FCC SAR Test Report Report No.: FA010604 Cert #5145.02 APPLICANT : ZTE CORPORATION **EQUIPMENT**: Mobile Phone BRAND NAME : ZTE MODEL NAME : Z5157V FCC ID : SRQ-Z5157V **STANDARD** : **FCC 47 CFR PART 2 (2.1093)** **ANSI/IEEE C95.1-1992** IEEE 1528-2013 The product was received on Jan. 06, 2020 and testing was started from Jan. 15, 2020 and completed on Mar. 01, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full. Reviewed by: Rose Wang / Supervisor Approved by: Kat Yin / Manager Kat Kin Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 1 of 49 Issued Date : Mar. 27, 2020 # **Table of Contents** | 1. Statement of Compliance | | |--|----| | 2. Administration Data | | | 3. Guidance Applied | | | 4. Equipment Under Test (EUT) Information | | | 4.1 General Information | | | 4.2 General LTE SAR Test and Reporting Considerations | | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | 9 | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | 10 | | 6.1 Introduction | 10 | | 6.2 SAR Definition | 10 | | 7. System Description and Setup | 11 | | 7.1 E-Field Probe | 12 | | 7.2 Data Acquisition Electronics (DAE) | 12 | | 7.3 Phantom | 13 | | 7.4 Device Holder | | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | | | 8.5 Volume Scan Procedures | | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Simulating Liquids | | | 10.2 Tissue Verification | | | 10.3 System Performance Check Results | 21 | | 11. RF Exposure Positions | | | 11.1 Ear and handset reference point | | | 11.2 Definition of the cheek position. | | | 11.3 Definition of the tilt position. | | | 11.4 Body Worn Accessory | | | 11.5 Wireless Router | | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. Bluetooth Exclusions Applied | 29 | | 14. Antenna Location | | | 15. SAR Test Results | | | 15.1 Head SAR | | | 15.2 Hotspot SAR | | | 15.3 Body Worn Accessory SAR | | | 15.4 Repeated SAR Measurement | | | 16. Simultaneous Transmission Analysis | | | 16.1 Head Exposure Conditions | | | 16.2 Hotspot Exposure Conditions | | | 16.3 Body-Worn Accessory Exposure Conditions | | | 16.4 SPLSR Evaluation and Analysis | | | 17. Uncertainty Assessment | | | 18. References | | | Appendix A. Plots of System Performance Check | 43 | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | | Appendix D. Test Setup Photos Appendix F. Conducted RF Output Power Table | | | ADDEDOX E COMBUTEN RECUITOUT POWELLAND | | # **Revision History** Report No.: FA010604 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA010604 | Rev. 01 | Initial issue of report | Mar. 27, 2020 | # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **ZTE CORPORATION**, **Mobile Phone**, **Z5157V**, are as follows. **Report No. : FA010604** | Highest Standalone SAR Summary | | | | | | | |--------------------------------|-----------|-------------|-----------------------------|---------------------------------|-----------------------------------|---| | Equipment
Class | • | | Head
(Separation
0mm) | Hotspot
(Separation
10mm) | Body-worn
(Separation
15mm) | Highest Simultaneous Transmission 1g SAR (W/kg) | | | | | | 1g SAR (W/kg) | | (************************************** | | | | Band 12 | 0.22 | 0.41 | 0.31 | | | | LTE | Band 13 | 0.42 | 0.78 | 0.69 | | | Licensed | | Band 5 | 0.47 | 0.61 | 0.44 | 1.59 | | | | | Band 2 | 0.47 | 1.14 | 0.60 | | | | Band 4 | 0.31 | 0.90 | 0.40 | | | DTS | WLAN | 2.4GHz WLAN | 1.16 | 0.28 | 0.13 | 1.59 | | NII | WLAIN | 5GHz WLAN | 1.20 | 0.55 | 0.23 | 1.59 | | DSS | Bluetooth | Bluetooth | 0.25 | | | 1.59 | | Date of Testing: | | | | 2020/1/15- | -2020/3/1 | | #### **Declaration of Conformity:** The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. ### Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 4 of 49 Issued Date : Mar. 27, 2020 # 2. Administration Data Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02. Report No.: FA010604 | | Testing Laboratory | | | | | | | |--------------------|--|---|--------------------------------|--|--|--|--| | Test Firm | Sporton International (K | Sporton International (Kunshan) Inc. | | | | | | | Test Site Location | Jiangsu Province 21530
TEL: +86-512-5790015 | No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL: +86-512-57900158 FAX: +86-512-57900958 | | | | | | | Total Cita No | Sporton Site No. | FCC Designation No. | FCC Test Firm Registration No. | | | | | | Test Site No. | SAR01 | CN1257 | 314309 | | | | | | Applicant | | | | | |--------------|--|--|--|--| | Company Name | ZTE CORPORATION | | | | | Address | ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P. R. China | | | | | Manufacturer | | | | | | |--------------|--|--|--|--|--| | Company Name | ZTE CORPORATION | | | | | | | ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P. R. China | | | | | # 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - · IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 - FCC KDB 941225 D06 Hotspot Mode SAR v02r01 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 5 of 49 Issued Date : Mar. 27, 2020 # 4. Equipment Under Test (EUT) Information # 4.1 General Information | Product Feature & Specification | | | | | | |--|--|--|--|--|--| | Equipment Name | Mobile Phone | | | | | | Brand Name | ZTE | | | | | | Model Name | Z5157V | | | | | | FCC ID | SRQ-Z5157V | | | | | | IMEI Code | 861583040006036 | | | | | | Wireless Technology and
Frequency Range | LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5700 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz | | | | | | Mode | LTE: QPSK, 16QAM
WLAN 2.4GHz : 802.11b/g/n HT20
WLAN 5GHz : 802.11a/n/ac HT20/HT40/VHT20/VHT40/VHT80
Bluetooth BR/EDR/LE | | | | | | HW Version | Z5157VHW1.0 | | | | | | SW Version | Z5157VV1.0.0B04 | | | | | | EUT Stage | Identical Prototype | | | | | | Domorke | | | | | | Report No. : FA010604 ### Remark: - 1. 802.11n-HT40 is not supported in 2.4GHz WLAN. - 2. WLAN operation in 5600 MHz ~ 5650 MHz is notched. - 3. This device WLAN 2.4GHz supports hotspot operation
and Bluetooth support tethering applications. - 4. This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only). - 5. When hotspot mode is enabled, power reduction will be activated to limit the maximum power of LTE band 2. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 6 of 49 Issued Date : Mar. 27, 2020 # 4.2 General LTE SAR Test and Reporting Considerations | Summarized ı | necessary iter | ns addres | ssed in Kl | DB 941 | 225 D05 v | v02r05 | | | |---|--|------------|-------------|------------|--------------|--------------|--------------|--------------| | FCC ID | SRQ-Z5157V | | | | | | | | | Equipment Name | Mobile Phone | | | | | | | | | | LTE Band 2: 1 | 850.7 MH | z ~ 1909. | 3 MHz | | | | | | On another Francisco Dange of analy | LTE Band 4: 1 | 710.7 MH | z ~ 1754. | 3 MHz | | | | | | Operating Frequency Range of each LTF transmission band | LTE Band 5: 8 | 324.7 MHz | ~ 848.3 N | ЛHz | | | | | | LIE transmission band | LTE Band 12: | 699.7 MH | z ~ 715.3 | MHz | | | | | | | LTE Band 13: | 779.5 MH | z ~ 784.5 | MHz | | | | | | | LTE Band 2: 1 | .4MHz, 3I | MHz, 5MH | lz, 10M | Hz, 15MH | z, 20MHz | | | | | LTE Band 4: 1 | | | | | | | | | Channel Bandwidth | LTE Band 5: 1 | | | | | | | | | | LTE Band 12: | | | | | | | | | | LTE Band 13: | | | | | | | | | Uplink Modulations used | QPSK / 16QA | M | | | | | | | | LTE Voice / Data requirements | Voice and Dat | a | | | | | | | | LTE Release Version | R11, Cat 5 | | | | | | | | | CA Support | Not Supported | d | | | | | | | | | Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1, 2 and 3 Modulation Channel bandwidth / Transmission bandwidth (N _{RB}) MPR (dB) | | | | | | and 3 | | | | modulation | | | | | 20 | , K (u.z.) | | | LTE MDD normanantly built in by | | MHz | MHz | MHz | MHz | MHz | MHz | | | LTE MPR permanently built-in by | QI OIL | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 1 | | design | 16 QAM | ≤ 5
> 5 | ≤ 4
> 4 | ≤ 8
> 8 | ≤ 12
> 12 | ≤ 16
> 16 | ≤ 18
> 18 | ≤ 1
≤ 2 | | | 16 QAM
64 QAM | > 5
≤ 5 | > 4
≤ 4 | > 8 | > 12
≤ 12 | ≥ 16 | ≥ 18 | ≤ 2
≤ 2 | | | 64 QAM | > 5 | > 4 | > 8 | > 12 | > 16 | > 18 | ≤ 3 | | | 256 QAM | | | | ≥ 1 | | | ≤ 5 | | | | | | | | | | | | | In the base st | ation simu | lator confi | guratio | n, Networ | k Setting | value is s | et to NS 01 | | LTE A-MPR | to disable A-M | | | | | | | | | | all TTI frames | | | J | | | | 3 | | | A properly co | nfigured b | ase static | n simu | lator was | used for | the SAR | and power | | Spectrum plots for RB configuration | measurement | | | | | | | | | | configuration a | | | | | | | | | Power reduction applied to satisfy SAR | | | | | | ion will be | activated | to limit the | | compliance | maximum pov | | | | | | | | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 7 of 49 Issued Date : Mar. 27, 2020 | | Transmission (H, M, L) channel numbers and frequencies in each LTE band | | | | | | | | | | | | | |---|---|-----------------|----------|----------------|---------------------|----------------|---------------------------|------------|-----------------------|-----------|----------------|------------|----------------| | | LTE Band 2 | | | | | | | | | | | | | | | Bandwidtl | h 1.4 MHz | Bandwid | th 3 MHz | Bandwi | dth 5 MHz | Bandwidth 10 MHz Bandwidt | | n 15 MHz Bandwidth 20 | | dth 20 MHz | | | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. # | Fre
(MF | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | | L | 18607 | 1850.7 | 18615 | 1851.5 | 18625 | 1852.5 | 18650 | 18 | 55 | 18675 | 1857.5 | 18700 | 1860 | | M | 18900 | 1880 | 18900 | 1880 | 18900 | 1880 | 18900 | 188 | 80 | 18900 | 1880 | 18900 | 1880 | | Н | 19193 | 1909.3 | 19185 | 1908.5 | 19175 | 1907.5 | 19150 | 190 | 05 | 19125 | 1902.5 | 19100 | 1900 | | | | | | | | LTE Ba | and 4 | | | | | | | | | Bandwidtl | h 1.4 MHz | Bandwid | | Bandwi | dth 5 MHz | Bandwidt | | | Bandwidt | h 15 MHz | Bandwid | dth 20 MHz | | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | Ch. # | Fre
(MF | | Ch. # | Freq.
(MHz) | Ch. # | Freq.
(MHz) | | L | 19957 | 1710.7 | 19965 | 1711.5 | 19975 | 1712.5 | 20000 | 17 | 15 | 20025 | 1717.5 | 20050 | 1720 | | M | 20175 | 1732.5 | 20175 | 1732.5 | 20175 | 1732.5 | 20175 | 173 | | 20175 | 1732.5 | 20175 | 1732.5 | | Н | 20393 | 1754.3 | 20385 | 1753.5 | 20375 | 1752.5 | 20350 | 17 | 50 | 20325 | 1747.5 | 20300 | 1745 | | | | | | | | LTE Ba | | | | | | | | | | | dwidth 1.4 | | | ndwidth 3 | | Bandwidth 5 MHz | | Bandwidth 10 MHz | | | | | | | Ch. # | - | q. (MHz) | Ch. # | | eq. (MHz) | Ch. # | | | eq. (MHz) | Ch. # | | eq. (MHz) | | L | 20407 | | 824.7 | 20415 | | 825.5 | 20425 | | | 826.5 | 20450 | | 829 | | M | 20525 | | 836.5 | 20525 | | 836.5 | 20525 | | | 836.5 | 20525 | | 836.5 | | Н | 20643 | 3 | 848.3 | 20635 | | 847.5 | 20625 | 5 | | 846.5 | 20600 |) | 844 | | | | | | | | LTE Ba | | | | | _ | | | | | | dwidth 1.4 | | | ndwidth 3 | | | | Bandwidth 10 | | | | | | | Ch. # | - | q. (MHz) | Ch. # | | eq. (MHz) | Ch. # | | | eq. (MHz) | Ch. # | | req. (MHz) | | L | 23017 | | 699.7 | 23025 | | 700.5 | 23035 | | | 701.5 | 23060 | | 704 | | M | | | 707.5 | 23095 | | 707.5 | 23095 | - | | 707.5 | 23095 | | 707.5 | | Н | 23173 | 3 | 715.3 | 23165 | | 714.5 | 23155 |) | | 713.5 | 23130 |) | 711 | | | | | Dandurid | th E MILIT | | LTE Ba | na 13 | | | Dandwidt | h 10 MHz | | | | | | Bandwidth 5 MHz | | | | Chan | nol # | - bandwidt | | Freg.(MH: | 7) | | | | F | | Channel # 23205 | | | Freq.(MHz)
779.5 | | | Channel # | | | rreq.(IVIH. | 4) | | | M | | 23230 | | | 782 | | | 232 | 20 | | | 782 | | | Н | | 23255 | | | 784.5 | | | 232 | .50 | | 782 | | | Report No.: FA010604 # 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA010604 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. ### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 : Mar. 27, 2020 FCC ID: SRQ-Z5157V Issued Date Page 9 of 49 # 6. Specific Absorption Rate (SAR) ## 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA010604 ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue,
ρ is the mass density of the tissue and E is the RMS electrical field strength. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 10 of 49 Issued Date : Mar. 27, 2020 # 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA010604 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 11 of 49 Issued Date : Mar. 27, 2020 ### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | | | | |---------------|---|--|--|--|--|--| | Frequency | 10 MHz – >6 GHz | | | | | | | . requestey | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | | | | | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | | | | | Directivity | ±0.5 dB in TSL (rotation normal to probe axis) | | | | | | | Dynamic Range | 10 μW/g – >100 mW/g | | | | | | | Dynamic Range | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | | | | | | | Overall length: 337 mm (tip: 20 mm) | | | | | | | Dimensions | Tip diameter: 2.5 mm (body: 12 mm) | | | | | | | Dimensions | Typical distance from probe tip to dipole centers: 1 | | | | | | | | mm | | | | | | **Report No. : FA010604** # 7.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Photo of DAE Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 12 of 49 Issued Date : Mar. 27, 2020 # 7.3 Phantom #### <SAM Twin Phantom> | NOAM TWITT HAIRONIN | | | |---------------------|---|-----| | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA010604 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|--| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 13 of 49 Issued Date : Mar. 27, 2020 ### 7.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA010604 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones ### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 14 of 49 Issued Date : Mar. 27, 2020 # 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA010604 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged
SAR within masses of 1g and 10g Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 15 of 49 Issued Date : Mar. 27, 2020 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA010604 ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | | | | |--|---|--|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 : Mar. 27, 2020 FCC ID: SRQ-Z5157V Issued Date Page 16 of 49 ### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA010604 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤3 GHz | > 3 GHz | | |--|--------------|---|--|---|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·Δz | Zoom(n-1) | | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | $3 - 4 \text{ GHz: } \ge 28 \text{ mm}$
$4 - 5 \text{ GHz: } \ge 25 \text{ mm}$
$5 - 6 \text{ GHz: } \ge 22 \text{ mm}$ | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 17 of 49 Issued Date : Mar. 27, 2020 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. # 9. Test Equipment List | | | - " | 0 : 111 1 | Calib | ration | | |-----------------|---------------------------------|---------------|---------------|------------|------------|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | 750MHz System Validation Kit | D750V3 | 1087 | 2019/3/27 | 2020/3/26 | | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d151 | 2019/3/27 | 2020/3/26 | | | SPEAG | 1750MHz System Validation Kit | D1750V2 | 1090 | 2019/3/27 | 2020/3/26 | | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d170 | 2019/3/26 | 2020/3/25 | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 908 | 2019/3/25 | 2020/3/24 | | | SPEAG | 5000MHz System Validation Kit | D5GHzV2 | 1113 | 2019/9/24 | 2020/9/23 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1210 | 2019/7/23 | 2020/7/22 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1358 | 2019/4/17 | 2020/4/16 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3857 | 2019/5/27 | 2020/5/26 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3843 | 2019/9/26 | 2020/9/25 | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1696 | NCR | NCR | | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1697 | NCR | NCR | | | Anritsu | Radio Communication Analyzer | MT8821C | 6201432831 | 2019/4/17 | 2020/4/16 | | | Agilent | Wireless Communication Test Set | E5515C | MY52102706 | 2019/4/17 | 2020/4/16 | | | Agilent | ENA Series Network Analyzer | E5071C | MY46111157 | 2019/4/17 | 2020/4/16 | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1071 | 2019/10/28 | 2020/10/27 | | | Anritsu | Vector Signal Generator | MG3710A | 6201682672 | 2020/1/8 | 2021/1/7 | | | Rohde & Schwarz | Power Meter | NRVD | 102081 | 2019/8/15 | 2020/8/14 | | | Rohde & Schwarz | Power Sensor | NRV-Z5 | 100538 | 2019/8/14 | 2020/8/13 | | | Rohde & Schwarz | Power Sensor | NRV-Z5 | 100539 | 2019/8/14 | 2020/8/13 | | | R&S | CBT BLUETOOTH TESTER | CBT | 101641 | 2020/1/8 | 2021/1/7 | | | EXA | Spectrum Analyzer | FSV7 | 101631 | 2020/1/8 | 2021/1/7 | | | Testo | Hygrometer | 608-H1 | 1241332088 | 2020/1/8 | 2021/1/7 | | | FLUKE | DIGITAC THERMOMETER | 51II | 97240029 | 2019/8/15 | 2020/8/14 | | | ARRA | Power Divider | A3200-2 | N/A | No | ote | | | MCL | Attenuation1 | BW-S10W5+ | N/A | No | ote | | | MCL | Attenuation2 | BW-S10W5+ | N/A | No | ote | | | MCL | Attenuation3 | BW-S10W5+ | N/A | Note | | | | Agilent | Dual Directional Coupler | 778D | 20500 | No | ote | | | Agilent | Dual Directional Coupler | 11691D | MY48151020 | No | ote | | | BONN | POWER AMPLIFIER | BLMA 0830-3 | 087193A | Note | | | | BONN | POWER AMPLIFIER | BLMA 2060-2 | 087193B | No | ote | | Report No.: FA010604 Note: Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual
power level fed to the system check source. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 Issued Date : Mar. 27, 2020 FCC ID: SRQ-Z5157V Page 18 of 49 # 10. System Verification # 10.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2. Report No.: FA010604 Fig 10.2 Photo of Liquid Height for Body SAR Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 19 of 49 Issued Date : Mar. 27, 2020 # 10.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. Report No.: FA010604 | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--| | For Head | | | | | | | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | 835 | 40.3 57.9 | | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | ## <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(℃) | Conductivity
(σ) | tv t | | Permittivity
Target (ε _r) | Delt
a (σ)
(%) | Delta
(ε _r)
(%) | Limit
(%) | Date | |--------------------|----------------|------------------------|---------------------|--------|------|--|----------------------|-----------------------------------|--------------|-----------| | 750 | Head | 22.8 | 0.896 | 41.730 | 0.89 | 41.90 | 0.67 | -0.41 | ±5 | 2020/1/15 | | 835 | Head | 22.6 | 0.939 | 41.947 | 0.90 | 41.50 | 4.33 | 1.08 | ±5 | 2020/1/16 | | 1750 | Head | 22.7 | 1.413 | 39.150 | 1.37 | 40.10 | 3.14 | -2.37 | ±5 | 2020/1/19 | | 1900 | Head | 22.8 | 1.403 | 39.092 | 1.40 | 40.00 | 0.21 | -2.27 | ±5 | 2020/1/18 | | 2450 | Head | 22.9 | 1.796 | 40.869 | 1.80 | 39.20 | -0.22 | 4.26 | ±5 | 2020/1/21 | | 5250 | Head | 22.6 | 4.600 | 36.382 | 4.71 | 35.90 | -2.34 | 1.34 | ±5 | 2020/2/28 | | 5600 | Head | 22.8 | 4.990 | 35.804 | 5.07 | 35.50 | -1.58 | 0.86 | ±5 | 2020/2/29 | | 5750 | Head | 22.9 | 5.166 | 35.550 | 5.22 | 35.40 | -1.03 | 0.42 | ±5 | 2020/3/1 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 20 of 49 Issued Date : Mar. 27, 2020 # 10.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|--------------|------------|------------------------------|------------------------------|--------------------------------|------------------| | 2020/1/15 | 750 | Head | 250 | 1087 | 3843 | 1358 | 2.14 | 8.36 | 8.56 | 2.39 | | 2020/1/16 | 835 | Head 250 | | 4d151 | 3843 | 1358 | 2.52 | 9.30 | 10.08 | 8.39 | | 2020/1/19 | 1750 | 0 Head | 250 | 1090 | 3843 | 1358 | 9.63 | 36.40 | 38.52 | 5.82 | | 2020/1/18 | 1900 | Head | 250 | 5d170 | 3843 | 1358 | 10.00 | 39.00 | 40.00 | 2.56 | | 2020/1/21 | 2450 | Head | 250 | 908 | 3843 | 1358 | 13.50 | 52.80 | 54.00 | 2.27 | | 2020/2/28 | 5250 Head 100 | | 100 | 1113 | 3857 | 1210 | 7.79 80.50 | 77.90 | -3.23 | | | 2020/2/29 | 5600 | Head | 100 | 1113 | 3857 | 1210 | 7.94 | 83.40 | 79.40 | -4.80 | | 2020/3/1 | 5750 | Head | 100 | 1113 | 3857 | 1210 | 7.39 | 80.00 | 73.90 | -7.63 | Report No.: FA010604 Fig 10.3.1 System Performance Check Setup Fig 10.3.2 Setup Photo Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 21 of 49 Issued Date : Mar. 27, 2020 # 11. RF Exposure Positions ## 11.1 Ear and handset reference point Figure 11.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 11.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 11.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 11.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 11.1.1 Front, back, and side views of SAM twin phantom Fig 11.1.2 Close-up side view of phantom showing the ear region. Report No.: FA010604 Fig 11.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 22 of 49 Issued Date : Mar. 27, 2020 ### 11.2 Definition of the cheek position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 11.2.1 and Figure 11.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 11.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 11.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 11.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. - 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 11.2.3. The actual rotation angles should be documented in the test report. Fig 11.2.1 Handset vertical and horizontal reference lines—"fixed case Fig 11.2.2 Handset vertical and horizontal reference lines—"clam-shell case" acoustic output Report No.: FA010604 Fig 11.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 23 of 49 Issued Date : Mar. 27, 2020 ## 11.3 Definition of the tilt position 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit
with the cover closed, both configurations must be tested. Report No.: FA010604 - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 11.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point Fig 11.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 24 of 49 Issued Date : Mar. 27, 2020 ## 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 11.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Report No.: FA010604 Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Fig 11.4 Body Worn Position ### 11.5 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 25 of 49 Issued Date : Mar. 27, 2020 # 12. Conducted RF Output Power (Unit: dBm) The detailed conducted power table can refer to Appendix E. ### <LTE Conducted Power> #### **General Note:** Anritsu MT8821C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing. Report No.: FA010604 - 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required. - 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 5. Per KDB 941225 D05v02r05, for QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 7. Per KDB 941225 D05v02r05, smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 8. For LTE 4 / B5 / B12 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 26 of 49 Issued Date : Mar. 27, 2020 #### <WLAN Conducted Power> #### **General Note:** 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA010604 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel
for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 27 of 49 Issued Date : Mar. 27, 2020 ### <2.4GHz Bluetooth> #### **General Note:** - 1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. - 2. The Bluetooth duty cycle is 77.01 % as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation. Report No.: FA010604 # 13. Bluetooth Exclusions Applied | Mode Band | Max Average power(dBm) | | | | | | | |------------------|------------------------|----|--|--|--|--|--| | Wode Dand | BR/EDR | LE | | | | | | | 2.4GHz Bluetooth | 11.00 | 0 | | | | | | Report No.: FA010604 #### Note: 1. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison | Hotspot SAR | | | | | | | | | | | | |---------------------------|---|--|--|--|--|--|--|--|--|--|--| | Bluetooth Max Power (dBm) | Bluetooth Max Power (dBm) Separation Distance (mm) Frequency (GHz) exclusion thresholds | | | | | | | | | | | | 11.00 10 2.48 2.0 | | | | | | | | | | | | #### Note: Per KDB 447498 D01v06, a distance of 10 mm for hotspot SAR is applied to determine SAR test exclusion. The test exclusion threshold is 2.0 which is <= 3, hotspot SAR testing is not required. | Body Worn SAR | | | | | | | | | | | | |---|----|------|-----|--|--|--|--|--|--|--|--| | Bluetooth Max Power (dBm) Separation Distance (mm) Frequency (GHz) exclusion thresholds | | | | | | | | | | | | | 11.00 | 15 | 2.48 | 1.3 | | | | | | | | | #### Note: Per KDB 447498 D01v06, a distance of 15 mm for body worn SAR is applied to determine SAR test exclusion. The test exclusion threshold is 1.3 which is \leq 3, body worn SAR testing is not required. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 29 of 49 Issued Date : Mar. 27, 2020 # 14. Antenna Location Detail information can refer to Appendix D. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 30 of 49 Issued Date : Mar. 27, 2020 Report No.: FA010604 # 15. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA010604 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 4. When hotspot mode is enabled, power reduction will be activated to limit the maximum power of LTE B2. - 5. Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required. #### LTE Note: - 1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. - 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure. - 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested. - 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required. - 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required. - 6. For LTE B12 / B5 / B4 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing. #### **WLAN Note:** - 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 2. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 4. During SAR testing the WLAN transmission was verified using a spectrum analyzer. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 31 of 49 Issued Date : Mar. 27, 2020 # 15.1 Head SAR ## <LTE SAR> | Plot | Dond | BW | Modulation | RB | RB | Test | Power | Ch | Freq. | | | | | Measured | | |------|-------------|-------|------------|------|--------|--------------|-------|-------|--------|----------------|----------------|----------------|---------------|------------------|--------------------| | No. | Band | (MHz) | Modulation | Size | Offset | Position | Mode | Ch. | (MHz) | Power
(dBm) | Limit
(dBm) | Scaling Factor | Drift
(dB) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | 01 | LTE Band 12 | 10M | QPSK | 1 | 25 | Right Cheek | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | -0.02 | 0.203 | 0.215 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Right Cheek | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | 0.02 | 0.165 | 0.178 | | | LTE Band 12 | 10M | QPSK | 1 | 25 | Right Tilted | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0.09 | 0.131 | 0.139 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Right Tilted |
Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | 0.04 | 0.111 | 0.119 | | | LTE Band 12 | 10M | QPSK | 1 | 25 | Left Cheek | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0.08 | 0.185 | 0.196 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Left Cheek | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | -0.01 | 0.155 | 0.167 | | | LTE Band 12 | 10M | QPSK | 1 | 25 | Left Tilted | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0 | 0.117 | 0.124 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Left Tilted | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | 0.05 | 0.099 | 0.106 | | 02 | LTE Band 13 | 10M | QPSK | 1 | 25 | Right Cheek | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | 0.01 | 0.394 | 0.418 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Right Cheek | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.02 | 0.313 | 0.341 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Right Tilted | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | -0.06 | 0.242 | 0.257 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Right Tilted | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | 0.04 | 0.196 | 0.213 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Left Cheek | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | 0.05 | 0.382 | 0.406 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Left Cheek | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | 0.04 | 0.329 | 0.358 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Left Tilted | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | -0.05 | 0.227 | 0.241 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Left Tilted | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.09 | 0.188 | 0.205 | | 03 | LTE Band 5 | 10M | QPSK | 1 | 25 | Right Cheek | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.09 | 0.450 | <mark>0.467</mark> | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Right Cheek | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.08 | 0.357 | 0.372 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Right Tilted | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.01 | 0.224 | 0.232 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Right Tilted | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | -0.02 | 0.178 | 0.186 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Left Cheek | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.09 | 0.417 | 0.433 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Left Cheek | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.07 | 0.345 | 0.360 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Left Tilted | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.01 | 0.225 | 0.233 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Left Tilted | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | -0.01 | 0.186 | 0.194 | | 04 | LTE Band 2 | 20M | QPSK | 1 | 49 | Right Cheek | Full | 18900 | 1880 | 23.75 | 24.00 | 1.059 | -0.03 | 0.442 | 0.468 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Right Cheek | Full | 18900 | 1880 | 22.79 | 23.00 | 1.050 | -0.09 | 0.346 | 0.363 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Right Tilted | Full | 18900 | 1880 | 23.75 | 24.00 | 1.059 | 0.02 | 0.151 | 0.160 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Right Tilted | Full | 18900 | 1880 | 22.79 | 23.00 | 1.050 | -0.07 | 0.112 | 0.118 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Left Cheek | Full | 18900 | 1880 | 23.75 | 24.00 | 1.059 | 0.07 | 0.326 | 0.345 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Left Cheek | Full | 18900 | 1880 | 22.79 | 23.00 | 1.050 | -0.04 | 0.261 | 0.274 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Left Tilted | Full | 18900 | 1880 | 23.75 | 24.00 | 1.059 | 0.01 | 0.222 | 0.235 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Left Tilted | Full | 18900 | 1880 | 22.79 | 23.00 | 1.050 | -0.09 | 0.180 | 0.189 | | 05 | LTE Band 4 | 20M | QPSK | 1 | 49 | Right Cheek | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.01 | 0.285 | 0.308 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Cheek | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | -0.01 | 0.260 | 0.274 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Right Tilted | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.05 | 0.055 | 0.059 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Tilted | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | -0.03 | 0.052 | 0.055 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Left Cheek | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | 0.01 | 0.191 | 0.207 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Cheek | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.09 | 0.172 | 0.181 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Left Tilted | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | 0.06 | 0.198 | 0.214 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Tilted | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.09 | 0.175 | 0.185 | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 32 of 49 Issued Date : Mar. 27, 2020 # <WLAN 2.4GHz SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cyclo | LVCIA | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|-------|-------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Right Cheek | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | -0.04 | 0.477 | 0.553 | | | WLAN2.4GHz | 802.11b 1Mbps | Right Tilted | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.01 | 0.418 | 0.484 | | | WLAN2.4GHz | 802.11b 1Mbps | Left Cheek | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.03 | 0.916 | 1.061 | | 06 | WLAN2.4GHz | 802.11b 1Mbps | Left Cheek | 6 | 2437 | 14.58 | 15.50 | 1.236 | 100 | 1.000 | 0.09 | 0.938 | <mark>1.159</mark> | | | WLAN2.4GHz | 802.11b 1Mbps | Left Tilted | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.03 | 0.721 | 0.835 | | | WLAN2.4GHz | 802.11b 1Mbps | Left Tilted | 6 | 2437 | 14.58 | 15.50 | 1.236 | 100 | 1.000 | -0.11 | 0.739 | 0.913 | Report No.: FA010604 ## <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cycle | Duty
Cycle
Scaling
Factor | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|-------|------------------------------|------------------------------| | | Bluetooth | 1Mbps | Right Cheek | 78 | 2480 | 10.78 | 11.00 | 1.052 | 77.01 | 1.082 | 0.09 | 0.104 | 0.118 | | | Bluetooth | 1Mbps | Right Tilted | 78 | 2480 | 10.78 | 11.00 | 1.052 | 77.01 | 1.082 | 0.05 | 0.109 | 0.124 | | 07 | Bluetooth | 1Mbps | Left Cheek | 78 | 2480 | 10.78 | 11.00 | 1.052 | 77.01 | 1.082 | 0.06 | 0.223 | <mark>0.254</mark> | | | Bluetooth | 1Mbps | Left Tilted | 78 | 2480 | 10.78 | 11.00 | 1.052 | 77.01 | 1.082 | 0.04 | 0.147 | 0.167 | ## <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | | Cuala | Duty
Cycle
Scaling
Factor | Deift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-----|----------------|---------------------------|---------------------------|-------|-------|------------------------------------|-------|------------------------------|------------------------------| | | WLAN5.3GHz | 802.11a 6Mbps | Right Cheek | 52 | 5260 | 11.94 | 12.50 | 1.138 | 96.97 | 1.031 | -0.06 | 0.575 | 0.674 | | | WLAN5.3GHz | 802.11a 6Mbps | Right Tilted | 52 | 5260 | 11.94 | 12.50 | 1.138 | 96.97 | 1.031 | -0.06 | 0.616 | 0.723 | | | WLAN5.3GHz | 802.11a 6Mbps | Left Cheek | 52 | 5260 | 11.94 | 12.50 | 1.138 | 96.97 | 1.031 | -0.09 | 0.920 | 1.079 | | | WLAN5.3GHz | 802.11a 6Mbps | Left Cheek | 64 | 5320 | 11.87 | 12.50 | 1.156 | 96.97 | 1.031 | 0.05 | 0.888 | 1.058 | | | WLAN5.3GHz | 802.11a 6Mbps | Left Tilted | 52 | 5260 | 11.94 | 12.50 | 1.138 | 96.97 | 1.031 | -0.19 | 0.997 | 1.169 | | 08 | WLAN5.3GHz | 802.11a 6Mbps | Left Tilted | 64 | 5320 | 11.87 | 12.50 | 1.156 | 96.97 | 1.031 | -0.02 | 0.995 | <mark>1.186</mark> | | | WLAN5.5GHz | 802.11a 6Mbps | Right Cheek | 116 | 5580 | 12.49 | 13.00 | 1.125 | 96.97 | 1.031 | -0.12 | 0.596 | 0.691 | | | WLAN5.5GHz | 802.11a 6Mbps | Right Tilted | 116 | 5580 | 12.49 | 13.00 | 1.125 | 96.97 | 1.031 | -0.19 | 0.578 | 0.670 | | | WLAN5.5GHz | 802.11a 6Mbps | Left Cheek | 116 | 5580 | 12.49 | 13.00 | 1.125 | 96.97 | 1.031 | -0.08 | 0.899 | 1.042 | | 09 | WLAN5.5GHz | 802.11a 6Mbps | Left Cheek | 100 | 5500 | 12.46 | 13.00 | 1.132 | 96.97 | 1.031 | -0.06 | 0.953 | 1.113 | | | WLAN5.5GHz | 802.11a 6Mbps | Left Tilted | 116 | 5580 | 12.49 | 13.00 | 1.125 | 96.97 | 1.031 | 0.11 | 0.942 | 1.092 | | | WLAN5.5GHz | 802.11a 6Mbps | Left Tilted | 100 | 5500 | 12.46 | 13.00 | 1.132 | 96.97 | 1.031 | -0.08 | 0.937 | 1.094 | | | WLAN5.8GHz | 802.11a 6Mbps | Right Cheek | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.15 | 0.719 | 0.759 | | | WLAN5.8GHz | 802.11a 6Mbps | Right Tilted | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.03 | 0.780 | 0.823 | | | WLAN5.8GHz | 802.11a 6Mbps | Left Cheek | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.01 | 1.010 | 1.066 | | 10 | WLAN5.8GHz | 802.11a 6Mbps | Left Cheek | 165 | 5825 | 12.06 | 12.50 | 1.107 | 96.97 | 1.031 | -0.06 | 1.050 | <mark>1.198</mark> | | | WLAN5.8GHz | 802.11a 6Mbps | Left Tilted | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.03 | 0.955 | 1.008 | | | WLAN5.8GHz | 802.11a 6Mbps | Left Tilted | 165 | 5825 | 12.06 | 12.50 | 1.107 | 96.97 | 1.031 | -0.03 | 0.998 | 1.139 | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC
ID: SRQ-Z5157V Page 33 of 49 Issued Date : Mar. 27, 2020 # 15.2 Hotspot SAR # <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | Power
Mode | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|---------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 12 | 10M | QPSK | 1 | 25 | Front | 10 | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | -0.09 | 0.222 | 0.235 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Front | 10 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | 0.08 | 0.188 | 0.202 | | 11 | LTE Band 12 | 10M | QPSK | 1 | 25 | Back | 10 | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | -0.04 | 0.390 | <mark>0.413</mark> | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Back | 10 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | 0.01 | 0.325 | 0.350 | | | LTE Band 12 | 10M | QPSK | 1 | 25 | Left Side | 10 | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0.05 | 0.141 | 0.149 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Left Side | 10 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | -0.03 | 0.118 | 0.127 | | | LTE Band 12 | 10M | QPSK | 1 | 25 | Right Side | 10 | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0.1 | 0.247 | 0.262 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Right Side | 10 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | -0.02 | 0.206 | 0.222 | | | LTE Band 12 | 10M | QPSK | 1 | 25 | Bottom Side | 10 | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0.07 | 0.061 | 0.064 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Bottom Side | 10 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | -0.02 | 0.049 | 0.053 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Front | 10 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | 0.01 | 0.461 | 0.489 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Front | 10 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.02 | 0.405 | 0.441 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Back | 10 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | -0.03 | 0.683 | 0.725 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Back | 10 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.05 | 0.580 | 0.632 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Left Side | 10 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | -0.02 | 0.508 | 0.539 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Left Side | 10 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.09 | 0.433 | 0.472 | | 12 | LTE Band 13 | 10M | QPSK | 1 | 25 | Right Side | 10 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | -0.05 | 0.730 | <mark>0.775</mark> | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Right Side | 10 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.02 | 0.611 | 0.665 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Bottom Side | 10 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | 0.18 | 0.174 | 0.185 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Bottom Side | 10 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | -0.07 | 0.144 | 0.157 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Front | 10 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | -0.07 | 0.331 | 0.343 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Front | 10 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.05 | 0.297 | 0.310 | | 13 | LTE Band 5 | 10M | QPSK | 1 | 25 | Back | 10 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.06 | 0.590 | <mark>0.612</mark> | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Back | 10 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.01 | 0.525 | 0.547 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Left Side | 10 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.06 | 0.225 | 0.233 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Left Side | 10 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | -0.08 | 0.185 | 0.193 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Right Side | 10 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.08 | 0.481 | 0.499 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Right Side | 10 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | -0.02 | 0.392 | 0.409 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Bottom Side | 10 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.04 | 0.184 | 0.191 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Bottom Side | 10 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.1 | 0.150 | 0.156 | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 34 of 49 Issued Date : Mar. 27, 2020 # SPORTON LAB. FCC SAR Test Report | | | | | | | | | | | | Average | Tune-Up | Tune-un | Power | Measured | Reported | |-------------|------------|-------------|------------|------------|--------------|------------------|-------------|---------------|-------|----------------|---------|---------|---------|-------|----------|--------------| | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | Gap
(mm) | Power
Mode | Ch. | Freq.
(MHz) | Power | Limit | Scaling | Drift | 1g SAR | 1g SAR | | 140. | 175.0 | , | 0.0014 | | | | ` , | | 40000 | , , | (dBm) | (dBm) | Factor | (dB) | (W/kg) | (W/kg) | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Front | 10 | Reduced | 18900 | 1880 | 22.51 | 23.00 | 1.119 | -0.06 | 0.370 | 0.414 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Front | 10 | Reduced | 18900 | 1880 | 22.39 | 23.00 | 1.151 | -0.15 | 0.354 | 0.407 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Back | 10 | Reduced | 18900 | 1880 | 22.51 | 23.00 | 1.119 | -0.09 | 0.726 | 0.813 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Back | 10 | Reduced | 18700 | 1860 | 22.41 | 23.00 | 1.146 | -0.04 | 0.726 | 0.832 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Back | 10 | Reduced | 19100 | 1900 | 22.46 | 23.00 | 1.132 | 0.06 | 0.833 | 0.943 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Back | 10 | Reduced | 18900 | 1880 | 22.39 | 23.00 | 1.151 | 0.01 | 0.727 | 0.837 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Back | 10 | Reduced | 18700 | 1860 | 22.20 | 23.00 | 1.202 | -0.02 | 0.737 | 0.886 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Back | 10 | Reduced | 19100 | 1900 | 22.20 | 23.00 | 1.202 | -0.04 | 0.761 | 0.915 | | | LTE Band 2 | 20M | QPSK | 100 | 0 | Back | 10 | Reduced | 18900 | 1880 | 22.32 | 23.00 | 1.169 | 0.04 | 0.757 | 0.885 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Left Side | 10 | Reduced | 18900 | 1880 | 22.51 | 23.00 | 1.119 | -0.09 | 0.207 | 0.232 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Left Side | 10 | Reduced | 18900 | 1880 | 22.39 | 23.00 | 1.151 | -0.11 | 0.204 | 0.235 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Right Side | 10 | Reduced | 18900 | 1880 | 22.51 | 23.00 | 1.119 | -0.01 | 0.131 | 0.147 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Right Side | 10 | Reduced | 18900 | 1880 | 22.39 | 23.00 | 1.151 | 0.03 | 0.132 | 0.152 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | Reduced | 18900 | 1880 | 22.51 | 23.00 | 1.119 | 0.17 | 0.855 | 0.957 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | Reduced | 18700 | 1860 | 22.41 | 23.00 | 1.146 | 0.01 | 0.947 | 1.085 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | Reduced | 19100 | 1900 | 22.46 | 23.00 | 1.132 | 0.13 | 0.940 | 1.064 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Bottom Side | 10 | Reduced | 18900 | 1880 | 22.39 | 23.00 | 1.151 | 0.19 | 0.957 | 1.101 | | 14 | LTE Band 2 | 20M | QPSK | 50 | 24 | Bottom Side | 10 | Reduced | 18700 | 1860 | 22.20 | 23.00 | 1.202 | 0.12 | 0.949 | 1.141 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Bottom Side | 10 | Reduced | 19100 | 1900 | 22.20 | 23.00 | 1.202 | 0.06 | 0.940 | 1.130 | | | LTE Band 2 | 20M | QPSK | 100 | 0 | Bottom Side | 10 | Reduced | 18900 | 1880 | 22.32 | 23.00 | 1.169 | 0.02 | 0.972 | 1.137 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Front | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.01 | 0.358 | 0.387 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 10 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | -0.02 | 0.295 | 0.311 | | 15 | LTE Band 4 | 20M | QPSK | 1 | 49 | Back | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.02 | 0.835 | 0.903 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 10 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.05 | 0.585 | 0.617 | | | LTE Band 4 | 20M | QPSK | 100 | 0 | Back | 10 | Full | 20175 | 1732.5 | 22.70 | 23.00 | 1.072 | -0.02 | 0.614 | 0.658 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Left Side | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | 0.18 | 0.095 | 0.103 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Left Side | 10 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.01 | 0.098 | 0.103 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Right Side | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.13 | 0.200 | 0.216 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Right Side | 10 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.05 | 0.123 | 0.130 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Bottom Side | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.04 | 0.694 | 0.751 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Bottom Side | 10 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.1 | 0.563 | 0.594 | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 35 of 49 Issued Date : Mar. 27, 2020 ## <WLAN 2.4GHz SAR> | | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |---|-------------|------------|---------------|------------------|-------------|-----|------
-------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | Γ | | WLAN2.4GHz | 802.11b 1Mbps | Front | 10 | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.04 | 0.213 | 0.247 | | Γ | 16 | WLAN2.4GHz | 802.11b 1Mbps | Back | 10 | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.14 | 0.244 | <mark>0.283</mark> | | Γ | | WLAN2.4GHz | 802.11b 1Mbps | Right Side | 10 | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.11 | 0.079 | 0.092 | | | | WLAN2.4GHz | 802.11b 1Mbps | Top Side | 10 | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.11 | 0.162 | 0.188 | Report No.: FA010604 # <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Mode | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cycle | | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|---------------|-----|----------------|-------|---------------------------|------------------------------|-------|-------|-------|------------------------------|------------------------------| | | WLAN5.2GHz | 802.11a 6Mbps | Front | 10 | Full | 44 | 5220 | 12.28 | 12.50 | 1.052 | 96.97 | 1.031 | 0.02 | 0.147 | 0.159 | | | WLAN5.2GHz | 802.11a 6Mbps | Back | 10 | Full | 44 | 5220 | 12.28 | 12.50 | 1.052 | 96.97 | 1.031 | 0.16 | 0.304 | 0.330 | | | WLAN5.2GHz | 802.11a 6Mbps | Right Side | 10 | Full | 44 | 5220 | 12.28 | 12.50 | 1.052 | 96.97 | 1.031 | 0.03 | 0.035 | 0.038 | | 17 | WLAN5.2GHz | 802.11a 6Mbps | Top Side | 10 | Full | 44 | 5220 | 12.28 | 12.50 | 1.052 | 96.97 | 1.031 | -0.02 | 0.511 | <mark>0.554</mark> | | | WLAN5.8GHz | 802.11a 6Mbps | Front | 10 | Full | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.01 | 0.176 | 0.186 | | | WLAN5.8GHz | 802.11a 6Mbps | Back | 10 | Full | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.01 | 0.213 | 0.225 | | | WLAN5.8GHz | 802.11a 6Mbps | Right Side | 10 | Full | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.01 | 0.034 | 0.036 | | 18 | WLAN5.8GHz | 802.11a 6Mbps | Top Side | 10 | Full | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.1 | 0.321 | <mark>0.339</mark> | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 36 of 49 Issued Date : Mar. 27, 2020 # 15.3 Body Worn Accessory SAR ### <LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
Offset | Test
Position | | Power
Mode | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|----|---------------|-------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | | LTE Band 12 | 10M | QPSK | 1 | 25 | Front | 15 | Full | 23095 | 707.5 | 24.25 | 24.5 | 1.059 | -0.09 | 0.221 | 0.234 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Front | 15 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | -0.1 | 0.174 | 0.187 | | 19 | LTE Band 12 | 10M | QPSK | 1 | 25 | Back | 15 | Full | 23095 | 707.5 | 24.25 | 24.50 | 1.059 | 0.1 | 0.294 | 0.311 | | | LTE Band 12 | 10M | QPSK | 25 | 0 | Back | 15 | Full | 23095 | 707.5 | 23.18 | 23.50 | 1.076 | 0.06 | 0.265 | 0.285 | | | LTE Band 13 | 10M | QPSK | 1 | 25 | Front | 15 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | -0.04 | 0.499 | 0.530 | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Front | 15 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | 0 | 0.427 | 0.465 | | 20 | LTE Band 13 | 10M | QPSK | 1 | 25 | Back | 15 | Full | 23230 | 782 | 24.24 | 24.50 | 1.062 | 0.05 | 0.653 | <mark>0.693</mark> | | | LTE Band 13 | 10M | QPSK | 25 | 25 | Back | 15 | Full | 23230 | 782 | 23.13 | 23.50 | 1.089 | 0.04 | 0.550 | 0.599 | | | LTE Band 5 | 10M | QPSK | 1 | 25 | Front | 15 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.06 | 0.328 | 0.340 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Front | 15 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.01 | 0.263 | 0.274 | | 21 | LTE Band 5 | 10M | QPSK | 1 | 25 | Back | 15 | Full | 20525 | 836.5 | 24.34 | 24.50 | 1.038 | 0.01 | 0.428 | 0.444 | | | LTE Band 5 | 10M | QPSK | 25 | 12 | Back | 15 | Full | 20525 | 836.5 | 23.32 | 23.50 | 1.042 | 0.03 | 0.341 | 0.355 | | | LTE Band 2 | 20M | QPSK | 1 | 49 | Front | 15 | Full | 18900 | 1880 | 23.75 | 24.00 | 1.059 | 0.08 | 0.367 | 0.389 | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Front | 15 | Full | 18900 | 1880 | 22.79 | 23.00 | 1.050 | -0.03 | 0.282 | 0.296 | | 22 | LTE Band 2 | 20M | QPSK | 1 | 49 | Back | 15 | Full | 18900 | 1880 | 23.75 | 24.00 | 1.059 | -0.07 | 0.570 | <mark>0.604</mark> | | | LTE Band 2 | 20M | QPSK | 50 | 24 | Back | 15 | Full | 18900 | 1880 | 22.79 | 23.00 | 1.050 | 0.01 | 0.480 | 0.504 | | | LTE Band 4 | 20M | QPSK | 1 | 49 | Front | 15 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | 0.01 | 0.249 | 0.269 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Front | 15 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.09 | 0.218 | 0.230 | | 23 | LTE Band 4 | 20M | QPSK | 1 | 49 | Back | 15 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | -0.08 | 0.370 | 0.400 | | | LTE Band 4 | 20M | QPSK | 50 | 0 | Back | 15 | Full | 20175 | 1732.5 | 22.77 | 23.00 | 1.054 | 0.01 | 0.314 | 0.331 | Report No.: FA010604 # <WLAN 2.4GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Mode | Ch. | Freq.
(MHz) | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|---------------|-----|----------------|-------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Front | 15 | Full | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.02 | 0.106 | 0.123 | | 24 | WLAN2.4GHz | 802.11b 1Mbps | Back | 15 | Full | 1 | 2412 | 14.86 | 15.50 | 1.159 | 100 | 1.000 | 0.02 | 0.114 | <mark>0.132</mark> | # <WLAN 5GHz SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Mode | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------|------------------|-------------|---------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN5.3GHz | 802.11a 6Mbps | Front | 15 | Full | 52 | 5260 | 11.94 | 12.50 | 1.138 | 96.97 | 1.031 | 0.01 | 0.102 | 0.120 | | 25 | WLAN5.3GHz | 802.11a 6Mbps | Back | 15 | Full | 52 | 5260 | 11.94 | 12.50 | 1.138 | 96.97 | 1.031 | -0.09 | 0.193 | 0.226 | | | WLAN5.5GHz | 802.11a 6Mbps | Front | 15 | Full | 116 | 5580 | 12.49 | 13.00 | 1.125 | 96.97 | 1.031 | 0.01 | 0.107 | 0.124 | | 26 | WLAN5.5GHz | 802.11a 6Mbps | Back | 15 | Full | 116 | 5580 | 12.49 | 13.00 | 1.125 | 96.97 | 1.031 | 0.01 | 0.163 | <mark>0.189</mark> | | | WLAN5.8GHz | 802.11a 6Mbps | Front | 15 | Full | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | 0.01 | 0.107 | 0.113 | | 27 | WLAN5.8GHz | 802.11a 6Mbps | Back | 15 | Full | 149 | 5745 | 12.40 | 12.50 | 1.023 | 96.97 | 1.031 | -0.09 | 0.158 | <mark>0.167</mark> | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 37 of 49 Issued Date : Mar. 27, 2020 # 15.4 Repeated SAR Measurement | No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Mode | Test
Position | Gap
(mm) | Power
State | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------|-------------|------------|------------|--------------|------------------|------------------|-------------|----------------|-------|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|-------|------------------------------| | 1st | WLAN2.4GHz | 1 | - | - | - | 802.11b
1Mbps | Left
Cheek | 0 | Full | 6 | 2437 | 14.58 | 15.50 | 1.236 | 100 | 1.000 | 0.09 | 0.938 | 1 | 1.159 | | 2nd | WLAN2.4GHz | - | - | - | - | 802.11b
1Mbps | Left
Cheek | 0 | Full | 6 | 2437 | 14.58 | 15.50 | 1.236 | 100 | 1.000 | 0.09 | 0.921 | 1.018 | 1.138 | | 1st | WLAN5.3GHz | • | - | - | - | 802.11a
6Mbps | Left
Tilted | 0 | Full | 64 | 5320 | 11.87 | 12.50 | 1.156 | 96.97 | 1.031 | -0.02 | 0.995 | 1 | 1.186 | | 2nd | WLAN5.3GHz | 1 | - | 1 | - | 802.11a
6Mbps | Left
Tilted | 0 | Full | 64 | 5320 | 11.87 | 12.50 | 1.156 | 96.97 | 1.031 | -0.01 | 0.982 | 1.013 | 1.170 | | 1st | WLAN5.5GHz | • | 1 | ı | - | 802.11a
6Mbps | Left
Cheek | 0 | Full | 100 | 5500 | 12.46 | 13.00 | 1.132 | 96.97 | 1.031 | -0.06 | 0.953 | 1
| 1.113 | | 2nd | WLAN5.5GHz | • | 1 | 1 | • | 802.11a
6Mbps | Left
Cheek | 0 | Full | 100 | 5500 | 12.46 | 13.00 | 1.132 | 96.97 | 1.031 | -0.03 | 0.941 | 1.013 | 1.099 | | 1st | WLAN5.8GHz | 1 | 1 | 1 | - | 802.11a
6Mbps | Left
Cheek | 0 | Full | 165 | 5825 | 12.06 | 12.50 | 1.107 | 96.97 | 1.031 | -0.06 | 1.050 | 1 | 1.198 | | 2nd | WLAN5.8GHz | - | - | 1 | • | 802.11a
6Mbps | Left
Cheek | 0 | Full | 165 | 5825 | 12.06 | 12.50 | 1.107 | 96.97 | 1.031 | -0.03 | 1.010 | 1.040 | 1.152 | | 1st | LTE Band 2 | 20M | QPSK | 50 | 24 | - | Bottom
Side | 10 | Reduced | 18700 | 1860 | 22.20 | 23.00 | 1.202 | - | - | 0.12 | 0.949 | 1 | 1.141 | | 2nd | LTE Band 2 | 20M | QPSK | 50 | 24 | - | Bottom
Side | 10 | Reduced | 18700 | 1860 | 22.20 | 23.00 | 1.202 | • | - | 0.12 | 0.934 | 1.016 | 1.123 | | 1st | LTE Band 4 | 20M | QPSK | 1 | 49 | • | Back | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | • | - | -0.02 | 0.835 | 1 | 0.903 | | 2nd | LTE Band 4 | 20M | QPSK | 1 | 49 | - | Back | 10 | Full | 20175 | 1732.5 | 23.66 | 24.00 | 1.081 | 1 | - | -0.01 | 0.821 | 1.017 | 0.888 | Report No.: FA010604 #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 Issued Date : Mar. 27, 2020 FCC ID: SRQ-Z5157V Page 38 of 49 # 16. Simultaneous Transmission Analysis | NO | Cimultana and Transmission Confirmation | | Portable Handset | | |-----|--|------|------------------|---------| | NO. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | | 1. | LTE + WLAN2.4GHz | Yes | Yes | Yes | | 2. | LTE + WLAN5.3/5.5GHz | Yes | Yes | | | 3. | LTE + WLAN5.2/5.8GHz | Yes | Yes | Yes | | 4. | LTE + 5.3/5.5GHz WLAN + Bluetooth | Yes | Yes | | | 5. | LTE + 5.2/5.8GHz WLAN + Bluetooth | Yes | Yes | Yes | | 6. | LTE + Bluetooth | Yes | Yes | Yes | Report No.: FA010604 #### **General Note:** - 1. This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications. - 2. WLAN 2.4GHz and Bluetooth share the same antenna so can't transmit simultaneously. - 3. WLAN 5GHz can transmit simultaneously with Bluetooth. - 4. This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only). - 5. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. - 6. For simultaneously analysis, since the SAR summation of 3 transmitters can cover others combination of 2 transmitters, therefore in this section did not additional to evaluate 2TX combination of simultaneously transmission. - 7. All licensed modes share the same antenna part and cannot transmit simultaneously. - 8. The reported SAR summation is calculated based on the same configuration and test position. - 9. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. - v) The SPLSR calculated results please refer to section 16.4. - 10. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula below. - i) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f}(GHz)/x$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-q SAR, and x = 18.75 for 10-q SAR. - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion. - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. | Bluetooth | Exposure Position | Hotspot | Body worn | |-----------|----------------------|------------|------------| | Max Power | Test separation | 10 mm | 15 mm | | 11.0 dBm | Estimated SAR (W/kg) | 0.264 W/kg | 0.176 W/kg | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 39 of 49 Issued Date : Mar. 27, 2020 # 16.1 Head Exposure Conditions | | | | 1 | 2 | 3 | 4 | 1+2 | | 1+3+4 | | |-----|-------------|----------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------|------| | W | /WAN Band | Exposure
Position | WWAN | 2.4GHz
WLAN | 5GHz
WLAN | Bluetooth | Summed
1g SAR | Summed
1g SAR | SPLSR | Case | | | | 1 0311011 | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | (W/kg) | (W/kg) | SPLSK | No | | | | Right Cheek | 0.468 | 0.553 | 0.759 | 0.118 | 1.02 | 1.35 | | | | | LTE Band 2 | Right Tilted | 0.160 | 0.484 | 0.823 | 0.124 | 0.64 | 1.11 | | | | | LIE Ballu Z | Left Cheek | 0.345 | 1.159 | 1.198 | 0.254 | 1.50 | 1.80 | 0.04 | #01 | | | | Left Tilted | 0.235 | 0.913 | 1.186 | 0.167 | 1.15 | <mark>1.59</mark> | | | | | | Right Cheek | 0.308 | 0.553 | 0.759 | 0.118 | 0.86 | 1.19 | | | | | LTE Band 4 | Right Tilted | 0.059 | 0.484 | 0.823 | 0.124 | 0.54 | 1.01 | | | | | LIE Band 4 | Left Cheek | 0.207 | 1.159 | 1.198 | 0.254 | 1.37 | 1.66 | 0.03 | #02 | | | | Left Tilted | 0.214 | 0.913 | 1.186 | 0.167 | 1.13 | 1.57 | | | | | | Right Cheek | 0.467 | 0.553 | 0.759 | 0.118 | 1.02 | 1.34 | | | | LTE | LTE Band 5 | Right Tilted | 0.232 | 0.484 | 0.823 | 0.124 | 0.72 | 1.18 | | | | LIE | LIE Band 5 | Left Cheek | 0.433 | 1.159 | 1.198 | 0.254 | 1.59 | 1.89 | 0.04 | #03 | | | | Left Tilted | 0.233 | 0.913 | 1.186 | 0.167 | 1.15 | 1.59 | | | | | | Right Cheek | 0.215 | 0.553 | 0.759 | 0.118 | 0.77 | 1.09 | | | | | LTE Band 12 | Right Tilted | 0.139 | 0.484 | 0.823 | 0.124 | 0.62 | 1.09 | | | | | LIE Band 12 | Left Cheek | 0.196 | 1.159 | 1.198 | 0.254 | 1.36 | 1.65 | 0.03 | #04 | | | | Left Tilted | 0.124 | 0.913 | 1.186 | 0.167 | 1.04 | 1.48 | | | | | | Right Cheek | 0.418 | 0.553 | 0.759 | 0.118 | 0.97 | 1.30 | | | | | LTE Band 13 | Right Tilted | 0.257 | 0.484 | 0.823 | 0.124 | 0.74 | 1.20 | | | | | LIE Band 13 | Left Cheek | 0.406 | 1.159 | 1.198 | 0.254 | 1.57 | 1.86 | 0.04 | #05 | | | | Left Tilted | 0.241 | 0.913 | 1.186 | 0.167 | 1.15 | 1.59 | | | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 40 of 49 Issued Date : Mar. 27, 2020 # 16.2 Hotspot Exposure Conditions | | | | 1 | 2 | 3 | 4 | | | |-----|--------------|-------------|------------------|------------------|------------------|-------------------------------|------------------|------------------| | W | WAN Band | Exposure | WWAN | 2.4GHz
WLAN | 5GHz
WLAN | Bluetooth | 1+2
Summed | 1+3+4
Summed | | *** | Will Dalla | Position | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | Estimated
1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | | | Front | 0.414 | 0.247 | 0.186 | 0.264 | 0.66 | 0.86 | | | | Back | 0.943 | 0.283 | 0.330 | 0.264 | 1.23 | 1.54 | | | LTE Band 2 | Left side | 0.235 | | | | 0.24 | 0.24 | | | LIL Band 2 | Right side | 0.152 | 0.092 | 0.038 | 0.264 | 0.24 | 0.45 | | | | Top side | | 0.188 | 0.554 | 0.264 | 0.19 | 0.82 | | | | Bottom side | 1.141 | | | | 1.14 | 1.14 | | | | Front | 0.387 | 0.247 | 0.186 | 0.264 | 0.63 | 0.84 | | | | Back | 0.903 | 0.283 | 0.330 | 0.264 | 1.19 | 1.50 | | | LTE Band 4 | Left side | 0.103 | | | | 0.10 | 0.10 | | | LTE Ballu 4 | Right side | 0.216 | 0.092 | 0.038 | 0.264 | 0.31 | 0.52 | | | | Top side | | 0.188 | 0.554 | 0.264 | 0.19 | 0.82 | | | | Bottom side | 0.751 | | | | 0.75 | 0.75 | | | | Front | 0.343 | 0.247 | 0.186 | 0.264 | 0.59 | 0.79 | | | | Back | 0.612 | 0.283 | 0.330 | 0.264 | 0.90 | 1.21 | | LTE | LTE Band 5 | Left side | 0.233 | | | | 0.23 | 0.23 | | LIE | LIE Ballu 5 | Right side | 0.499 | 0.092 | 0.038 | 0.264 | 0.59 | 0.80 | | | | Top side | | 0.188 | 0.554 | 0.264 | 0.19 | 0.82 | | | | Bottom side | 0.191 | | | | 0.19 | 0.19 | | | | Front | 0.235 | 0.247 | 0.186 | 0.264 | 0.48 | 0.69 | | | | Back | 0.413 | 0.283 | 0.330 | 0.264 | 0.70 | 1.01 | | | LTE Band 12 | Left side | 0.149 | | | | 0.15 | 0.15 | | | LTE Ballu 12 | Right side | 0.262 | 0.092 | 0.038 | 0.264 | 0.35 | 0.56 | | | | Top side | | 0.188 | 0.554 | 0.264 | 0.19 | 0.82 | | | | Bottom side | 0.064 | | | | 0.06 | 0.06 | | | | Front | 0.489 | 0.247 | 0.186 | 0.264 | 0.74 | 0.94 | | | | Back | 0.725 | 0.283 | 0.330 | 0.264 | 1.01 | 1.32 | | | LTE Dond 40 | Left side | 0.539 | | | | 0.54 | 0.54 | | | LTE Band 13 | Right side | 0.775 | 0.092 | 0.038 | 0.264 | 0.87 | 1.08 | | | | Top side | | 0.188 | 0.554 | 0.264 | 0.19 | 0.82 | | | | Bottom side | 0.185 | | | | 0.19 | 0.19 | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 41 of 49 Issued Date : Mar. 27, 2020 # 16.3 <u>Body-Worn Accessory Exposure Conditions</u> |
 | | 1 | 2 | 3 | 4 | 4.0 | 4.2.4 | |----------|-------------|----------|------------------|------------------|------------------|-------------------------------|------------------|------------------| | \ | MANDON | Exposure | WWAN | 2.4GHz WLAN | 5GHz WLAN | Bluetooth | 1+2
Summed | 1+3+4
Summed | | VV | WAN Band | Position | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | Estimated
1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | | LTE Band 2 | Front | 0.389 | 0.123 | 0.124 | 0.176 | 0.51 | 0.69 | | | LIE Band 2 | Back | 0.604 | 0.132 | 0.226 | 0.176 | 0.74 | 1.01 | | | LTE Band 4 | Front | 0.269 | 0.123 | 0.124 | 0.176 | 0.39 | 0.57 | | | LIE Ballu 4 | Back | 0.400 | 0.132 | 0.226 | 0.176 | 0.53 | 0.80 | | LTE | LTE Band 5 | Front | 0.340 | 0.123 | 0.124 | 0.176 | 0.46 | 0.64 | | LIE | LIE Band 5 | Back | 0.444 | 0.132 | 0.226 | 0.176 | 0.58 | 0.85 | | | LTE Band 12 | Front | 0.234 | 0.123 | 0.124 | 0.176 | 0.36 | 0.53 | | | LIE Band 12 | Back | 0.311 | 0.132 | 0.226 | 0.176 | 0.44 | 0.71 | | | LTE Band 13 | Front | 0.530 | 0.123 | 0.124 | 0.176 | 0.65 | 0.83 | | | | Back | 0.693 | 0.132 | 0.226 | 0.176 | 0.83 | 1.10 | Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 42 of 49 Issued Date : Mar. 27, 2020 # 16.4 SPLSR Evaluation and Analysis #### **General Note:** 1. When standalone SAR is measured for both antennas in the pair, the peak location separation distance is computed by the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates in the area scans or extrapolated peak SAR locations in the zoom scans, as appropriate. Report No.: FA010604 2. SPLSR = (SAR1 + SAR2)1.5 / (min. separation distance, mm). If SPLSR ≤ 0.04 for 1g SAR, simultaneously transmission SAR measurement is not necessary. | | Band | Position | SAR | Gap | SAR pe | ak location | (mm) | 3D
distance | Summed SAR | SPLSR | Simultaneous | |------|------------|------------|--------|------|--------|-------------|-------|----------------|------------|---------|--------------| | | Dallu | FUSILIOII | (W/kg) | (mm) | Х | Y | Z | (mm) | (W/kg) | Results | SAR | | | LTE Band 2 | | 0.345 | 0 | 55.36 | -12.72 | -2.83 | | | | | | Case | WLAN5.8GHz | Left Cheek | 1.198 | 0 | -0.01 | 11.41 | 1.62 | 60.7 | 1.80 | 0.04 | Not required | | #01 | Bluetooth | | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | LTE Band 2 | | 0.345 | 0 | 55.36 | -12.72 | -2.83 | | | | | | | Bluetooth | - | 0.254 | 0 | 0.35 | 12.87 | -1.49 | 60.6 | 1.80 | 0.04 | Not required | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 43 of 49 Issued Date : Mar. 27, 2020 Report No.: FA010604 | | Band | Position | SAR | Gap | SAR pe | ak location | (mm) | 3D
distance | Summed
SAR | SPLSR | Simultaneous | |-----|--------------|--------------|--------|------|--------|-------------|-------|----------------|---------------|---------|--------------| | | Danu | Position | (W/kg) | (mm) | Х | Y | Z | (mm) | (W/kg) | Results | SAR | | | LTE Band 4 | | 0.207 | 0 | 58.13 | -10.71 | -2.15 | | | | | | Cas | e WLAN5.8GHz | Left Cheek | 1.198 | 0 | -0.01 | 11.41 | 1.62 | 62.4 | 1.66 | 0.03 | Not required | | #0 | Bluetooth | - | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | LTE Band 4 | | 0.207 | 0 | 58.13 | -10.71 | -2.15 | | | | | | | Bluetooth | Left Cheek 0 | 0.254 | 0 | 0.35 | 12.87 | -1.49 | 62.3 | 1.66 | 0.03 | Not required | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | Report No.: FA010604 | | Band | Position | SAR | Gap | SAR pe | ak location | (mm) | 3D
distance | Summed
SAR | SPLSR | Simultaneous | |------|------------|--------------|--------|------|--------|-------------|-------|----------------|---------------|---------|--------------| | | Dallu | Fosition | (W/kg) | (mm) | Х | Y | Z | (mm) | (W/kg) | Results | SAR | | | LTE Band 5 | | 0.433 | 0 | 49.19 | -31.68 | -4.15 | | | | | | Case | WLAN5.8GHz | Left Cheek | 1.198 | 0 | -0.01 | 11.41 | 1.62 | 66.2 | 1.89 | 0.04 | Not required | | #03 | Bluetooth | Left Cheek | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | LTE Band 5 | Left Cheek 0 | 0.433 | 0 | 49.19 | -31.68 | -4.15 | | | | | | | Bluetooth | | 0.254 | 0 | 0.35 | 12.87 | -1.49 | 65.7 | 1.89 | 0.04 | Not required | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | Report No.: FA010604 | Case
#04 | Band | Position | SAR
(W/kg) | Gap | SAR peak location (mm) | | | 3D
distance | Summed
SAR | SPLSR | Simultaneous | |-------------|-------------|------------|---------------|------|------------------------|--------|-------|----------------|---------------|---------|--------------| | | | | | (mm) | Х | Y | Z | (mm) | (W/kg) | Results | SAR | | | LTE Band 12 | Left Cheek | 0.196 | 0 | 52.55 | -35.42 | -3.63 | 71.1 | 1.65 | 0.03 | Not required | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | | | Bluetooth | | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | LTE Band 12 | Left Cheek | 0.196 | 0 | 52.55 | -35.42 | -3.63 | 70.6 | 1.65 | 0.03 | Not required | | | Bluetooth | | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | | | Band | Position | SAR
(W/kg) | Gap SAR peak location (mm) | | | 3D
distance | Summed
SAR | SPLSR | Simultaneous | | |-------------|-------------|------------|---------------|----------------------------|-------|--------|----------------|---------------|--------|--------------|--------------| | | | | | (mm) | Х | Y | Z | (mm) | (W/kg) | Results | SAR | | Case
#05 | LTE Band 13 | Left Cheek | 0.406 | 0 | 50.87 | -34.48 | -3.88 | 69.3 | 1.86 | 0.04 | Not required | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | | | Bluetooth | | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | LTE Band 13 | Left Cheek | 0.406 | 0 | 50.87 | -34.48 | -3.88 | 68.7 | 1.86 | 0.04 | Not required | | | Bluetooth | | 0.254 | 0 | 0.35 | 12.87 | -1.49 | | | | | | | WLAN5.8GHz | | 1.198 | 0 | -0.01 | 11.41 | 1.62 | | | | | Report No.: FA010604 Test Engineer: Nick Hu, Yuan Zhao, Jiaxing Chang, Yuankai Kong # 17. <u>Uncertainty Assessment</u> Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 3.75 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA010604 Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 48 of 49 Issued Date : Mar. 27, 2020 # 18. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No. : FA010604** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015. - [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [9] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015. - [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. ----THE END----- Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID: SRQ-Z5157V Page 49 of 49 Issued Date : Mar. 27, 2020 # Appendix A. Plots of System Performance Check Report No.: FA010604 The plots are shown as follows. Sporton International (Kunshan) Inc. Report Version : Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 FCC ID : SRQ-Z5157V Page A1 of A1 Issued Date : Mar. 27, 2020 # System Check_Head_750MHz #### **DUT: D750V3 - SN:1087** Communication System: UID 0, CW (0); Frequency: 750 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 750 MHz; $\sigma = 0.896$ S/m; $\epsilon_r = 41.73$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.65 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.01 V/m; Power Drift = 0.1 dB Peak SAR
(extrapolated) = 3.12 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.43 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.69 W/kg 0 dB = 2.65 W/kg = 4.23 dBW/kg # System Check_Head_835MHz #### **DUT: D835V2 - SN:4d151** Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.939$ S/m; $\epsilon_r = 41.947$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.2 °C; Liquid Temperature : 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.07, 9.07, 9.07); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.33 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.64 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.65 W/kg SAR(1 g) = 2.52 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 3.38 W/kg 0 dB = 3.33 W/kg = 5.22 dBW/kg # System Check_Head_1750MHz #### **DUT: D1750V2 - SN:1090** Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.413$ S/m; $\epsilon_r = 39.15$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.95, 7.95, 7.95); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.9 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 101.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.63 W/kg; SAR(10 g) = 5.11 W/kgMaximum value of SAR (measured) = 14.8 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg # System Check_Head_1900MHz #### **DUT: D1900V2 - SN:5d170** Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.403$ S/m; $\varepsilon_r = 39.092$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.1 °C; Liquid Temperature: 22.8 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.67, 7.67, 7.67); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.9 W/kg **Pin=250mW/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.22 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.11 W/kgMaximum value of SAR (measured) = 14.6 W/kg 0 dB = 14.9 W/kg = 11.73 dBW/kg # System Check_Head_2450MHz #### **DUT: D2450V2 - SN:908** Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.796$ S/m; $\varepsilon_r = 40.869$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=250mW/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.6 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.45 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.6 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 21.0 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg #### System Check Head 5250MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 4.6$ S/m; $\epsilon_r = 36.382$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: 1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.6 W/kg **Pin=100mW/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 43.27 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.26 W/kgMaximum value of SAR (measured) = 18.0 W/kg 0 dB = 18.6 W/kg = 12.70 dBW/kg #### System Check Head 5600MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5600 MHz; σ = 4.99 S/m; ϵ_r = 35.804; ρ = 1000 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.92, 4.92, 4.92); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: 1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.2 W/kg **Pin=100mW/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 41.55 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 18.7 W/kg 0 dB = 20.2 W/kg = 13.05 dBW/kg #### System Check Head 5750MHz #### **DUT: D5GHzV2 - SN:1113** Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: HSL_5000 Medium parameters used: f = 5750 MHz; σ = 5.166 S/m; ϵ_r = 35.55; ρ = 1000 Date: 2020.3.1 kg/m^3 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: 1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Pin=100mW/Area Scan (71x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.9 W/kg **Pin=100mW/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 38.16 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.12 W/kgMaximum value of SAR (measured) = 17.8 W/kg 0 dB = 17.9 W/kg = 12.53 dBW/kg # Appendix B. Plots of High SAR Measurement Report No.: FA010604 The plots are shown as follows. Sporton International (Kunshan) Inc. Report Version: Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: 181113 FCC ID: SRQ-Z5157V Page B1 of B1 Issued Date: Mar. 27, 2020 # 01 LTE Band 12 10M QPSK 1RB 25Offset Right Cheek 0mm Ch23095 Communication System: UID 0, LTE-FDD (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 707.5 MHz; $\sigma = 0.853$ S/m; $\epsilon_r = 42.316$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.15 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch23095/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.224 W/kg Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.513 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.245 W/kg SAR(1 g) = 0.203 W/kg; SAR(10 g) = 0.160 W/kg Maximum value of SAR (measured) = 0.218 W/kg 0 dB = 0.224 W/kg = -6.50 dBW/kg # 02_LTE Band 13_10M_QPSK_1RB_25Offset_Right Cheek_0mm_Ch23230 Communication System: UID 0, LTE-FDD (0); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 782 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 41.333$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.15 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch23230/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.429 W/kg Ch23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.130 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.488 W/kg SAR(1 g) = 0.394 W/kg; SAR(10 g) = 0.303 W/kg Maximum value of SAR
(measured) = 0.428 W/kg 0 dB = 0.429 W/kg = -3.68 dBW/kg ### 03 LTE Band 5 10M QPSK 1RB 25Offset Right Cheek 0mm Ch20525 Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 41.929$; $\rho = 1000 kg/m^3$ Date: 2020.1.16 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.07, 9.07, 9.07); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch20525/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.497 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.211 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.575 W/kg SAR(1 g) = 0.450 W/kg; SAR(10 g) = 0.338 W/kg Maximum value of SAR (measured) = 0.492 W/kg # 04_LTE Band 2_20M_QPSK_1RB_49Offset_Right Cheek_0mm_Ch18900 Communication System: UID 0, LTE-FDD (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.382$ S/m; $\epsilon_r = 39.196$; $\rho = 1000$ kg/m³ Date: 2020.1.18 Ambient Temperature : 23.1 °C; Liquid Temperature : 22.8 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.67, 7.67, 7.67); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch18900/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.623 W/kg Ch18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.673 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.729 W/kg SAR(1 g) = 0.442 W/kg; SAR(10 g) = 0.267 W/kg Maximum value of SAR (measured) = 0.618 W/kg # 05_LTE Band 4_20M_QPSK_1RB_49Offset_Right Cheek_0mm_Ch20175 Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 39.18$; $\rho = 1000$ kg/m³ Date: 2020.1.19 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.95, 7.95, 7.95); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch20175/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.408 W/kg Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.178 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.470 W/kg SAR(1 g) = 0.285 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.375 W/kg 0 dB = 0.408 W/kg = -3.89 dBW/kg # 06_WLAN 2.4GHz_802.11b 1Mbps_Left Cheek_0mm_Ch6 Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz;Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.776$ S/m; $\varepsilon_r = 40.857$; $\rho = 1000$ kg/m³ Date: 2020.1.21 Ambient Temperature : 23.4 °C; Liquid Temperature : 22.9 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch6/Area Scan (91x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.39 W/kg Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 15.63 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 2.13 W/kg SAR(1 g) = 0.938 W/kg; SAR(10 g) = 0.426 W/kg Maximum value of SAR (measured) = 1.22 W/kg 0 dB = 1.39 W/kg = 1.43 dBW/kg ### 07 Bluetooth 1Mbps Left Cheek 0mm Ch78 Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1.299 Medium: HSL_2450 Medium parameters used: f = 2480 MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 40.71$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.21 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C # DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch78/Area Scan (91x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.292 W/kg Ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.945 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.495 W/kg SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.102 W/kg Maximum value of SAR (measured) = 0.292 W/kg 0 dB = 0.292 W/kg = -5.35 dBW/kg Communication System: UID 0, 802.11a (0); Frequency: 5320 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5320 MHz; $\sigma = 4.679$ S/m; $\epsilon_r = 36.277$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.2.28 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch64/Area Scan (101x101x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.31 W/kg Ch64/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 15.65 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.77 W/kg SAR(1 g) = 0.995 W/kg; SAR(10 g) = 0.280 W/kg Maximum value of SAR (measured) = 2.36 W/kg 0 dB = 2.31 W/kg = 3.64 dBW/kg #### 09 WLAN 5.5GHz 802.11a 6Mbps Left Cheek 0mm Ch100 Communication System: UID 0, 802.11a (0); Frequency: 5500 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5500 MHz; $\sigma = 4.874$ S/m; $\epsilon_r = 35.975$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.2.29 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.92, 4.92, 4.92); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch100/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.14 W/kg Ch100/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 12.05 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.71 W/kg SAR(1 g) = 0.953 W/kg; SAR(10 g) = 0.264 W/kg Maximum value of SAR (measured) = 2.31 W/kg 0 dB = 2.14 W/kg = 3.30 dBW/kg # 10_WLAN 5.8GHz_802.11a 6Mbps_Left Cheek_0mm_Ch165 Communication System: UID 0, 802.11a (0); Frequency: 5825 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5825 MHz; $\sigma = 5.25$ S/m; $\epsilon_r = 35.439$; $\rho = 1000 kg/m^3$ Date: 2020.3.1 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch165/Area Scan (101x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.32 W/kg Ch165/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 12.16 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 4.41 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.293 W/kg Maximum value of SAR (measured) = 2.61 W/kg 0 dB = 2.32 W/kg = 3.65 dBW/kg # 11 LTE Band 12 10M QPSK 1RB 25Offset Back 10mm Ch23095 Communication System: UID 0, LTE-FDD (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 707.5 MHz; $\sigma = 0.853$ S/m; $\epsilon_r = 42.316$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.15 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.6.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch23095/Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.427 W/kg Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.54 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.482 W/kg SAR(1 g) = 0.390 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 0.425 W/kg 0 dB = 0.427 W/kg = -3.70 dBW/kg ### 12 LTE Band 13 10M QPSK 1RB 25Offset Right Side 10mm Ch23230 Communication System: UID 0, LTE-FDD (0); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 782 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 41.333$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.15 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.6.26 - Sensor-Surface: 1.4mm
(Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch23230/Area Scan (41x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.886 W/kg Ch23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.08 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 1.02 W/kg SAR(1 g) = 0.730 W/kg; SAR(10 g) = 0.510 W/kg Maximum value of SAR (measured) = 0.832 W/kg 0 dB = 0.886 W/kg = -0.53 dBW/kg ### 13 LTE Band 5 10M QPSK 1RB 25Offset Back 10mm Ch20525 Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 41.929$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.16 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.07, 9.07, 9.07); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch20525/Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.750 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 20.73 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.05 W/kg SAR(1 g) = 0.590 W/kg; SAR(10 g) = 0.333 W/kg Maximum value of SAR (measured) = 0.743 W/kg 0 dB = 0.750 W/kg = -1.25 dBW/kg ## 14 LTE Band 2 20M QPSK 50RB 24Offset Bottom side 10mm Ch18700 Communication System: UID 0, LTE-FDD (0); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1860 MHz; $\sigma = 1.363$ S/m; $\epsilon_r = 39.276$; $\rho = 1000$ kg/m³ Date: 2020.1.18 Ambient Temperature : 23.1 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.67, 7.67, 7.67); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch18700/Area Scan (41x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.25 W/kg Ch18700/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.14 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.68 W/kg SAR(1 g) = 0.949 W/kg; SAR(10 g) = 0.507 W/kg Maximum value of SAR (measured) = 1.18 W/kg 0 dB = 1.25 W/kg = 0.97 dBW/kg ## 15_LTE Band 4_20M_QPSK_1RB_49Offset_Back_10mm_Ch20175 Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 39.18$; $\rho = 1000$ kg/m³ Date: 2020.1.19 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.95, 7.95, 7.95); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch20175/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.08 W/kg Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.933 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.57 W/kg SAR(1 g) = 0.835 W/kg; SAR(10 g) = 0.431 W/kg Maximum value of SAR (measured) = 1.08 W/kg 0 dB = 1.08 W/kg = 0.33 dBW/kg ## 16_WLAN 2.4GHz_802.11b 1Mbps_Back_10mm_Ch1 Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.748$ S/m; $\epsilon_r = 40.967$; $\rho = 1000$ kg/m³ Date: 2020.1.21 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch1/Area Scan (91x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.317 W/kg Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.846 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.503 W/kg SAR(1 g) = 0.244 W/kg; SAR(10 g) = 0.119 W/kg Maximum value of SAR (measured) = 0.316 W/kg 0 dB = 0.317 W/kg = -4.99 dBW/kg ## 17_WLAN 5.2GHz_802.11a 6Mbps_Top Side_10mm_Ch44 Communication System: UID 0, 802.11a (0); Frequency: 5220 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5220 MHz; $\sigma = 4.566$ S/m; $\epsilon_r = 36.447$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.2.28 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM2; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch44/Area Scan (51x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.14 W/kg Ch44/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 13.81 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.66 W/kg SAR(1 g) = 0.511 W/kg; SAR(10 g) = 0.185 W/kg Maximum value of SAR (measured) = 1.11 W/kg Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5745 MHz; $\sigma = 5.16$ S/m; $\epsilon_r = 35.56$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.3.1 Ambient Temperature : 23.2 °C; Liquid Temperature : 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch149/Area Scan (51x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.848 W/kg Ch149/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 9.770 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.115 W/kg SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.115 W/kg Maximum value of SAR (measured) = 0.753 W/kg 0 dB = 0.848 W/kg = -0.72 dBW/kg ## 19 LTE Band 12 10M QPSK 1RB 25Offset Back 15mm Ch23095 Communication System: UID 0, LTE-FDD (0); Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 707.5 MHz; $\sigma = 0.853$ S/m; $\epsilon_r = 42.316$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.1.15 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch23095/Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.322 W/kg Ch23095/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.06 V/m; Power Drift = 0.1 dB Peak SAR (extrapolated) = 0.364 W/kg SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.227 W/kg Maximum value of SAR (measured) = 0.320 W/kg 0 dB = 0.322 W/kg = -4.92 dBW/kg Communication System: UID 0, LTE-FDD (0); Frequency: 782 MHz; Duty Cycle: 1:1 Medium: HSL_750 Medium parameters used: f = 782 MHz; $\sigma = 0.924$ S/m; $\epsilon_r = 41.333$; $\rho = 1000 kg/m^3$ Date: 2020.1.15 Ambient Temperature : 23.2 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.37, 9.37, 9.37); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch23230/Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.720 W/kg Ch23230/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.97 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.819 W/kg SAR(1 g) = 0.653 W/kg; SAR(10 g) = 0.496 W/kg Maximum value of SAR (measured) = 0.717 W/kg 0 dB = 0.717 W/kg = -1.44 dBW/kg #### 21 LTE Band 5 10M QPSK 1RB 25Offset Back 15mm Ch20525 Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_850 Medium parameters used: f = 836.5 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 41.929$; $\rho = 1000 kg/m^3$ Date: 2020.1.16 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(9.07, 9.07, 9.07); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) Ch20525/Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.506 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.32 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.601 W/kg SAR(1 g)
= 0.428 W/kg; SAR(10 g) = 0.318 W/kg Maximum value of SAR (measured) = 0.534 W/kg 0 dB = 0.506 W/kg = -2.96 dBW/kg ## 22 LTE Band 2 20M QPSK 1RB 49Offset Back 15mm Ch18900 Communication System: UID 0, LTE-FDD (0); Frequency: 1880 MHz;Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.382$ S/m; $\epsilon_r = 39.196$; $\rho = 1000$ kg/m³ Date: 2020.1.18 Ambient Temperature : 23.1 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.67, 7.67, 7.67); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch18900/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.881 W/kg Ch18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.927 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 1.07 W/kg SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.316 W/kg Maximum value of SAR (measured) = 0.874 W/kg 0 dB = 0.881 W/kg = -0.55 dBW/kg ## 23 LTE Band 4 20M QPSK 1RB 49Offset Back 15mm Ch20175 Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 39.18$; $\rho = 1000$ kg/m³ Date: 2020.1.19 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.95, 7.95, 7.95); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM2; Type: SAM; Serial: TP-1696 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch20175/Area Scan (71x81x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.535 W/kg Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.165 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.678 W/kg SAR(1 g) = 0.370 W/kg; SAR(10 g) = 0.204 W/kg Maximum value of SAR (measured) = 0.559 W/kg 0 dB = 0.535 W/kg = -2.72 dBW/kg ## 24_WLAN 2.4GHz_802.11b 1Mbps_Back_15mm_Ch1 Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium: HSL_2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.748$ S/m; $\epsilon_r = 40.967$; $\rho = 1000$ kg/m³ Date: 2020.1.21 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.9 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3843; ConvF(7.06, 7.06, 7.06); Calibrated: 2019.9.26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1358; Calibrated: 2019.4.17 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch1/Area Scan (91x101x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.136 W/kg Ch1/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.528 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.202 W/kg SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.06 W/kg Maximum value of SAR (measured) = 0.132 W/kg 0 dB = 0.136 W/kg = -8.66 dBW/kg #### 25 WLAN 5.3GHz 802.11a 6Mbps Back 15mm Ch52 Communication System: UID 0, 802.11a (0); Frequency: 5260 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5260 MHz; $\sigma = 4.617$ S/m; $\epsilon_r = 36.368$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.2.28 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.19, 5.19, 5.19); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch52/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.426 W/kg Ch52/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.3010 V/m; Power Drift = -0.09dB Peak SAR (extrapolated) = 0.636 W/kg SAR(1 g) = 0.193 W/kg; SAR(10 g) = 0.068 W/kg SAR(1 g) = 0.193 W/kg; SAR(10 g) = 0.068 W/kg Maximum value of SAR (measured) = 0.420 W/kg 0 dB = 0.426 W/kg = -3.71 dBW/kg #### 26 WLAN 5.5GHz 802.11a 6Mbps Back 15mm Ch116 Communication System: UID 0, 802.11a (0); Frequency: 5580 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5580 MHz; $\sigma = 4.971$ S/m; $\epsilon_r = 35.867$; $\rho = 1000 \text{kg/m}^3$ Date: 2020.2.29 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(4.92, 4.92, 4.92); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch116/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.377 W/kg Ch116/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.573 W/kg SAR(1 g) = 0.163 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.369 W/kg 0 dB = 0.377 W/kg = -4.24 dBW/kg ## 27_WLAN 5.8GHz_802.11a 6Mbps_Back_15mm_Ch149 Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1.031 Medium: HSL_5000 Medium parameters used: f = 5745 MHz; $\sigma = 5.16$ S/m; $\epsilon_r = 35.56$; $\rho = 1000 kg/m^3$ Date: 2020.3.1 Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(5.17, 5.17, 5.17); Calibrated: 2019.5.27 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2019.7.23 - Phantom: SAM1; Type: SAM; Serial: TP-1697 - Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439) **Ch149/Area Scan (101x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.395 W/kg Ch149/Zoom Scan (8x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.3350 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.575 W/kg SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.057 W/kg SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.057 W/kg Maximum value of SAR (measured) = 0.374 W/kg 0 dB = 0.395 W/kg = -4.03 dBW/kg #### Appendix C. **DASY Calibration Certificate** Report No.: FA010604 The DASY calibration certificates are shown as follows. Sporton International (Kunshan) Inc. Report Version: Rev.01 TEL: 86-512-57900158 / FAX: 86-512-57900958 Report Template No.: : 181113 Issued Date: Mar. 27, 2020 FCC ID: SRQ-Z5157V Page C1 of C1 # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Sporton Certificate No: Z19-60081 ## CALIBRATION CERTIFICATE Object D750V3 - SN: 1087 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 27, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 3617 | 31-Jan-19(SPEAG,No.EX3-3617_Jan19) | Jan-20 | | DAE4 | SN 1331 | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|--------------------|------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 发 老 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林浴 | | Approved by: | Qi Dianyuan | SAR Project Leader | - dan | Issued: March 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100
MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60081 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.ehinattl.cn #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.0 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 222 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.36 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.65 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.9 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.58 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.75 W/kg ±18.7 % (k=2) | Certificate No: Z19-60081 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.4Ω- 2.59jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.3dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 51.6Ω- 3.86jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.7dB | | ## General Antenna Parameters and Design | 0.898 ns | |----------| | 0.898 n | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z19-60081 Page 4 of 8