 | 50 | -1.62 | -44.4 | 42.78 | | | | | | | Voice NB | | 20 | 18900 | 100 | 0 | -1.58 | -44.99 | 43.41 | | | | | | | AMR | | 20 | 18900 | 1 | 0 | 0.33 | -38.37 | 38.70 | | | | | | | Codec: | | 20 | 18900 | 1 | 50 | 0.59 | -39.92 | 40.51 | | | | | | | 4.75kbit/s | | 20 | 18900 | 1 | 99 | -0.26 | -41.55 | 41.29 | | | | | | | | 16QAM | 20 | 18900 | 50 | 0 | 0.20 | -42.92 | 43.12 | | | | | | | | | 20 | 18900 | 50 | 25 | -0.73 | -43.6 | 42.87 | | | | | | | | | 20 | 18900 | 50 | 50 | -1.05 | -44.17 | 43.12 | | | | | | | | | 20 | 18900 | 100 | 0 | -1.56 | -44.4 | 42.84 | | | | | | | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |----------------------------|--|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | | 18900/1880
(QPSK_20M
1RB_0offset)
19100/1900
(QPSK_20M
1RB_0offset)
18900/1880
(16QAM_20M
1RB_0offset) | y (Radial) | -2.75 | -41.05 | 38.30 | 1 | 1 | T4 | | | | z (Axial): | -0.13 | -42.67 | 42.54 | 1.21 | pass | T4 | | LTE FDD B2
Voice NB AMR | | y (Radial) | -1.70 | -41.03 | 39.33 | 1 | 1 | T4 | | Codec: 4.75kbit/s | | z (Axial): | -1.49 | -43.17 | 41.68 | 1.83 | pass | T4 | | | | y (Radial) | -4.67 | -42.89 | 38.22 | / | / | T4 | | | | - (Assi-1). | -0.75 | -42.63 | 41.88 | 1.55 | pass | T4 | | LTE FDD B2
Voice NB AMR | 18900/1880 | y (Radial) | -5.16 | -42.49 | 37.33 | / | / | T4 | | Codec: 4.75kbit/s | (QPSK_20M_
1RB_0offset) | z (Axial): | 0.33 | -41.37 | 41.70 | 0.63 | pass | T4 | | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |-----------------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | LTE FDD B2 | 18900/1880 | y (Radial) | -1.70 | -41.03 | 39.33 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_
1RB_0offset) | z (Axial): | -1.49 | -43.17 | 41.68 | 1.83 | pass | T4 | | LTE FDD B4 | 20175/1732.5 | y (Radial) | -2.03 | -40.92 | 38.89 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_
1RB_0offset) | z (Axial): | 0.21 | -42.11 | 42.32 | 1.47 | pass | T4 | | LTE FDD B5 | 20525/836.5 | y (Radial) | -2.02 | -42.21 | 40.19 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_10M_
1RB_0offset) | z (Axial): | 0.46 | -43.08 | 43.54 | 1.18 | pass | T4 | | LTE FDD B7 | 21100/2535 | y (Radial) | -2.19 | -41.76 | 39.57 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_
1RB 0offset) | z (Axial): | 0.28 | -42.52 | 42.80 | 1.20 | pass | T4 | | LTE FDD B12 | 23095/707.5 | y (Radial) | -2.26 | -42.31 | 40.05 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_10M_
1RB_0offset) | z (Axial): | 0.42 | -44.02 | 44.44 | 1.66 | pass | T4 | | LTE FDD B13 | 23230/782 | y (Radial) | 0.16 | -48.84 | 49.00 | 1 | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_10M_
1RB_0offset) | z (Axial): | 0.48 | -46.55 | 47.03 | 1.15 | pass | T4 | | LTE FDD B66 | 132322/1745 | y (Radial) | -2.14 | -41.57 | 39.43 | 1 | 1 | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_
1RB_0offset) | z (Axial): | 0.07 | -41.44 | 41.51 | 1.41 | pass | T4 | Note: For all subsequent tests for LTE-FDD, Middle channel, QPSK modulation, and 50% RB size and low RB allocation was used in conjunction with the worst-case bit rate found in Chapter 8.. # VoWi-Fi Air interface investigation | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |-----------------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | WIFI2.4G: 802.11b | | y (Radial) | -6.12 | -46.47 | 40.35 | / | / | T4 | | Voice NB AMR Codec: 4.75kbit/s |
(BW:20M_Rat
e:1M) | z (Axial): | -0.17 | -44.71 | 44.54 | 0.79 | pass | T4 | | WIFI2.4G: 802.11b | 1/2412 | y (Radial) | -6.26 | -46.76 | 40.50 | / | / | T4 | | Voice NB AMR Codec: 4.75kbit/s | (BW:20M_Rat
e:1M) | z (Axial): | 0.70 | -44.17 | 44.87 | 0.37 | pass | T4 | | WIFI2.4G: 802.11b | 11/2462 | y (Radial) | -7.12 | -46.46 | 39.34 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (BW:20M_Rat
e:1M) | z (Axial): | 1.13 | -43.98 | 45.11 | 0.08 | pass | T4 | | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | |-----------------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------| | WIFI2.4G: 802.11b | 6/2437 | y (Radial) | -6.12 | -46.47 | 40.35 | / | / | T4 | | Voice NB AMR Codec: 4.75kbit/s | (BW:20M_Rat
e:1M) | z (Axial): | -0.17 | -44.71 | 44.54 | 0.79 | pass | T4 | | WIFI2.4G: 802.11g | | y (Radial) | -3.16 | -48.18 | 45.02 | / | / | T4 | | Voice NB AMR Codec: 4.75kbit/s | (BW:20M_Rat
e:6M) | z (Axial): | 0.41 | -45.43 | 45.84 | 0.09 | pass | T4 | | WIFI2.4G: 802.11n | 0, = 101 | y (Radial) | -3.14 | -51.08 | 47.94 | / | / | T4 | | Voice NB AMR
Codec: 4.75kbit/s | (BW:20M_Rat
e:MCS0) | z (Axial): | 1.12 | -46.95 | 48.07 | 0.15 | pass | T4 | Note: For all subsequent tests for 2.4 GHz, 802.11b 1 Mbps was used in conjunction with the worst-case bit rate found in Chapter 8.. 9 Audio Level and Gain Measurements # **GSM/WCDMA** No correction gain factors were measured for GSM/WCDM due to the Rohde & Schwarz CMW500, hosting a calibrated audio board. The gains used to measure GSM/WCDMA are set to 100. ## **VoLTE** No correction gain factors were measured for VoLTE due to the Rohde & Schwarz CMW500, hosting a calibrated audio board. The gains used to measure VoLTE are set to 100. ## VoWi-Fi No correction gain factors were measured for VoWi-Fi to the Rohde & Schwarz CMW500, hosting a calibrated audio board. The gains used to measure VoWi-Fi to 100. Report No.: R2108A0747-H2 # 10 Measurement Uncertainty Measurement uncertainty evaluation template for DUT HAC T-Coil test. | | | | | | | | 1 | 1 | 1 | |--------------------------------------|-------------|--------------------------|----------------|-------|--------------------|--------------------|----------------------------|----------------------------|---| | Error source | Туре | Uncertainty Value ai (%) | Prob.
Dist. | k | ABM1c _i | ABM2c _i | Std. Unc.
ABM1
(± %) | Std. Unc.
ABM2
(± %) | Degree of freedom V _{eff} or v _i | | Probe Sensitivity | I. | l | | | | | | | | | Reference Level | В | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | ∞ | | AMCC Geometry | В | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | ∞ | | AMCC Current | В | 0.6 | R | 1.732 | 1 | 1 | 0.3 | 0.3 | ∞ | | Probe Positioning during Calibration | В | 0.1 | R | 1.732 | 1 | 1 | 0.1 | 0.1 | ∞ | | Noise Contribution | В | 0.7 | R | 1.732 | 0.0143 | 1 | 0.0 | 0.4 | ∞ | | Frequency Slope | В | 5.9 | R | 1.732 | 0.1 | 1 | 0.3 | 3.4 | ∞ | | Probe System | | • | | | • | • | | • | | | Repeatability / Drift | В | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity / Dynamic
Range | В | 0.6 | R | 1.732 | 1 | 1 | 0.3 | 0.3 | ∞ | | Acoustic Noise | В | 1.0 | R | 1.732 | 0.1 | 1 | 0.1 | 0.6 | ∞ | | Probe Angle | В | 2.3 | R | 1.732 | 1 | 1 | 1.3 | 1.3 | ∞ | | Spectral Processing | В | 0.9 | R | 1.732 | 1 | 1 | 0.5 | 0.5 | ∞ | | Integration Time | В | 0.6 | N | 1 | 1 | 5 | 0.6 | 3.0 | ∞ | | Field Distribution | В | 0.2 | R | 1.732 | 1 | 1 | 0.1 | 0.1 | ∞ | | Test Signal | | | | | | | | | | | Ref.Signal Spectral
Response | В | 0.6 | R | 1.732 | 0 | 1 | 0.0 | 0.3 | ∞ | | Positioning | | | | | | | | | | | Probe Positioning | В | 1.9 | R | 1.732 | 1 | 1 | 1.1 | 1.1 | ∞ | | Phantom Thickness | В | 0.9 | R | 1.732 | 1 | 1 | 0.5 | 0.5 | ∞ | | EUT Positioning | В | 1.9 | R | 1.732 | 1 | 1 | 1.1 | 1.1 | ∞ | | External Contribution | ns | | | | | | | | | | RF Interference | В | 0.0 | R | 1.732 | 1 | 0.3 | 0.0 | 0.0 | ∞ | | Test Signal Variation | В | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | ∞ | | Combined Std. Uncert | tainty (ABM | 1 Field) | | | | | 4.0 | 6.1 | | | Expanded Std. Uncert | ainty | | | | | | 8.0 | 12.2 | | Report No.: R2108A0747-H2 # 11 Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Last Cal. | Cal. Due
Date | |--------------------------------------|--------------|---------------|------------------|------------|------------------| | Audio Magnetic 1D
Field Probe | SPEAG | AM1DV3 | 3082 | 2021-02-23 | 2022-02-22 | | DAE | SPEAG | DAE4 | 1317 | 2021-02-23 | 2022-02-22 | | Universal Radio Communication Tester | R&S | CMW 500 | 146734 | 2021-05-16 | 2022-05-15 | | Audio Magnetic
Calibration Coil | SPEAG | AMCC | 1101 | 1 | 1 | | TMFS | SPEAG | SE UMS 021 AA | 1018 | 1 | 1 | | Hygrothermograph | Anymetr | NT-311 | 20150731 | 2021-05-16 | 2022-05-15 | | HAC Phantom | SPEAG | SD HAC P01 BB | 1117 | 1 | 1 | | Software for Test | Speag | DASY5 | 1 | 1 | 1 | *****END OF REPORT ***** Report No.: R2108A0747-H2 # **ANNEX A: Test Layout** Picture 1: HAC T-Coil System Layout # **ANNEX B: Graph Results** #### Plot 1 T-Coil GSM 850 Y transversal Date: 8/25/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:8.69961 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### Z6252CA GSM850 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.17 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 29.61 dB ABM1 comp = -10.15 dBA/m BWC Factor = 0.17 dB Location: 0, -4.2, 3.7 mm 0 dB = 30.22 = 29.61 dB #### Plot 2 T-Coil GSM 850 Z Axial Date: 8/25/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 836.6 MHz; Duty Cycle: 1:8.69961 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### Z6252CA GSM850 HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z) (13x13x1):** Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.17 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 31.74 dB ABM1 comp = 5.44 dBA/m BWC Factor = 0.17 dB Location: 8.3, 0, 3.7 mm ### Z6252CA GSM850 HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** Diff = 1.68 dB BWC Factor = 10.81 dB Location: 8.3, 0, 3.7 mm Report No.: R2108A0747-H2 0 dB = 38.62 = 31.74 dB #### Plot 3 T-Coil GSM 1900 Y transversal Date: 8/25/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz; Duty Cycle: 1:8.69961 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃ Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA GSM1900 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 36.72 dB ABM1 comp = -5.64 dBA/m BWC Factor = 0.16 dB Location: 4.2, -4.2, 3.7 mm 0 dB = 68.52 = 36.72 dB #### Plot 4 T-Coil GSM 1900 Z Axial Date: 8/25/2021 Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz; Duty Cycle: 1:8.69961 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA GSM1900 HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z) (13x13x1):** Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0,
0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 39.59 dB ABM1 comp = 1.11 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA GSM1900 HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.81 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 95.38 = 39.59 dB HAC Test Report Report No.: R2108A0747-H2 ## Plot 5 T-Coil WCDMA Band II Y transversal Date: 8/25/2021 Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1.95434 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃ Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA WCDMA B2 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### Cursor: ABM1/ABM2 = 39.66 dB ABM1 comp = -2.36 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm -46.23 0 dB = 96.11 = 39.66 dB #### Plot 6 T-Coil WCDMA Band II Z Axial Date: 8/25/2021 Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1852.4 MHz; Duty Cycle: 1:1.95434 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA WCDMA B2 HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 45.32 dB ABM1 comp = 0.51 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA WCDMA B2 HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.91 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 184.5 = 45.32 dB HAC Test Report Report No.: R2108A0747-H2 # Plot 7 T-Coil WCDMA Band IV Y transversal Date: 8/31/2021 Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1.95434 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA WCDMA B2 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 40.61 dB ABM1 comp = -1.92 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm -45.74 0 dB = 107.3 = 40.61 dB ### Plot 8 T-Coil WCDMA Band IV Z Axia Date: 8/31/2021 Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1.95434 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA WCDMA B2 HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 47.13 dB ABM1 comp = -0.06 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA WCDMA B2 HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.76 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 227.2 = 47.13 dB HAC Test Report Report No.: R2108A0747-H2 Plot 9 T-Coil WCDMA Band V Y transversal Date: 8/31/2021 Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1.95434 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Z6252CA WCDMA B5 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 40.70 dB ABM1 comp = -1.76 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm -45.86 0 dB = 108.5 = 40.70 dB HAC Test Report Report No.: R2108A0747-H2 #### Plot 10 T-Coil WCDMA Band V Z Axial Date: 8/31/2021 Communication System: UID 10011 - CAB, UMTS-FDD (WCDMA); Frequency: 1712.4 MHz; Duty Cycle: 1:1.95434 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA WCDMA B5 HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 46.79 dB ABM1 comp = 0.89 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA WCDMA B5 HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.46 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 218.5 = 46.79 dB # Plot 11 T-Coil LTE Band 2 Y transversal Date: 8/31/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1880 MHz; Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B2 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 39.33 dB ABM1 comp = -1.70 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm 0 dB = 92.61 = 39.33 dB ### Plot 12 T-Coil LTE Band 2 Z Axial Date: 8/31/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1880 MHz; Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface
Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B2 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 41.68 dB ABM1 comp = -1.49 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA LTE B2 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.83 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 121.3 = 41.68 dB # Plot 13 T-Coil LTE Band 4 Y transversal Date: 9/1/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1732.5 MHz;Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B4 1RB HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 38.89 dB ABM1 comp = -2.03 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm 0 dB = 88.02 = 38.89 dB ### Plot 14 T-Coil LTE Band 4 Z Axial Date: 9/1/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1732.5 MHz;Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B4 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 42.32 dB ABM1 comp = 0.21 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA LTE B4 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.47 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 130.6 = 42.32 dB Plot 15 T-Coil LTE Band 5 Y transversal Date: 8/25/2021 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 ℃ Liquid Temperature: 21.5℃ Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Z6252CA LTE B5 1RB HAC TCoil WD Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### Cursor: ABM1/ABM2 = 40.19 dBABM1 comp = -2.20 dBA/mBWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm -32.31 -40.39 0 dB = 102.2 = 40.19 dB Plot 16 T-Coil LTE Band 5 Z Axial Date: 8/25/2021 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 836.5 MHz; Duty Cycle: 1:3.73594 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Z6252CA LTE B5 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 43.54 dB ABM1 comp = 0.46 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm Z6252CA LTE B5 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.18 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 150.3 = 43.54 dB # Plot 17 T-Coil LTE Band 7 Y transversal Date: 9/1/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B7 1RB HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 39.57 dB ABM1 comp = -2.19 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm 0 dB = 95.21 = 39.57 dB ### Plot 18 T-Coil LTE Band 7 Z Axial Date: 9/1/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2535 MHz;Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B7 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 42.80 dB ABM1 comp = 0.28 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA LTE B7 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.20 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 138.0 = 42.80 dB Plot 19 T-Coil LTE Band 12 Y transversal Date: 9/1/2021 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:3.73594 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B12 1RB HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0,
-6.3 mm ### **Cursor:** ABM1/ABM2 = 40.05 dB ABM1 comp = -2.26 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm 0 dB = 100.6 = 40.05 dB ## Plot 20 T-Coil LTE Band 12 Z Axial Date: 9/1/2021 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:3.73594 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA LTE B12 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 44.44 dB ABM1 comp = 0.42 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA LTE B12 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.66 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 166.7 = 44.44 dB ## Plot 21 T-Coil LTE Band 13 Y transversal Date: 9/1/2021 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:3.73594 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 $^{\circ}$ C Liquid Temperature: 21.5 $^{\circ}$ C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA LTE B13 1RB HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 49.00 dB ABM1 comp = -0.16 dBA/m BWC Factor = 0.16 dB Location: 12.5, -8.3, 3.7 mm 0 dB = 281.8 = 49.00 dB #### Plot 22 T-Coil LTE Band 13 Z Axial Date: 9/1/2021 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 782 MHz; Duty Cycle: 1:3.73594 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA LTE B13 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 47.03 dB ABM1 comp = 0.48 dBA/m BWC Factor = 0.16 dB Location: 4.2, 4.2, 3.7 mm ## Z6252CA LTE B13 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.15 dB BWC Factor = 10.81 dB Location: 4.2, 4.2, 3.7 mm 0 dB = 224.6 = 47.03 dB Plot 23 T-Coil LTE Band 66 Y transversal Date: 9/1/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Ambient temperature.22.3 C Liquid temperature. 21.3 Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA LTE B66 1RB HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 39.43 dB ABM1 comp = -2.14 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm 0 dB = 93.66 = 39.43 dB #### Plot 24 T-Coil LTE Band 66 Z Axial Date: 9/1/2021 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz;Duty Cycle: 1:3.73852 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA LTE B66 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM **SNR(x,y,z)** (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 41.51 dB ABM1 comp = 0.07 dBA/m BWC Factor = 0.16 dB Location: 4.2, 0, 3.7 mm ## Z6252CA LTE B66 1RB HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 1.41 dB BWC Factor = 10.81 dB Location: 4.2, 0, 3.7 mm 0 dB = 118.9 = 41.51 dB ## Plot 25 T-Coil 802.11b Y transversal Date: 9/2/2021 Communication System: UID 10012 - CAB, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1.53886 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA 802.11b HAC_TCoil_WD_Emission-4.75kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 40.35 dB ABM1 comp = -6.12 dBA/m BWC Factor = 0.16 dB Location: 4.2, 12.5, 3.7 mm 0 dB = 104.1 = 40.35 dB #### Plot 26 T-Coil 802.11b Z Axial Date: 9/2/2021 Communication System: UID 10012 - CAB, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1.53886 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 $^{\circ}$ C Liquid Temperature: 21.5 $^{\circ}$ C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA 802.11b HAC_TCoil_WD_Emission-4.75kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 44.54 dB ABM1 comp = -0.17 dBA/m BWC Factor = 0.16 dB Location: 4.2, 0, 3.7 mm ## Z6252CA 802.11b HAC_TCoil_WD_Emission-4.75kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 0.79 dB BWC Factor = 10.81 dB Location: 4.2, 0, 3.7 mm 0 dB = 168.7 = 44.54 dB Plot 27 T-Coil 802.11g Y transversal Date: 9/2/2021 Communication System: UID 10013 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:8.82673 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom
section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA 802.11g HAC_TCoil_WD_Emission-4.75kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 45.02 dB ABM1 comp = -3.16 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm -35.38 -44.22 0 dB = 178.2 = 45.02 dB # Plot 28 T-Coil 802.11g Z Axial Date: 9/2/2021 Communication System: UID 10013 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:8.82673 Medium parameters used: σ = 0 S/m, $ε_r$ = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA 802.11g HAC_TCoil_WD_Emission-4.75kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 45.84 dB ABM1 comp = 0.41 dBA/m BWC Factor = 0.16 dB Location: 4.2, 0, 3.7 mm ## Z6252CA 802.11g HAC_TCoil_WD_Emission-4.75kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 0.09 dB BWC Factor = 10.81 dB Location: 4.2, 0, 3.7 mm 0 dB = 196.0 = 45.85 dB ## Plot 29 T-Coil 802.11n Y transversal Date: 9/2/2021 Communication System: UID 10193 - CAC, IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK); Frequency: 2437 MHz; Duty Cycle: 1:6.44466 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## Z6252CA 802.11n HAC_TCoil_WD_Emission-4.75kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 47.94 dB ABM1 comp = -3.14 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm 0 dB = 249.4 = 47.94 dB ## Plot 30 T-Coil 802.11n Z Axial Date: 9/2/2021 Communication System: UID 10193 - CAC, IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK); Frequency: 2437 MHz; Duty Cycle: 1:6.44466 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; ; Calibrated: 2021/2/23 Electronics: DAE4 Sn1317; Calibrated: 2021/2/23 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Z6252CA 802.11n HAC_TCoil_WD_Emission-4.75kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 48.07 dB ABM1 comp = 1.12 dBA/m BWC Factor = 0.16 dB Location: 4.2, 0, 3.7 mm ## Z6252CA 802.11n HAC_TCoil_WD_Emission-4.75kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** Diff = 0.51 dB BWC Factor = 10.81 dB Location: 4.2, 0, 3.7 mm 0 dB = 253.2 = 48.07 dB **ANNEX C: Probe Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Report No.: R2108A0747-H2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-SH (Auden) Certificate No: AM1DV3-3082 Feb21 | Object | AM1DV3 - SN: 3082 | | | |---|---|---|--| | Calibration procedure(s) | QA CAL-24.v4 Calibration procedure for AM1D magnetic field probes and TMFS in the audio range | | | | Calibration date: | February 23, 2 | 2021 | . 27/1/2 | | The measurements and the uncert | ainties with confidence | national standards, which realize the physical units
be probability are given on the following pages and | | | | | atory facility: environment temperature (22 ± 3)°C a | and humidity < 70%. | | Calibration Equipment used (M&TE | | | and humidity < 70%. Scheduled Calibration | | Calibration Equipment used (M&TE
Primary Standards
Keithley Multimeter Type 2001 | E critical for calibration ID # SN: 0810278 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) | | | Calibration Equipment used (M&TE
Primary Standards
Keithley Multimeter Type 2001
Reference Probe AM1DV2 | ID # SN: 0810278 SN: 1008 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) | Scheduled Calibration Sep-21 Dec-21 | | Calibration Equipment used (M&TE
Primary Standards
Keithley Multimeter Type 2001
Reference Probe AM1DV2 | E critical for calibration ID # SN: 0810278 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) | Scheduled Calibration Sep-21 | | All calibrations have been conduct Calibration Equipment used (M&TE Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards | ID # SN: 0810278 SN: 1008 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) | Scheduled Calibration Sep-21 Dec-21 Dec-21 | | Calibration Equipment used (M&TE
Primary Standards
Keithley Multimeter Type 2001
Reference Probe AM1DV2
DAE4 | ID # SN: 0810278 SN: 1008 SN: 781 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) | Scheduled Calibration Sep-21 Dec-21 | | Calibration Equipment used (M&TE Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards | ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 781 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) | Scheduled Calibration Sep-21 Dec-21 Dec-21 Scheduled Check | | Calibration Equipment used (M&TE Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards AMCC | ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 781 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 01-Oct-13 (in house check Oct-20) | Scheduled Calibration Sep-21 Dec-21 Dec-21 Scheduled Check Oct-23 | | Calibration Equipment used (M&TE Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards AMCC | ID # SN: 0810278 SN: 1008 SN: 781 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 01-Oct-13 (in house check Oct-20) 26-Sep-12 (in house check Oct-20) | Scheduled Calibration Sep-21 Dec-21 Dec-21 Scheduled Check Oct-23 Oct-23 | | Calibration Equipment used (M&TE Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards AMCC AMMI Audio Measuring Instrument | ID # SN: 0810278 SN: 1008 SN: 781 ID # SN: 1050 SN: 1062 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 01-Oct-13 (in house check Oct-20) 26-Sep-12 (in house check Oct-20) | Scheduled Calibration Sep-21 Dec-21 Dec-21 Scheduled Check Oct-23 | | Calibration Equipment used (M&TE Primary Standards Keithley Multimeter Type 2001 Reference Probe AM1DV2 DAE4 Secondary Standards AMCC | ID # SN: 0810278 SN: 1008 SN: 781 | Cal Date (Certificate No.) 07-Sep-20 (No. 28647) 15-Dec-20 (No. AM1DV2-1008_Dec20) 23-Dec-20 (No. DAE4-781_Dec20) Check Date (in house) 01-Oct-13 (in house
check Oct-20) 26-Sep-12 (in house check Oct-20) | Scheduled Calibration Sep-21 Dec-21 Dec-21 Scheduled Check Oct-23 Oct-23 | Certificate No: AM1DV3-3082_Feb21 Page 1 of 3 AC Test Report No.: R2108A0747-H2 #### References [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. [2] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. [3] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension #### Description of the AM1D probe The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1+2]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1+2] without additional shielding. #### Handling of the item The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter). #### Methods Applied and Interpretation of Parameters - Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [3], with the tip pointing to "southwest" orientation. - Functional Test: The functional test preceding calibration includes test of Noise level RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz. - Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and –120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil. - Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane. - Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil. Certificate No: AM1DV3-3082_Feb21 Page 2 of 3 AC Test Report Report No.: R2108A0747-H2 # AM1D probe identification and configuration data | Item | AM1DV3 Audio Magnetic 1D Field Probe | | | |-----------|--------------------------------------|--|--| | Type No | SP AM1 001 BA | | | | Serial No | 3082 | | | | Overall length | 296 mm | | |--------------------|------------------------------------|--| | Tip diameter | 6.0 mm (at the tip) | | | Sensor offset | 3.0 mm (centre of sensor from tip) | | | Internal Amplifier | 20 dB | | | Manufacturer / Origin | Schmid & Partner Engineering AG, Zurich, Switzerland | | |-----------------------|--|--| |-----------------------|--|--| #### Calibration data | Connector rotation angle | (in DASY system) | 8.8 ° | +/- 3.6 ° (k=2) | |--------------------------|------------------|-----------------|-----------------| | Sensor angle | (in DASY system) | 0.91 ° | +/- 0.5 ° (k=2) | | Sensitivity at 1 kHz | (in DASY system) | 0.00739 V/(A/m) | +/- 2 2 % (k=2) | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: AM1DV3-3082_Feb21 Page 3 of 3 **ANNEX D: DAE4 Calibration Certificate** Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client : TA(Shanghai) Certificate No: Z21-60041 Report No.: R2108A0747-H2 ## CALIBRATION CERTIFICATE Object DAE4 - SN: 1317 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: February 23, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 16-Jun-20 (CTTL, No.J20X04342) | Jun-21 | Calibrated by: Name **Function** SAR Test Engineer Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan Yu Zongying SAR Project Leader Issued: February 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60041 Page 1 of 3 In Collaboration with S P e a g CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ctl/a/chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z21-60041 In Collaboration with s p e a CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV , Low Range: 1LSB = 61nV , -100...+300 mV full range = Low Range: 1LSB = 6.1 µV, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.746 ± 0.15% (k=2) | 404.512 ± 0.15% (k=2) | 403.872 ± 0.15% (k=2) | | Low Range | 3.97990 ± 0.7% (k=2) | 3.99299 ± 0.7% (k=2) | 3.96969 ± 0.7% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system 333° ± 1 ° | Connector Angle to be used in DASY system | 333° ± 1 ° | |--|---|------------| |--|---|------------| Certificate No: Z21-60041 Page 3 of 3 # **ANNEX E: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX F: Test Setup Photos** The Test Setup Photos are submitted separately.