HEARING AID COMPATIBILITY RF EMISSIONS TEST REPORT

FCC ID : SRQ-Z5156CC

Equipment: LTE/WCDMA/GSM Multi-Mode Digital Mobile Phone

Brand Name: ZTE

Model Name: Z5156CC

M-Rating : M3

Applicant : ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong,

Report No.: HA232806A

518057, P.R.China

Manufacturer: ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong,

Cert #5145.02

518057, P.R.China

Standard: FCC 47 CFR §20.19

ANSI C63.19-2011

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Approved by: Si Zhang

Si Zhang

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

 Sporton International Inc. (Kunshan)
 Page 1 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

Table of Contents

Report No.: HA232806A

: Apr. 30, 2022

: 210422

1.	General Information	4
2.	Testing Location	5
3.	Applied Standards	5
4.	RF Audio Interference Level	5
	Air Interface and Operating Mode	
6.	Measurement System Specification	7
	6.1 E-Field Probe System	7
	6.2 Data Storage and Evaluation	8
7.	RF Emissions Test Procedure	9
8.	Test Equipment List	12
9.	Measurement System Validation	13
	HAC RF Emission Test Results	
	Uncertainty Assessment	
	References	

Appendix A. Plots of System Performance Check Appendix B. Plots of RF Emission Measurement Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos

History of this test report

Report No.: HA232806A

Report No.	Version	Description	Issued Date
HA232806A	Rev. 01	Initial issue of report	Apr. 30, 2022

 Sporton International Inc. (Kunshan)
 Page 3 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

1. General Information

	Product Feature & Specification					
Applicant Name	ZTE CORPORATION					
Equipment Name	LTE/WCDMA/GSM Multi-Mode Digital Mobile Phone					
Brand Name ZTE						
Model Name	Z5156CC					
IMEI Code	863737060001677					
FCC ID	SRQ-Z5156CC					
HW Z5156UHW1.0						
SW	Z5156U_USCCV1.0.0B04					
EUT Stage	Identical Prototype					
Date Tested	2022/4/3					
Frequency Band	GSM850: 824 MHz ~ 849 MHz GSM1900: 1850 MHz ~ 1910 MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 41: 2496 MHz ~ 2690 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 71: 663 MHz ~ 698 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz					
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink is not supported) LTE: QPSK, 16QAM WLAN 2.4GHz: 802.11b/g/n HT20 Bluetooth BR/EDR/LE					

Report No.: HA232806A

 Sporton International Inc. (Kunshan)
 Page 4 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

2. Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: HA232806A

Testing Laboratory					
Test Firm	Sporton International Inc. (Kunshan)				
Test Site Location			lopment Zone		
Took Cita No	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
Test Site No.	SAR01-KS	CN1257	314309		

3. Applied Standards

- FCC CFR47 Part 20.19
- · ANSI C63.19-2011
- FCC KDB 285076 D01 HAC Guidance v05r01
- FCC KDB 285076 D03 HAC FAQ v01r04

4. RF Audio Interference Level

FCC wireless hearing aid compatibility rules ensure that consumers with hearing loss are able to access wireless communications services through a wide selection of handsets without experiencing disabling radio frequency (RF) interference or other technical obstacles.

To define and measure the hearing aid compatibility of handsets, in CFR47 part 20.19 ANSI C63.19 is referenced. A handset is considered hearing aid-compatible for acoustic coupling if it meets a rating of at least M3 under ANSI C63.19, and A handset is considered hearing aid compatible for inductive coupling if it meets a rating of at least T3. According to ANSI C63.19 2011 version, for acoustic coupling, the RF electric field emissions of wireless communication devices should be measured and rated according to the emission level as below.

Emission Cotogories	E-field emissions			
Emission Categories	<960Mhz	>960Mhz		
M1	50 to 55 dB (V/m)	40 to 45 dB (V/m)		
М2	45 to 50 dB (V/m)	35 to 40 dB (V/m)		
М3	40 to 45 dB (V/m)	30 to 35 dB (V/m)		
M4	<40 dB (V/m)	<30 dB (V/m)		

Table 4.1 Telephone near-field categories in linear units

 Sporton International Inc. (Kunshan)
 Page 5 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

5. Air Interface and Operating Mode

Air Interface	Band MHz	Туре	C63.19 Tested	Simultaneous Transmitter	Name of Voice Service	Power Reduction
	GSM850	\/O	Yes	WLAN, BT	CMRS Voice	No
0011	GSM1900	VO	res	WLAN, BT	CIVIRS VOICE	No
GSM	EDGE850	DT	NI-	WLAN, BT	NIA	NI-
	EDGE1900	DT	No	WLAN, BT	NA	No
	850			WLAN, BT		No
WCDMA	1750	VO	No ⁽¹⁾	WLAN, BT	CMRS Voice	No
WCDIVIA	1900			WLAN, BT		No
	HSPA	DT	DT No WLAN, BT		NA	No
	Band 2		No ⁽¹⁾	WLAN, BT		No
	Band 4			WLAN, BT		No
LTE	Band 5	VD		WLAN, BT	Val TE	No
(FDD)	Band 12	۷D		WLAN, BT	VoLTE	No
	Band 71			WLAN, BT		No
	Band 66			WLAN, BT		No
LTE (TDD)	Band 41	VD	Yes	WLAN, BT	VoLTE	No
Wi-Fi	2450	DT	No	GSM,WCDMA,LTE	NA	No
BT	2450	DT	No	GSM,WCDMA,LTE	NA	No

Report No.: HA232806A

Type Transport:

VO= Voice only

DT= Digital Transport only (no voice)

VD= CMRS and IP Voice Service over Digital Transport

Remark

- The air interface is exempted from testing by low power exemption that its average antenna input power plus its MIF is ≤17 dBm, and is rated as M4.
- 2. This is a variant report for Z5156CC, The change note could be refer to the Z5156CC_Operational Description of Product Equality Declaration which is exhibit separately. Based on the similarity and difference between previous and current project, only the worst cases from original test report (Sporton Report Number HA010602A) were verified for the differences.

 Sporton International Inc. (Kunshan)
 Page 6 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

6. Measurement System Specification

Remote Control Box PC Signal Lamps Electro-Optical Converter (EOC) DAE (Opt. Link) Robot Device Under Test Digital I/O Phantom Device Holder

Report No.: HA232806A

Fig 6.1 System Configurations

6.1 E-Field Probe System

E-Field Probe Specification <EF3DV3>

0

Construction	One dipole parallel, two dipoles normal to probe axis	
	Built-in shielding against static charges	
Calibration	In air from 30 MHz to 6.0 GHz	
	(absolute accuracy ±6.0%, k=2)	
Frequency	30 MHz to 6 GHz;	
	Linearity: ± 2.0 dB (100 MHz to 3 GHz)	
Directivity	± 0.2 dB in air (rotation around probe axis)	
	± 0.4 dB in air (rotation normal to probe axis)	W = 15
Dynamic Range	2 V/m to 1000 V/m	
	(M3 or better device readings fall well below diode	
	compression point)	
Linearity	± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 20 mm)	
	Tip diameter: 4 mm (Body: 12 mm)	
	Distance from probe tip to dipole centers: 1.5 mm	Photo of E-field Probe
Brobo Tip Docorin	tion	•

Probe Tip Description:

HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10%per mm).

 Sporton International Inc. (Kunshan)
 Page 7 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

6.2 Data Storage and Evaluation

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, and device frequency and modulation data) in measurement files.

Report No.: HA232806A

Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

> - Conversion factor ConvF_i - Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters : - Conductivity σ

- Density

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

$$\text{E-field Probes}: E_i = \sqrt{\frac{V_i}{\text{Norm}_i \cdot \text{ConvF}}}$$

with V_i = compensated signal of channel i, (i = x, y, z)

Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF = sensitivity enhancement in solution

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2 + E_y^2 + E_z^2}}$$

The primary field data are used to calculate the derived field units.

7. RF Emissions Test Procedure

Referenced from ANSI C63.19 -2011 section 5.5.1

a. Confirm the proper operation of the field probe, probe measurement system, and other instrumentation and the positioning system.

Report No.: HA232806A

- b. Position the WD in its intended test position.
- c. Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration.
- d. The center sub-grid shall be centered on the T-Coil mode perpendicular measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane, refer to illustrated in Figure 8.2. If the field alignment method is used, align the probe for maximum field reception.
- e. Record the reading at the output of the measurement system.
- f. Scan the entire 50 mm by 50 mm region in equality spaced increments and record the reading at each measurement point, The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- g. Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified.
- h. Identify the maximum reading within the non-excluded sub-grids identified in step g).
- i. Indirect measurement method
- j. The RF audio interference level in dB (V/m) is obtained by adding the MIF (in dB) to the maximum steady-state rms field-strength reading, in dB (V/m)
- k. Compare this RF audio interference level with the categories in ANSI C63.19-2011 clause 8 and record the resulting WD category rating.
- I. For the T-Coil perpendicular measurement location is ≥5.0 mm from the center of the acoustic output, then two different 50 mm by 50 mm areas may need to be scanned, the first for the microphone mode assessment and the second for the T-Coil assessment.
- m. The second for the T-Coil assessment, with the grid shifted so that it is centered on the perpendicular measurement point. Record the WD category rating.

 Sporton International Inc. (Kunshan)
 Page 9 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

C RF EMISSIONS TEST REPORT Report No.: HA232806A

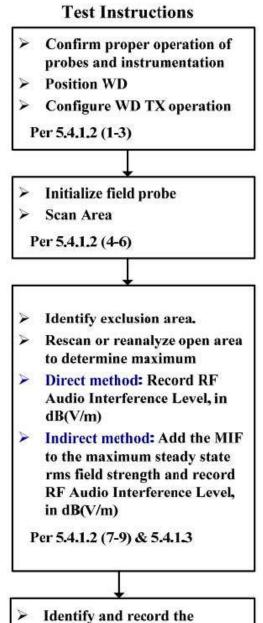


Figure 8.1 RF Emissions Flow Chart

category

Per 5.4.1.2 (9-10)

Report No.: HA232806A

Fig 8.2 EUT reference and plane for HAC RF emission measurements

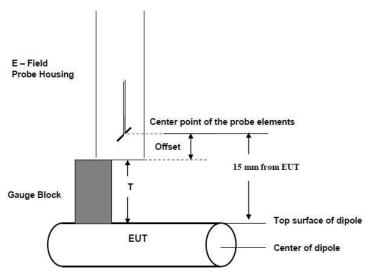


Fig. 8.3 Gauge block with E-field probe

 Sporton International Inc. (Kunshan)
 Page 11 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

8. Test Equipment List

Manufacturer	Name of Equipment	Type/Madel	Serial Number	Calibration		
Manufacturer	Name of Equipment	Type/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	1880MHz Calibration Dipole	CD1880V3	1038	2021/9/27	2024/9/24	
SPEAG	Data Acquisition Electronics	DAE4	1303	2021/6/18	2022/6/17	
SPEAG	Isotropic E-Field Probe	EF3DV3	4050	2022/1/31	2023/1/30	
R&S	Base Station	CMW500	143030	2021/7/30	2022/7/29	
Anritsu	Vector Signal Generator	MG3710A	6201502524	2021/10/24	2022/10/23	
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	2021/8/12	2022/8/11	
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	2021/7/31	2022/7/30	
Agilent	Dual Directional Coupler	778D	20500	2021/8/12	2022/8/11	
Agilent	Dual Directional Coupler	11691D	MY48151020	2021/8/12	2022/8/11	
Rohde & Schwarz	Power Meter	NRVD	102081	2021/8/12	2022/8/11	
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2021/8/12	2022/8/11	
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2021/8/12	2022/8/11	
MCL	Attenuation1	BW-S10W5+	N/A	NCR	NCR	
MCL	Attenuation2	BW-S10W5+	N/A	NCR	NCR	
MCL	Attenuation3	BW-S10W5+	N/A	NCR	NCR	
EXA	Spectrum Analyzer	FSV7	101631	2021/10/14	2022/10/13	
Testo	Thermo-Hygrometer	608-H1	1241332126	2022/1/6	2023/1/5	

Report No.: HA232806A

Note:

- NCR: "No-Calibration Required"
 Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

Sporton International Inc. (Kunshan) Page 12 of 17 Issued Date : Apr. 30, 2022 Form version. TEL: 86-512-57900158 / FAX: 86-512-57900958 : 210422

9. <u>Measurement System Validation</u>

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the test Arch and a corresponding distance holder.

Report No.: HA232806A

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal HAC measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

<Test Setup>

- 1. In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator.
- 2. The center point of the probe element(s) is 15mm from the closest surface of the dipole elements.
- 3. The calibrated dipole must be placed beneath the arch phantom. The equipment setup is shown below:
- 4. The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

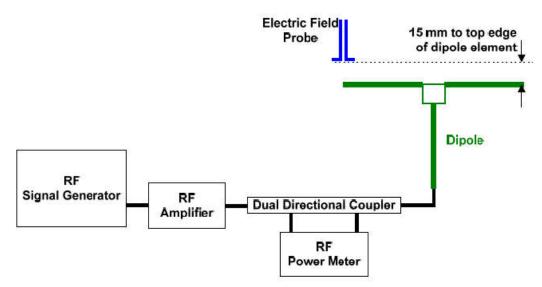


Fig. 7.1 Setup Diagram

<Validation Results>

Comparing to the original E-field value provided by SPEAG, the verification data should be within its specification of 18 %. Table 6.1 shows the target value and measured value. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to appendix A of this report.

Deviation = ((Average E-field Value) - (Target value)) / (Target value) * 100%

Frequency (MHz)	Input Power (dBm)	Target Value (V/m)	E-Field 1 (V/m)	E-Field 2 (V/m)	Average Value (V/m)	Deviation (%)	Date
1880	20	85.5	103.2	95.18	99.19	16.01	Apr. 03, 2022

 Sporton International Inc. (Kunshan)
 Page 13 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

10. HAC RF Emission Test Results

Plot No.	Air Interface	Mode	Channel	Average Antenna Input Power (dBm)	MIF	E-Field (dBV/m)	Margin to FCC M3 limit (dB)	E-Field M Rating
1	GSM1900	Voice	128	29.85	3.63	31.55	3.45	М3
2	GSM1900	Voice	189	29.83	3.63	30.41	4.59	М3
3	GSM1900	Voice	251	29.95	3.63	30.59	4.41	М3

Report No.: HA232806A

Remark:

- 1. The HAC measurement system applies MIF value onto the measured RMS E-field, which is indirect method in ANSI C63.19 2011 version, and reports the RF audio interference level.
- 2. Phone Condition: Mute on; Backlight off; Max Volume

Test Engineer: Martin Li, Varus Wang, Light Wang, Ricky Gu

 Sporton International Inc. (Kunshan)
 Page 14 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

11. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: HA232806A

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 14.1.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

 Sporton International Inc. (Kunshan)
 Page 15 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) E	(Ci) H	Standard Uncertainty (E) (±%)
Measurement System						
Probe Calibration	5.1	N	1	1	1	5.1
Axial Isotropy	4.7	R	1.732	1	1	2.7
Sensor Displacement	16.5	R	1.732	1	0.145	9.5
Boundary Effects	2.4	R	1.732	1	1	1.4
Phantom Boundary Effect	7.2	R	1.732	1	0	4.2
Linearity	4.7	R	1.732	1	1	2.7
Scaling with PMR calibration	10.0	R	1.732	1	1	5.8
System Detection Limit	1.0	R	1.732	1	1	0.6
Readout Electronics	0.3	N	1	1	1	0.3
Response Time	2.6	R	1.732	1	1	1.5
Integration Time	2.6	R	1.732	1	1	1.5
RF Ambient Conditions	3.0	R	1.732	1	1	1.7
RF Reflections	12.0	R	1.732	1	1	6.9
Probe Positioner	1.2	R	1.732	1	0.67	0.7
Probe Positioning	4.7	R	1.732	1	0.67	2.7
Extrap. and Interpolation	1.0	R	1.732	1	1	0.6
Test Sample Related						
Device Positioning Vertical	4.7	R	1.732	1	0.67	2.7
Device Positioning Lateral	1.0	R	1.732	1	1	0.6
Device Holder and Phantom	2.4	R	1.732	1	1	1.4
Power Drift	5.0	R	1.732	1	1	2.9
Phantom and Setup Related						
Phantom Thickness	Phantom Thickness 2.4 R 1.732 1 0.67					1.4
Со	mbined Std. Und	ertainty				16.4%
Co	overage Factor fo	or 95 %				K=2
Ex	panded STD Und	ertainty				32.7%

Report No.: HA232806A

Table 14.1 Uncertainty Budget of HAC free field assessment

 Sporton International Inc. (Kunshan)
 Page 16 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

12. References

[1] ANSI C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011.

Report No.: HA232806A

- [2] FCC KDB 285076 D01v05r01, "Equipment Authorization Guidance for Hearing Aid Compatibility", Apr 06, 2020
- [3] FCC KDB 285076 D03v01r04, "Hearing aid compatibility frequently asked questions", Apr 20, 2021.
- [4] SPEAG DASY System Handbook

----THE END-----

 Sporton International Inc. (Kunshan)
 Page 17 of 17
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

Appendix A. Plots of System Performance Check

Report No.: HA232806A

The plots are shown as follows.

 Sporton International Inc. (Kunshan)
 Page A1 of A1
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2022.4.3

HAC E Dipole 1880

DUT: HAC Dipole 1880 MHz

Communication System: UID 0, CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.3 °C;

DASY5 Configuration:

- Probe: EF3DV3-SN4050; ConvF(1, 1, 1); Calibrated: 2022.1.31

- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

E Scan - measurement distance from the probe sensor center to CD1880 = 15mm/Hearing Aid Compatibility Test at 15mm distance (41x181x1): Interpolated grid:

dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 157.4 V/m; Power Drift = 0.03 dB

PMR not calibrated. PMF = 1.000 is applied.


E-field emissions = 103.2 V/m

Average value of Total=(103.2+95.18)/2=99.19 V/m

PMF scaled E-field

Grid 1 M3 98.21 V/m	
Grid 4 M3 66.05 V/m	
Grid 7 M3 92.46 V/m	

Total = 103.2 V/m E Category: M3 Location: -0.5, -34, 8.7 mm

0 dB = 103.2 V/m = 41.02 dBV/m

Appendix B. Plots of RF Emission Measurement

Report No.: HA232806A

The plots are shown as follows.

 Sporton International Inc. (Kunshan)
 Page B1 of B1
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

1_HAC RF GSM1900_Voice_Ch512

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1850.2

MHz;Duty Cycle: 1:8.69961

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.3 °C;

DASY5 Configuration:

- Probe: EF3DV3 - SN4050; ConvF(1, 1, 1); Calibrated: 2022.1.31

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

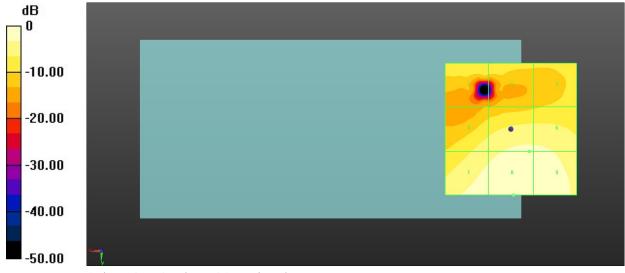
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch512/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 17.87 V/m; Power Drift = 0.46 dB


Applied MIF = 3.63 dB

RF audio interference level = 31.55 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
24.82 dBV/m	24.76 dBV/m	22.36 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
27.02 dBV/m	28.98 dBV/m	28.96 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
30.44 dBV/m	31.55 dBV/m	30.93 dBV/m

Total = 31.55 dBV/m E Category: M3 Location: -1, 25, 8.7 mm

0 dB = 37.78 V/m = 31.55 dBV/m

2_HAC RF GSM1900_Voice_Ch661

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1880 MHz; Duty

Date: 2022.4.3

Cycle: 1:8.69961

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.3 °C;

DASY5 Configuration:

- Probe: EF3DV3 - SN4050; ConvF(1, 1, 1); Calibrated: 2022.1.31

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

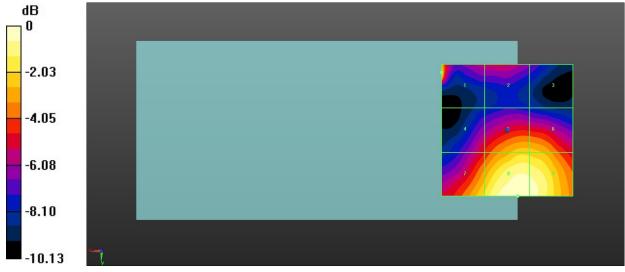
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch661/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 19.03 V/m; Power Drift = -1.20 dB


Applied MIF = 3.63 dB

RF audio interference level = 30.41 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
28.99 dBV/m	25.21 dBV/m	23.88 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
25.79 dBV/m	28.23 dBV/m	28.13 dBV/m
Grid 7 M4	Grid 8 M3	Grid 9 M3
28.64 dBV/m	30.41 dBV/m	30.19 dBV/m

Total = 30.41 dBV/m E Category: M3 Location: -4, 25, 8.7 mm

0 dB = 33.17 V/m = 30.41 dBV/m

3_HAC RF GSM1900_Voice_Ch810

Communication System: UID 10021 - DAC, GSM-FDD (TDMA, GMSK); Frequency: 1909.8

MHz;Duty Cycle: 1:8.69961

Medium: Air Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Ambient Temperature: 23.3 °C;

DASY5 Configuration:

- Probe: EF3DV3 - SN4050; ConvF(1, 1, 1); Calibrated: 2022.1.31

- Sensor-Surface: (Fix Surface)

- Electronics: DAE4 Sn1303; Calibrated: 2021.6.18

- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;

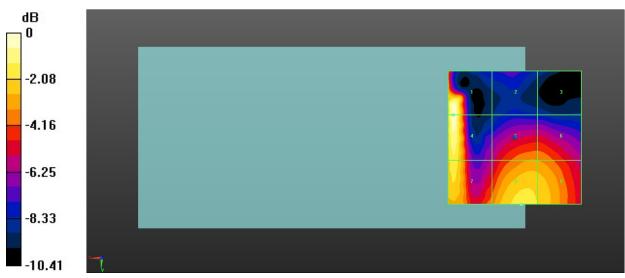
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Ch810/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.07 V/m; Power Drift = -1.20 dB


Applied MIF = 3.63 dB

RF audio interference level = 30.59 dBV/m

MIF scaled E-field

Grid 1 M3	Grid 2 M4	Grid 3 M4
30.59 dBV/m	23.27 dBV/m	22.32 dBV/m
Grid 4 M3	Grid 5 M4	Grid 6 M4
30.59 dBV/m	27.19 dBV/m	27.14 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
29.04 dBV/m	28.77 dBV/m	28.51 dBV/m

Total = 30.59 dBV/m E Category: M3 Location: 23, -8.5, 8.7 mm

0 dB = 33.84 V/m = 30.59 dBV/m

Appendix C. DASY Calibration Certificate

Report No.: HA232806A

The DASY calibration certificates are shown as follows.

 Sporton International Inc. (Kunshan)
 Page C1 of C1
 Issued Date
 : Apr. 30, 2022

 TEL: 86-512-57900158 / FAX: 86-512-57900958
 Form version.
 : 210422

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton

Accreditation No.: SCS 0108

Certificate No: CD1880V3-1038_Sep21

CALIBRATION CERTIFICATE

Object

CD1880V3 - SN: 1038

Calibration procedure(s)

QA CAL-20.v7

Calibration Procedure for Validation Sources in air

Calibration date:

September 27, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Probe EF3DV3	SN: 4013	28-Dec-20 (No. EF3-4013_Dec20)	Dec-21
DAE4	SN: 781	23-Dec-20 (No. DAE4-781_Dec20)	Dec-21
	•		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-20)	In house check: Oct-23
Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Oct-20)	In house check: Oct-23
Power sensor HP 8482A	SN: US37295597	09-Oct-09 (in house check Oct-20)	In house check: Oct-23
RF generator R&S SMT-06	SN: 837633/005	10-Jan-19 (in house check Oct-20)	In house check: Oct-23
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by:

Katja Pokovic Technical Manager

Issued: September 27, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

[1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1038_Sep21 Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

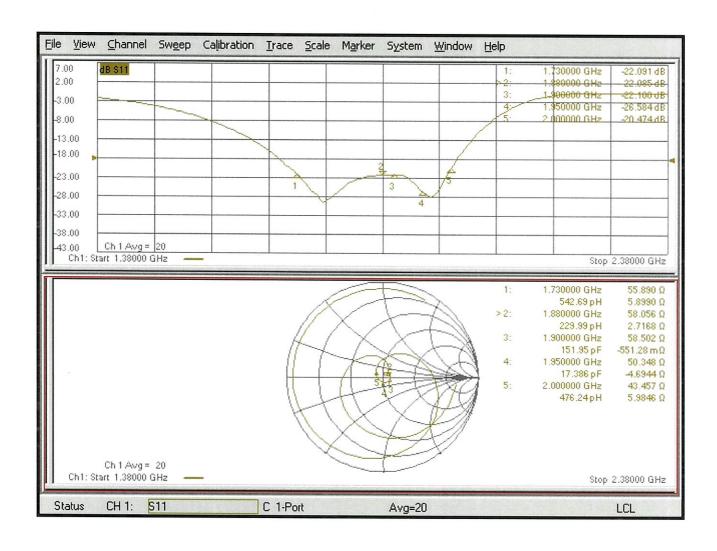
E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	86.3 V/m = 38.72 dBV/m
Maximum measured above low end	100 mW input power	84.7 V/m = 38.56 dBV/m
Averaged maximum above arm	100 mW input power	85.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	22.1 dB	55.9 Ω + 5.9 jΩ
1880 MHz	22.1 dB	58.1 Ω + 2.7 jΩ
1900 MHz	22.1 dB	58.5 Ω - 0.6 jΩ
1950 MHz	26.6 dB	50.3 Ω - 4.7 jΩ
2000 MHz	20.5 dB	43.5 Ω + 6.0 jΩ

3.2 Antenna Design and Handling


The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 27.09.2021

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1038

Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ S/m, $\epsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

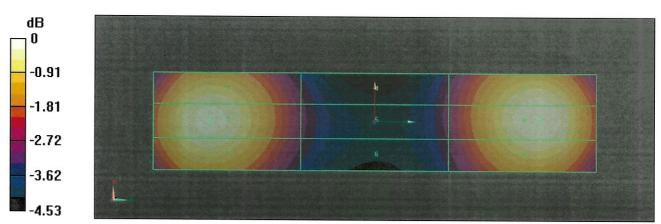
- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 1880 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test (41x181x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 151.4 V/m; Power Drift = -0.00 dB


Applied MIF = 0.00 dB

RF audio interference level = 38.72 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
38.39 dBV/m	38.56 dBV/m	38.37 dBV/m
	Grid 5 M2	
35.91 dBV/m	35.93 dBV/m	35.8 dBV/m
	Grid 8 M2	
38.61 dBV/m	38.72 dBV/m	38.45 dBV/m

0 dB = 86.34 V/m = 38.72 dBV/m

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

DAG/1303 Sportforky

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

C

S

Client

Sporton

Certificate No: DAE4-1303_Jun21

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BO - SN: 1303

Calibration procedure(s)

QA CAL-06.v30

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

June 18, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	07-Sep-20 (No:28647)	Sep-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-21 (in house check)	In house check: Jan-22
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-21 (in house check)	In house check: Jan-22

Calibrated by:

Name Dominique Steffen Function

Laboratory Technician

Signature

Approved by:

Sven Kühn

Deputy Manager

Issued: June 18, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1303_Jun21

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1303_Jun21 Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

6.1μV ,

full range = -100...+300 mV

Low Range:

1LSB =

61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	405.659 ± 0.02% (k=2)	405.300 ± 0.02% (k=2)	405.554 ± 0.02% (k=2)
Low Range	3.96109 ± 1.50% (k=2)	4.00152 ± 1.50% (k=2)	4.00674 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	36.0 ° ± 1 °
---	--------------

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (μV)	Error (%)
Channel X	+ Input	199992.76	-0.27	-0.00
Channel X	+ Input	20004.34	2.57	0.01
Channel X	- Input	-19999.62	1.83	-0.01
Channel Y	+ Input	199989.77	-2.82	-0.00
Channel Y	+ Input	20002.16	0.36	0.00
Channel Y	- Input	-20002.12	-0.67	0.00
Channel Z	+ Input	199990.88	-1.83	-0.00
Channel Z	+ Input	20000.69	-1.00	-0.01
Channel Z	- Input	-20002.75	-1.21	0.01

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	2002.36	1.32	0.07
Channel X + Input	202.06	0.66	0.33
Channel X - Input	-197.59	0.94	-0.47
Channel Y + Input	2000.87	-0.13	-0.01
Channel Y + Input	200.99	-0.31	-0.15
Channel Y - Input	-198.99	-0.44	0.22
Channel Z + Input	2001.05	0.06	0.00
Channel Z + Input	200.88	-0.45	-0.23
Channel Z - Input	-199.56	-1.01	0.51

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.32	-5.07
	- 200	5.72	4.11
Channel Y	200	1.67	1.56
	- 200	-3.03	-2.98
Channel Z	200	-1.49	-1.58
	- 200	-1.18	-0.67

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	=	0.82	-3.93
Channel Y	200	7.61		2.09
Channel Z	200	8.96	5.49	6-32-400 Aug

Certificate No: DAE4-1303_Jun21

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16194	15648
Channel Y	15897	15178
Channel Z	16214	13846

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.86	-1.04	3.29	0.87
Channel Y	-0.33	-2.04	0.55	0.40
Channel Z	0.26	-1.05	1.53	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA) Stand by (mA)		Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

Sporton

Certificate No: EF3-4050_Jan22

CALIBRATION CERTIFICATE

Object

EF3DV3-SN:4050

Calibration procedure(s)

QA CAL-02.v9, QA CAL-25.v7

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date:

January 31, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22
DAE4	SN: 789	24-Dec-21 (No. DAE4-789_Dec21)	Dec-22
Reference Probe ER3DV6	SN: 2328	08-Oct-21 (No. ER3-2328_Oct21)	Oct-22
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Sven Kühn
Deputy Manager

Issued: February 3, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EF3-4050_Jan22