

Ref Level 15.50 dBm Offse Att 20 dB SWT	et 5.50 dB RBW 100 kHz 29.7 ms VBW 300 kHz Mode Auto	Sweep
1Pk View		
10 dBm	M1[1]	M1 2.43910 GHz
0 dBm-	M2[1]	-61.62 dBm 866.00 MHz
-10 dBm-		
-20 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-60 dBm	M2	
-70 dBm	and the second second and the second s	revenue and the second
-80 dBm		
Start 30.0 MHz	691 pts	Stop 3.0 GHz

CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 4.JUL.2019 22:44:41

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

1Pk View			230 ms 🖷 \			Auto Sweep			
	1 6.870 de	im				11[1]			6.87 dBr 2.4490 GH -50.63 dBr
) dBm									4.8790 GH
10 dBm		.130 dBm—							
20 dBm									
30 dBm	2								
40 dBm									
50 dBm	12								
60 dBm	www.hall	han and a start and a start and a start a star	monuturly	hubberture	Umrutut	wwwww	the barren	amound	anna
70 dBm									
80 dBm									

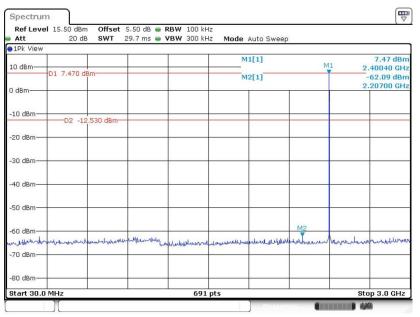
Date: 4.JUL.2019 22:45:18

Ref Level 15.50 dBm Offse Att 20 dB SWT	t 5.50 dB RBW 100 kl 29.7 ms VBW 300 kl		
1Pk View			
10 dBm D1 8.910 dBm		M1[1]	M1 8.91 dBm 2.47780 GHz
D1 0.910 00m		M2[1]	-61.94 dBm
0 dBm			909.00 MHz
-10 dBmD2 -11.090 dBn	n		
-20 dBm			
-30 dBm			
-40 dBm			
-50 dBm			
-60 dBm	M2		
70 dBm	and the south and the	for a strategy and the second of the second s	moralite-law have had a service and
-80 dBm			
Start 30.0 MHz	691	pts	Stop 3.0 GHz

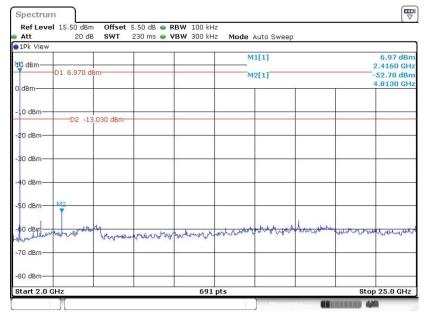
CSE Plot on Ch 78 between $30MHz \sim 3 GHz$

Date: 4.JUL.2019 22:48:48

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


Ref Level 15 Att	20 dB SWT	et 5.50 dB 👄 RI 230 ms 👄 VI		Mode Auto Swee	p		
1Pk View							
10 dBm				M1[1]			5.52 dBr 2.4830 GH
	5.520 dBm			M2[1]			-52.95 dBr
dBm							4.9460 GH
-10 dBm							
20 dBm	-D2 -14.480 dBn	n					
30 dBm							
40 dBm						·	
50 dBm M	2						
60 dBm	Vorbolingen de - Customa son	un where where	whenthe	wwwwwwwwww	Annalura	month	nunsultu
70 dBm							
B0 dBm		_					
Start 2.0 GHz			691 pt	s		Stor	25.0 GH

Date: 4.JUL.2019 22:49:24


Test Mode :	3Mbps	Temperature :	21~25 ℃
Test Channel :	00	Relative Humidity :	51~54%
		Test Engineer :	Aaron Shen

CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 4.JUL.2019 22:56:10

CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 4.JUL.2019 22:56:38

Ref Level 15.50 dBm Att 20 dB		B ● RBW 100 kH Is ● VBW 300 kH		5	
1Pk View					
0 dBm			M1[1]	M1	7.33 dBn 2.43910 GH
dBm-			M2[1]		-61.79 dBm 2.98500 GHz
10 dBm					
20 dBm	670 dBm				
30 dBm					
40 dBm					
50 dBm					
50 dBm		111	www.hallet-barrenser		N
70 dBm	and mana	- water and the second	www.water-tenter-	and a short and	Plane Provide Participation
30 dBm					

CSE Plot on Ch 39 between $30MHz \sim 3 GHz$

Date: 4.JUL.2019 22:59:50

CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

5.890 dBm			M1[1] M2[1]		5.89 dBr 2.4490 GH -53.50 dBr 4.8790 GH
					2.4490 GH -53.50 dBr
D2 -14.110 dBm-					
02 -14.110 dbm					
mannetheren	when when the	mound	waterboto	American	where marked allow whe
	when the second s	ware the ward a ger and her her	ward of how we have been and the ward of t	wave to any have a far and the same to any the the same	ware of monte have been and the for the stand of the second secon

Date: 4.JUL.2019 23:00:17

Ref Level 15.50 dBm Off Att 20 dB SW	set 5.50 dB 👄 RBW T 29.7 ms 👄 VBW		ode Auto Sweep		
1Pk View					
10 dBm D1 9.070 dBm			M1[1]	M1	9.07 dBm 2.47780 GHz
D1 9.070 0Bit			M2[1]		-62.36 dBm
D dBm					973.40 MHz
-10 dBmD2 -10,930 d	3m				
-20 dBm					
30 dBm					
-40 dBm					
50 dBm					
60 dBm	M2				1
-70 dBm	arman and a grant	ulipheliphier	monorithe	manager m	anone relations
80 dBm					
Start 30.0 MHz		691 pts			Stop 3.0 GHz

CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 4.JUL.2019 23:04:53

CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

0 dBm			M1 M2			8.7: 2.483 57.9: 6.976	3 dBr
			M2	[1]		-57.93	3 dBr
-11.270 dBm						0.570	u ui
-11.270 dBm							
							_
V	han dat All	munu	whereard	WWWWW	hennethe	petertenteren	ulyma
	M2	V	V	V	▼	T T T T T T T T T T T T T T T T T T T	▼

Date: 4.JUL.2019 23:05:20

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

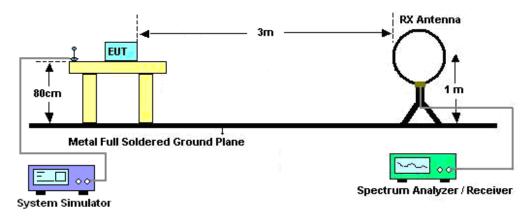
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

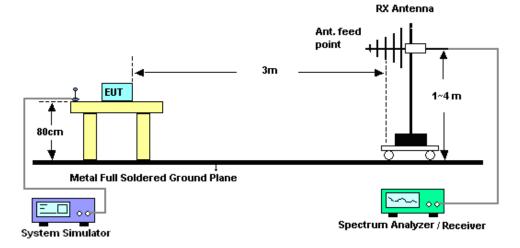
3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

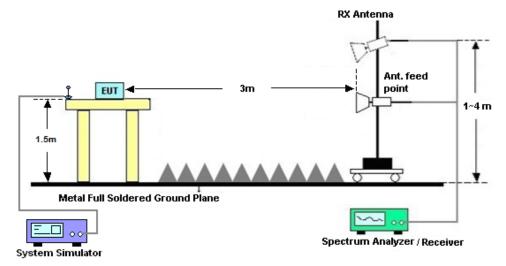
3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N₁*L₁+N₂*L₂+...+N_{n-1}*LN_{n-1}+N_n*L_n Where N₁ is number of type 1 pulses, L₁ is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.



3.8.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: SRQ-Z6201V

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix C.

3.9 AC Conducted Emission Measurement

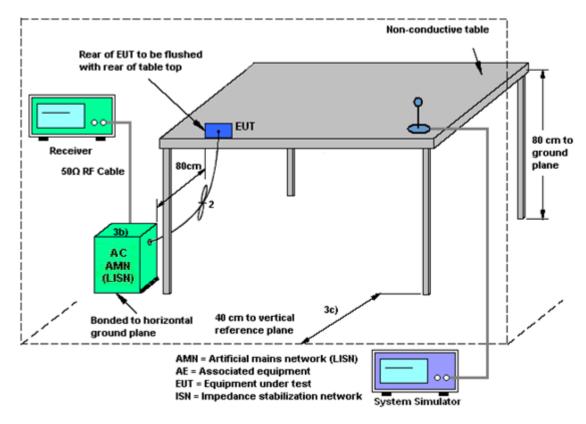
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2018	Jul. 04, 2019~ Aug. 02, 2019	Aug. 06, 2019	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Jul. 04, 2019~ Aug. 02, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Jul. 04, 2019~ Aug. 02, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;M ax 30dBm	Oct. 12, 2018	Jul. 05, 2019	Oct. 11, 2019	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY553705 28	10Hz-44GHz	Oct. 09, 2018	Jul. 05, 2019	Oct. 08, 2019	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Jul. 05, 2019	Oct. 18, 2019	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 28, 2018	Jul. 05, 2019	Dec. 27, 2019	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2019	Jul. 05, 2019	Jan. 26, 2020	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Jul. 05, 2019	Jan. 04, 2020	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug. 06, 2018	Jul. 05, 2019	Aug. 05, 2019	Radiation (03CH05-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 17, 2018	Jul. 05, 2019	Aug. 16, 2019	Radiation (03CH05-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Jul. 05, 2019	Jan. 13, 2020	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jul. 05, 2019	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jul. 05, 2019	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jul. 05, 2019	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Jul. 09, 2019	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	Jul. 09, 2019	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 19, 2018	Jul. 09, 2019	Nov. 18, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	Jul. 09, 2019	Oct. 11, 2019	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

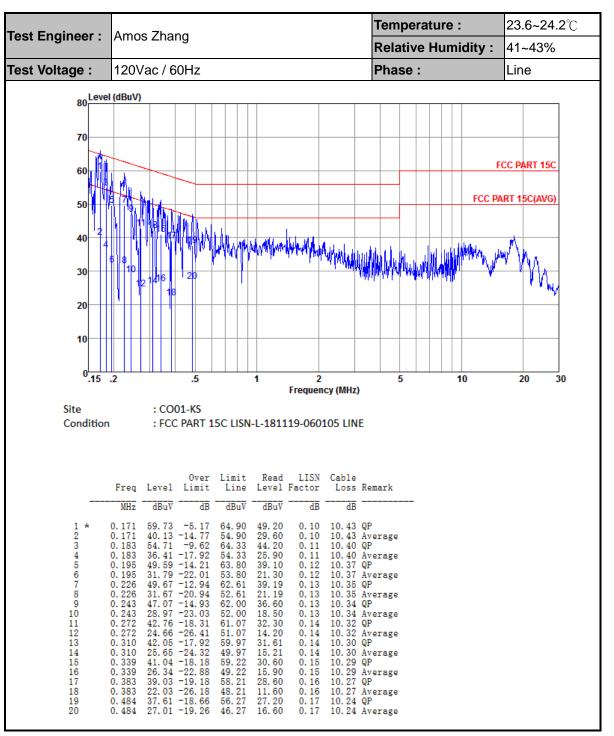
Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.0 dB
of 95% (U = 2Uc(y))	2.9 dB

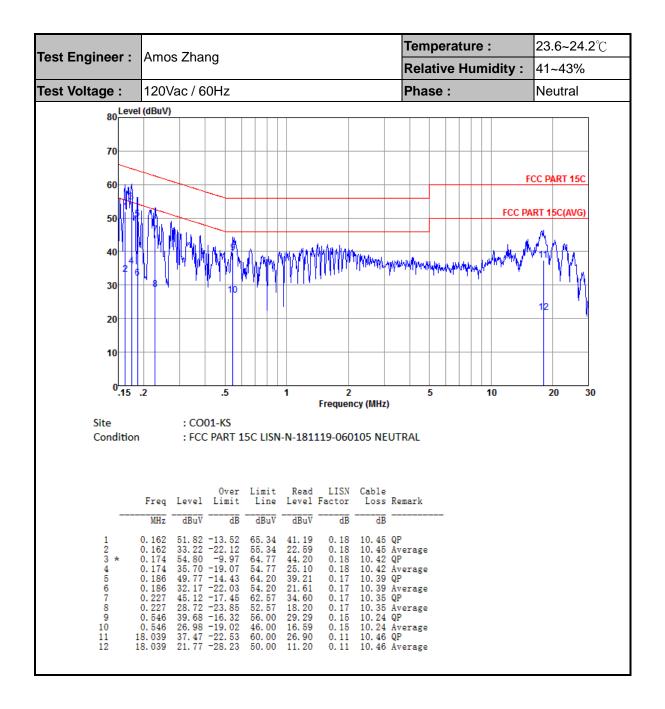
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)


Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)


Measuring Uncertainty for a Level of Confidence	5.0 dB
of 95% (U = 2Uc(y))	5.0 dB

Appendix A. AC Conducted Emission Test Results

Appendix B. Radiated Spurious Emission

2.4GHz 2	2400~2483.	5MHz
----------	------------	------

BT (Band Edge @ 3m)

ВТ	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2383.58	51.26	-22.74	74	47.58	31.25	5.43	33	292	55	Ρ	Н
	*	2383.58	26.47	-27.53	54	-	-	-	-	-	-	А	Н
вт		2402	100.61	-	-	96.86	31.3	5.48	33.03	292	55	Ρ	Н
CH00		2402	75.82	-	-	-	-	-	-	-	-	А	Н
2402MHz		2341.72	50.91	-23.09	74	47.34	31.16	5.38	32.97	338	264	Ρ	V
240211112	*	2341.72	26.12	-27.88	54	-	-	-	-	-	-	А	V
		2402	101.06	-	-	97.31	31.3	5.48	33.03	338	264	Ρ	V
		2402	76.27	-	-	-	-	-	-	-	-	А	V
		2483.51	52.93	-21.07	74	48.28	31.59	5.55	32.49	315	50	Ρ	Н
	*	2483.51	28.14	-25.86	54	-	-	-	-	-	-	А	Н
DT		2480	99.31	-	-	94.66	31.59	5.55	32.49	315	50	Ρ	Н
BT CH 78		2480	74.52	-	-	-	-	-	-	-	-	А	Н
2480MHz		2498.74	51.98	-22.02	74	47.1	31.64	5.55	32.31	318	264	Ρ	V
240011112	*	2498.74	27.19	-26.81	54	-	-	-	-	-	-	А	V
		2480	98.91	-	-	94.26	31.59	5.55	32.49	318	264	Ρ	V
		2480	74.12	-	-	-	-	-	-	-	-	А	V
Remark		o other spurio I results are F		st Peak	and Averag	je limit lin	e.						

_				I	BT (Harmo	onic @ 3	Bm)						_
ВТ	Note	Frequency	Level	Over Limit (dB)	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	
DT		(MHz)	(dBµV/m)	(ab)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BT		4806	44.36	-29.64	74	63.51	34.88	8.1	62.13	150	360	Р	Н
CH 00 2402MHz		4806	42.12	-31.88	74	61.27	34.88	8.1	62.13	150	360	Р	V
		4884	45.93	-28.07	74	65.05	34.92	8.07	62.11	100	360	Р	Н
BT		7320	40.5	-33.5	74	58.22	35.3	9.75	62.77	100	360	Р	Н
CH 39 2441MHz		4884	43.49	-30.51	74	62.61	34.92	8.07	62.11	100	360	Ρ	V
244111112		7320	40.66	-33.34	74	58.38	35.3	9.75	62.77	100	360	Ρ	V
		4962	46.03	-27.97	74	65.09	34.97	8.05	62.08	150	360	Ρ	Н
BT		7440	41.16	-32.84	74	58.73	35.37	9.84	62.78	150	360	Ρ	Н
CH 78 2480MHz		4962	40.82	-33.18	74	59.88	34.97	8.05	62.08	150	360	Ρ	V
2480MHZ		7440	40.33	-33.67	74	57.9	35.37	9.84	62.78	150	360	Ρ	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BT (LF)

BT	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		34.85	17.07	-22.93	40	26.2	22.1	0.73	31.96	-	-	Р	Н
		176.47	19.5	-24	43.5	33.8	16.09	1.53	31.92	-	-	Р	Н
		186.17	19.18	-24.32	43.5	33.84	15.68	1.57	31.91	-	-	Р	Н
		221.09	18.73	-27.27	46	32.31	16.62	1.73	31.93	-	-	Р	Н
0.4011-		919.49	28.31	-17.69	46	26.23	29.87	3.49	31.28	100	0	Р	Н
2.4GHz BT		944.71	29.9	-24.1	54	26.67	30.73	3.54	31.04	-	-	Р	Н
LF		41.64	27.14	-12.86	40	39.75	18.62	0.72	31.95	-	-	Р	V
L 1		47.46	27.5	-12.5	40	42.73	15.9	0.81	31.94	100	0	Р	V
		205.57	17.62	-25.88	43.5	32.34	15.52	1.67	31.91	-	-	Р	V
		744.89	27.87	-18.13	46	28.68	28.32	3.13	32.26	-	-	Р	V
		936.95	28	-18	46	25.12	30.47	3.52	31.11	-	-	Ρ	V
		971.87	30.11	-23.89	54	26.6	30.72	3.57	30.78	-	-	Р	V
Remark		o other spuric I results are F		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

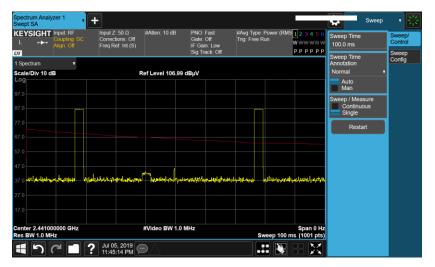
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix C. Duty Cycle Plots

Spectrum Analyzer 1 Swept SA	+			Marker	- v 🏦
L ↔ Align: Off	Input Z: 50 Ω #Atten: 10 dB Corrections: Off Freq Ref: Int (S)	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	#Avg Type: Power (RMS 1 2 3 4 5 6 Trig: Free Run PPPPP	Select Marker Marker 3	
1 Spectrum v		- U	ΔMkr3 3.750 ms		Settings
Scale/Div 10 dB	Ref Level 106.9		-0.01 dB	Marker Mode	Peak Search
97.0	<u></u> 2Δ1	<u> </u> 3∆1		Normal	Pk Search Config
67.0 57.0				 Delta (Δ) 	Properties
47.0 37.0 27.0			Land Robert	Fixed Off	Marker Function
17.0				Delta Marker	Marker→
Center 2.441000000 GHz Res BW 1.0 MHz	#Video BW 1.	0 MHz	Span 0 Hz Sweep 10.0 ms (1001 pts)	Marker Table	Counter
5 Marker Table 🔹				On Off	
	X Y 1.510 ms 86.47 dBμV Δ) 2.880 ms (Δ) -0.2552 dE Δ) 3.750 ms (Δ) -0.01176 dE	3	Inction Width Function Value	All Markers Off Couple Markers Off	
4 7C 1 ?	Jul 05, 2019				

DH5 on time (One Pulse) Plot on Channel 39

DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.88 / 100 = 5.76 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.