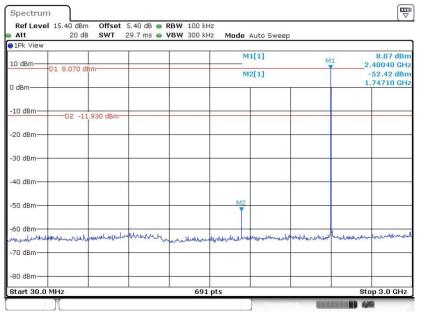


| Att      | 20 dB SWT        | 29.7 ms 🖷 V         | BW 300 kH:  | Mode /       | Auto Sweep   |           |              |             |
|----------|------------------|---------------------|-------------|--------------|--------------|-----------|--------------|-------------|
| 1Pk View |                  |                     |             |              | 1[1]         |           |              | 7.68 dBm    |
| 10 dBm   |                  |                     |             |              | 1[1]         |           | M1           | 2.48210 GHz |
| D1 7     | .680 dBm         |                     |             | M            | 2[1]         |           |              | -54.71 dBm  |
| 0 dBm    |                  |                     |             |              |              |           |              | 1.76430 GHz |
|          |                  |                     |             |              |              |           |              |             |
| -10 dBm  | 02 -12.320 dBm   |                     |             |              |              |           |              | _           |
| -20 dBm- |                  |                     |             |              |              |           |              |             |
|          |                  |                     |             |              |              |           |              |             |
| -30 dBm  |                  |                     |             |              |              |           |              |             |
|          |                  |                     |             |              |              |           |              |             |
| -40 dBm  |                  |                     |             |              |              |           |              |             |
| -50 dBm  |                  |                     |             | M2           |              |           |              |             |
|          |                  |                     |             | IVIZ         |              |           |              |             |
| -60 dBm  |                  | and Lead            |             |              |              |           | 1.           |             |
| jugarman | indulationtities | water-water and the | atticknowna | ubranantific | werthethethe | manufally | dear clearly | mounter     |
| -70 dBm  |                  |                     |             |              |              |           |              |             |
| -80 dBm  | 5                |                     |             |              |              | -         |              |             |
| oo dolla |                  |                     |             |              |              |           |              |             |

#### CSE Plot on Ch 78 between 30MHz ~ 3 GHz

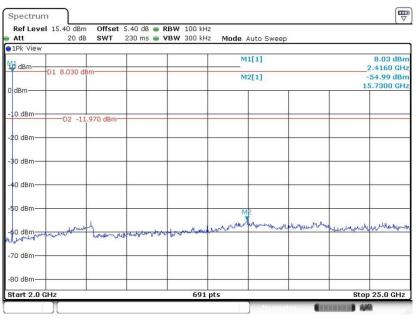
Date: 31.JAN.2020 02:06:32

#### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


| Att         | 15.40 dBm<br>20 dB | SWT        |                          | RBW 100 k<br>VBW 300 k |          | Auto Sweep  |          |            |                        |
|-------------|--------------------|------------|--------------------------|------------------------|----------|-------------|----------|------------|------------------------|
| 1Pk View    |                    |            |                          |                        | in induo | nate enterp |          |            |                        |
| to dBm      | D1 7.230 dB        | m          |                          |                        |          | 11[1]       |          |            | 7.23 dBr<br>2.4830 GH  |
| ) dBm       |                    |            | -                        | 2                      | IN .     | 12[1]       |          |            | 55.39 dBr<br>9.5250 GH |
| -10 dBm     | D2 -12.            | 770 dBm-   |                          |                        |          |             |          |            |                        |
| 20 dBm      |                    | , o dom    |                          |                        |          |             |          |            |                        |
| 30 dBm      |                    |            |                          |                        |          |             |          |            | -                      |
| 40 dBm      |                    |            |                          |                        |          |             |          |            | -                      |
| -50 dBm     |                    |            |                          |                        |          |             | M2       |            |                        |
| 60 dBm      | monoralista        | Unitertite | with the with the second | - Marchanal            | Jabrens  | multuremet  | unneline | geparature | mathematiche           |
| 70 dBm      |                    |            |                          |                        |          |             |          |            |                        |
| 80 dBm      |                    |            |                          | -                      |          |             |          |            |                        |
| Start 2.0 C | Hz                 |            |                          | 69                     | 1 pts    |             |          | Stop       | 25.0 GHz               |

Date: 31.JAN.2020 02:07:00




#### <2Mbps>

#### CSE Plot on Ch 00 between 30MHz ~ 3 GHz



Date: 31.JAN.2020 02:10:55

#### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz



Date: 31.JAN.2020 02:11:24



|          | ffset 5.40 dB 👄 RB'<br>NT 29.7 ms 👄 VB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Auto Sweep            |                              |                           |
|----------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|---------------------------|
| 1Pk View |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |                           |
| 10 dBm   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11[1]                 | M1                           | 6.52 dBm<br>2.43910 GHz   |
| 0 dBm    |                                        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42[1]                 |                              | -43.90 dBm<br>1.74710 GHz |
| -10 dBm  | dBm                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |                           |
| -20 dBm- |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |                           |
| -30 dBm  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |                           |
| -40 dBm  |                                        | M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                              |                           |
| -50 dBm  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |                           |
| -60 dBm- | water water and                        | a the second week the sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The second de company | a graphy for the trade south | mereline                  |
| -70 dBm  | where                                  | and the second sec |                       |                              |                           |
| -80 dBm  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                              |                           |

#### CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 31.JAN.2020 02:15:05

#### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

| Att<br>1Pk View | 20 dB              | SWT       | 230 ms 🥃 🕻 | <b>/BW</b> 300 KH    | z Mode /   | Auto Sweep |            |              |                       |
|-----------------|--------------------|-----------|------------|----------------------|------------|------------|------------|--------------|-----------------------|
| .0 dBm          |                    |           |            |                      | M          | 1[1]       |            |              | 4.15 dBr<br>2.4490 GH |
|                 | D1 4,150 dB        | 3m        |            |                      | M          | 2[1]       |            |              | -54.91 dBr            |
| dBm             |                    |           |            |                      |            |            |            | 1            | 5.6970 GH             |
| 10 dBm          |                    |           |            |                      |            |            |            |              |                       |
| 20 dBm          | D2 -15             | .850 dBm— |            |                      |            |            |            |              |                       |
| 30 dBm          |                    |           |            |                      |            |            |            |              | -                     |
| 40 dBm          |                    | e         |            |                      |            |            |            |              |                       |
| 50 dBm          |                    |           |            |                      | м          | 2          |            |              |                       |
| 60 dBm          | and the of all the | Motorian  | hartbook   | an the second second | andronayla | whenned    | human Mari | ymaningulary | muhawe                |
| 70 dBm          |                    | ~         |            |                      |            |            |            |              |                       |
|                 |                    |           |            |                      |            |            |            |              |                       |

Date: 31.JAN.2020 02:15:33

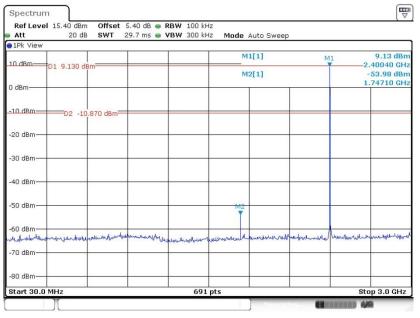


| Att 🛛          | 20 dE       | B SWT          | 29.7 ms 🖷        | <b>VBW</b> 300 ki | Hz Mode    | Auto Sweep |           |               |                         |
|----------------|-------------|----------------|------------------|-------------------|------------|------------|-----------|---------------|-------------------------|
| ●1Pk View      |             | -              | 1                |                   | 1          |            |           |               |                         |
| 10 dBm         |             |                |                  |                   | M          | 1[1]       |           | M1            | 6.91 dBm<br>2.48210 GHz |
|                | D1 6.910 d  | Bm             |                  |                   | M          | 2[1]       |           | 1             | -46.63 dBn              |
| 0 dBm          |             |                |                  | 2                 |            |            |           |               | 1.76430 GH              |
| o abiii        |             |                |                  |                   |            |            |           |               |                         |
| -10 dBm—       |             |                |                  |                   |            |            |           |               |                         |
| -10 0600-      | D2 -13      | 3.090 dBm-     |                  | _                 |            |            |           | _             |                         |
| -20 dBm        |             |                |                  |                   |            |            |           |               |                         |
| -20 aBm        |             |                |                  |                   |            |            |           |               |                         |
|                |             |                |                  |                   |            |            |           |               |                         |
| -30 dBm        |             |                |                  |                   |            |            |           |               |                         |
|                |             |                |                  |                   |            |            |           |               |                         |
| -40 dBm—       |             |                |                  | <i>v</i>          | M2         |            |           |               |                         |
|                |             |                |                  |                   | Ţ          |            |           |               |                         |
| -50 dBm—       |             |                |                  |                   |            |            |           |               |                         |
|                |             |                |                  |                   |            |            |           |               |                         |
| -60 dBm        |             | and the second | he day a balance | -                 |            |            |           | Il. ma        | our manufactures        |
| unduralization | Aperthenite | houndaria      | at we will       | appendiction      | Junilimber | man        | Why Mucha | Che (Inviter) | breach-strated a man    |
| -70 dBm—       |             |                | -                | 3                 |            |            |           |               | -                       |
|                |             |                |                  |                   |            |            |           |               |                         |
|                |             |                |                  |                   |            |            |           |               |                         |

#### CSE Plot on Ch 78 between 30MHz ~ 3 GHz

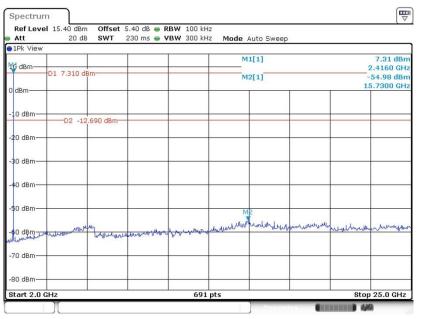
Date: 31.JAN.2020 02:18:45

#### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz


| Att       | el 15.40 dBm<br>20 dB | SWT      |            | <b>RBW</b> 100 ki<br><b>VBW</b> 300 ki |                | Auto Sweep |                |         |                        |
|-----------|-----------------------|----------|------------|----------------------------------------|----------------|------------|----------------|---------|------------------------|
| 1Pk View  |                       |          |            |                                        |                |            |                |         |                        |
| dBm       | D1 6.350 dB           |          |            |                                        |                | 1[1]       |                |         | 6.35 dBr<br>2.4830 GH  |
|           | TUI 6.350 dB          | m        |            |                                        | M              | 2[1]       |                |         | 54.81 dBn<br>5.6970 GH |
| D dBm     |                       |          |            | 1-                                     |                |            |                |         |                        |
| -10 dBm—  | D2 12                 | 650 dBm- |            |                                        |                |            |                |         |                        |
| -20 dBm—  | 02 -13.               | 650 UBM- |            |                                        |                |            |                |         |                        |
| 30 dBm—   |                       |          |            |                                        |                |            |                |         | -                      |
| 40 dBm—   |                       | -        | -          | 0                                      |                |            |                |         | -                      |
| -50 dBm—  |                       |          |            |                                        | M              |            |                |         |                        |
| EO dBm    | mediation             | huderty  | thornewson | w Joshan Mar                           | and how we had | hammenter  | brothersteller | hennyme | north                  |
| 70 dBm—   |                       |          |            |                                        |                | -          |                |         | -                      |
| 80 dBm—   |                       |          |            |                                        |                |            |                |         |                        |
| Start 2.0 | GHz                   |          |            | 69                                     | Lpts           |            |                | Stor    | 25.0 GHz               |

Date: 31.JAN.2020 02:19:15




#### <3Mbps>

#### CSE Plot on Ch 00 between 30MHz ~ 3 GHz



Date: 31.JAN.2020 02:23:45

#### CSE Plot on Ch 00 between 2 GHz ~ 25 GHz



Date: 31.JAN.2020 02:24:14



| Att 20 dB SWT       | 29.7 ms 👄 VBW 300 kH      | Hz Mode Auto Swee                     | р                 |                           |
|---------------------|---------------------------|---------------------------------------|-------------------|---------------------------|
| 1Pk View            | T T                       | M1[1]                                 |                   | 8.68 dBm                  |
| 10 dBm-01 8.680 dBm |                           | MILI                                  | M1                | 2.43910 GHz               |
|                     |                           | M2[1]                                 |                   | -61.40 dBm<br>2.96350 GHz |
| D dBm               |                           |                                       |                   | 2.90330 GHz               |
| -10 dBm             |                           |                                       |                   |                           |
| D2 -11.320 dBm-     |                           |                                       |                   |                           |
| -20 dBm             |                           |                                       |                   |                           |
|                     |                           |                                       |                   |                           |
| -30 dBm-            |                           |                                       | · · · · ·         |                           |
| -40 dBm             |                           |                                       |                   |                           |
|                     |                           |                                       |                   |                           |
| -50 dBm             |                           |                                       |                   |                           |
|                     |                           |                                       |                   | Ma                        |
| -60 dBm             | Munnundary and a descense | and her perhalistic of the mathematic | manual manual man | when a hard a second of   |
| -70 dBm             | Constant of a second      |                                       |                   |                           |
|                     |                           |                                       |                   |                           |
| -80 dBm             |                           |                                       |                   |                           |
| Start 30.0 MHz      | 691                       | pts                                   |                   | Stop 3.0 GHz              |

#### CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 31.JAN.2020 02:31:04

#### CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

| Ref Level 15<br>Att | 20 dB SWT       | et 5.40 dB 👄 F<br>230 ms 👄 V | BW 300 kH     |            | Auto Sweep |         |        |                       |
|---------------------|-----------------|------------------------------|---------------|------------|------------|---------|--------|-----------------------|
| 1Pk View            |                 | -                            | r             |            |            |         |        |                       |
| dBm                 | 8.470 dBm       |                              |               | M          | 1[1]       |         |        | 8.47 dBr<br>2.4490 GH |
| DI                  | 8.470 UBIII     |                              |               | M          | 2[1]       |         |        | 54.82 dBi             |
| dBm                 | 3               |                              |               |            |            |         | 1      | 5.7300 GH             |
| 10 dBm              | -D2 -11.530 dBn | n                            |               |            |            |         |        |                       |
| 20 dBm              |                 |                              |               |            |            |         |        |                       |
| 30 dBm              |                 |                              |               |            |            |         |        | -                     |
| 40 dBm              |                 |                              |               |            |            |         |        |                       |
| 50 dBm              |                 |                              |               | м          | 2          |         |        |                       |
| 60 dBm Journa       | white hours     | www.                         | d the starter | meduo have | have been  | unawald | mullil | uliputer              |
| 70 dBm              |                 |                              | × ×           |            |            |         |        |                       |
| 30 dBm              |                 |                              |               |            |            |         |        |                       |
| Start 2.0 GHz       |                 |                              | 691           | pts        | 1          |         | Stor   | 25.0 GHz              |

Date: 31.JAN.2020 02:31:32



| Att 20 dB          |                 |    | RBW 100 kH<br>VBW 300 kH      |           | Auto Sweep     | 0              |              |                    |
|--------------------|-----------------|----|-------------------------------|-----------|----------------|----------------|--------------|--------------------|
| 1Pk View           |                 |    | -                             |           |                |                |              |                    |
| 0.dBm D1 9.230 dBr | 0               |    |                               | M         | 1[1]           |                | M1           | 9.23 dBm           |
| D1 9.200 ubi       |                 |    |                               | м         | 2[1]           |                |              | -61.63 dBm         |
| ) dBm              |                 |    | 2                             |           |                | 1              |              | 926.20 MHz         |
| 10 dBmD2 -10.7     | 770 dBm=        |    |                               |           |                |                |              |                    |
| 20 dBm             |                 |    |                               |           |                |                |              |                    |
| 30 dBm             |                 |    |                               |           |                |                | -            | -                  |
| 40 dBm             |                 |    |                               |           |                |                |              |                    |
| 50 dBm             |                 |    |                               |           |                |                | -            |                    |
| 60 dBm             |                 | V2 |                               |           | a.a. 1-        | ada            |              | a con adaption and |
| 70 dBm             | Colorador Serve |    | land an and the second second | nummunnum | and the second | and decent and | Ca contranta |                    |
| 80 dBm             |                 |    |                               |           |                |                |              |                    |

#### CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 31.JAN.2020 02:34:42

#### CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

| Att       | el 15.40 dBm<br>20 dB | SWT                |        | RBW 100 kH<br>VBW 300 kH |          | Auto Sweep |           |           |                       |
|-----------|-----------------------|--------------------|--------|--------------------------|----------|------------|-----------|-----------|-----------------------|
| 1Pk View  |                       |                    |        |                          |          |            |           |           |                       |
| 10 dBm-   |                       |                    |        |                          | M        | 1[1]       |           |           | 6.75 dBn<br>2.4830 GH |
| Ĭ         | D1 6.750 dBm          | <u>.</u>           |        |                          | M        | 2[1]       |           |           | -54.72 dBn            |
| D dBm     |                       |                    | -      | -                        |          |            |           | 1         | 5.7630 GH             |
| -10 dBm—  |                       |                    |        |                          |          |            |           |           |                       |
| 20 dBm—   | D2 -13.2              | SU dBm-            |        |                          |          | -          |           |           |                       |
| 30 dBm—   |                       |                    |        |                          |          |            |           |           | -                     |
| 40 dBm—   |                       |                    |        |                          |          |            |           |           |                       |
| 50 dBm—   |                       |                    |        |                          | N        | 12         |           |           |                       |
| EO dBm    | waterburner           | and a start of the | monder | an and the second        | uberland | when       | manulture | monthlynn | hundred               |
| 70 dBm—   |                       |                    |        | 1.C                      |          |            |           |           |                       |
| 80 dBm—   |                       |                    |        |                          |          |            |           |           |                       |
| Start 2.0 | GHz                   |                    |        | 691                      | pts      | 1          |           | Sto       | p 25.0 GHz            |

Date: 31.JAN.2020 02:35:10



# 3.8 Radiated Band Edges and Spurious Emission Measurement

# 3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

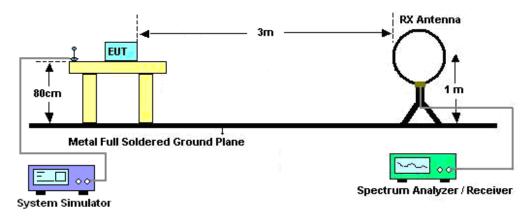
| Frequency     | Field Strength     | Measurement Distance |
|---------------|--------------------|----------------------|
| (MHz)         | (microvolts/meter) | (meters)             |
| 0.009 - 0.490 | 2400/F(kHz)        | 300                  |
| 0.490 – 1.705 | 24000/F(kHz)       | 30                   |
| 1.705 – 30.0  | 30                 | 30                   |
| 30 - 88       | 100                | 3                    |
| 88 – 216      | 150                | 3                    |
| 216 - 960     | 200                | 3                    |
| Above 960     | 500                | 3                    |

#### 3.8.2 Measuring Instruments

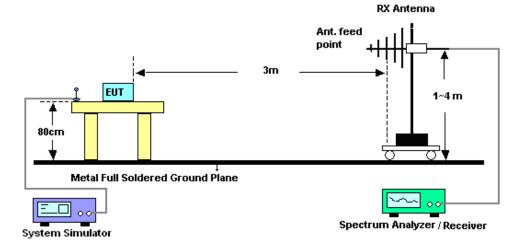
The measuring equipment is listed in the section 4 of this test report.



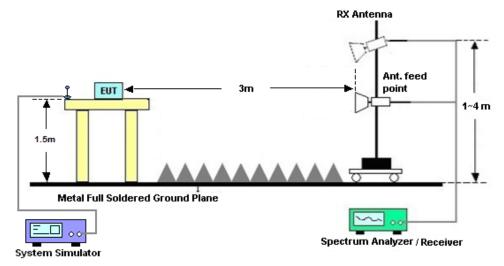
# 3.8.3 Test Procedures


- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
  - (1) Span shall wide enough to fully capture the emission being measured;
  - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
  - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds On time = N<sub>1</sub>\*L<sub>1</sub>+N<sub>2</sub>\*L<sub>2</sub>+...+N<sub>n-1</sub>\*LN<sub>n-1</sub>+N<sub>n</sub>\*L<sub>n</sub> Where N<sub>1</sub> is number of type 1 pulses, L<sub>1</sub> is length of type 1 pulses, etc. Average Emission Level = Peak Emission Level + 20\*log(Duty cycle)
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 8. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-24.79dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.




# 3.8.4 Test Setup


For radiated emissions below 30MHz



#### For radiated emissions from 30MHz to 1GHz



#### For radiated emissions above 1GHz



**Sporton International (Kunshan) Inc.** TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: SRQ-Z5156CC



# 3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

### 3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

# 3.8.7 Test Result of Radiated Spurious Emission (30MHz ~ 10<sup>th</sup> Harmonic)

Please refer to Appendix C.

#### 3.8.8 Duty cycle correction factor for average measurement

Please refer to Appendix D.



# **3.9 AC Conducted Emission Measurement**

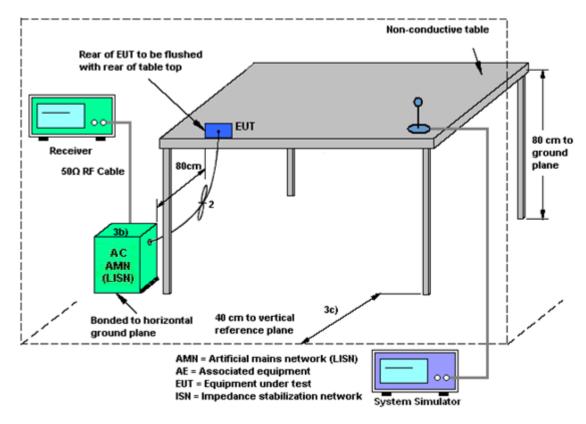
# 3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

| Frequency of omission (MHz) | Conducted  | limit (dBµV) |
|-----------------------------|------------|--------------|
| Frequency of emission (MHz) | Quasi-peak | Average      |
| 0.15-0.5                    | 66 to 56*  | 56 to 46*    |
| 0.5-5                       | 56         | 46           |
| 5-30                        | 60         | 50           |

\*Decreases with the logarithm of the frequency.

# 3.9.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

#### 3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



# 3.9.4 Test Setup



# 3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.



# 3.10 Antenna Requirements

# 3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

# 3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

# 3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.



# 4 List of Measuring Equipment

| Instrument                              | Manufacturer | Model No.                  | Serial No.       | Characteristics            | Calibration<br>Date | Test Date                        | Due Date      | Remark                   |  |
|-----------------------------------------|--------------|----------------------------|------------------|----------------------------|---------------------|----------------------------------|---------------|--------------------------|--|
| Spectrum<br>Analyzer                    | R&S          | FSV40                      | 101040           | 10Hz~40GHz                 | Nov. 02, 2019       | Jan. 17, 2020 ~<br>Jan. 31, 2020 | Nov. 01, 2020 | Conducted<br>(TH01-KS)   |  |
| Pulse Power<br>Senor                    | Anritsu      | MA2411B                    | 0917070          | 300MHz~40GH<br>z           | Jan. 08, 2020       | Jan. 17, 2020 ~<br>Jan. 31, 2020 | Jan. 07, 2021 | Conducted<br>(TH01-KS)   |  |
| Power Meter                             | Anritsu      | ML2495A                    | 1005002          | 50MHz<br>Bandwidth         | Jan. 08, 2020       | Jan. 17, 2020 ~<br>Jan. 31, 2020 | Jan. 07, 2021 | Conducted<br>(TH01-KS)   |  |
| EMI Test Receiver                       | Keysight     | N9038A                     | MY572901<br>51   | 3Hz~8.5GHz;M<br>ax 30dBm   | Jul. 18, 2019       | Mar. 02, 2020                    | Jul. 17, 2020 | Radiation<br>(03CH05-KS) |  |
| EXA Spectrum<br>Analyzer                | Keysight     | N9010A                     | MY551502<br>44   | 10Hz-44G,MAX<br>30dB       | Apr. 16, 2019       | Mar. 02, 2020                    | Apr. 15, 2020 | Radiation<br>(03CH05-KS) |  |
| Loop Antenna                            | R&S          | HFH2-Z2                    | 100321           | 9kHz~30MHz                 | Nov. 10, 2019       | Mar. 02, 2020                    | Nov. 09, 2020 | Radiation<br>(03CH05-KS) |  |
| Bilog Antenna                           | TeseQ        | CBL6111D                   | 49922            | 30MHz-1GHz                 | May 30, 2019        | Mar. 02, 2020                    | May 29, 2020  | Radiation<br>(03CH05-KS) |  |
| Double Ridge<br>Horn Antenna            | ETS-Lindgren | 3117                       | 218652           | 1GHz~18GHz                 | Apr. 27, 2019       | Mar. 02, 2020                    | Apr. 26, 2020 | Radiation<br>(03CH05-KS) |  |
| SHF-EHF Horn                            | Com-power    | AH-840                     | 101093           | 18GHz~40GHz                | Mar. 23, 2019       | Mar. 02, 2020                    | Mar. 22, 2020 | Radiation<br>(03CH05-KS) |  |
| Amplifier                               | SONOMA       | 310N                       | 187289           | 9KHz-1GHz                  | Aug. 06, 2019       | Mar. 02, 2020                    | Aug. 05, 2020 | Radiation<br>(03CH05-KS) |  |
| Amplifier                               | MITEQ        | TTA1840-35-<br>HG          | 2014749          | 18~40GHz                   | Jan. 14, 2020       | Mar. 02, 2020                    | Jan. 13, 2021 | Radiation<br>(03CH05-KS) |  |
| high gain Amplifier                     | MITEQ        | AMF-7D-0010<br>1800-30-10P | 2025788          | 1Ghz-18Ghz                 | Aug. 16, 2019       | Mar. 02, 2020                    | Aug. 15, 2020 | Radiation<br>(03CH05-KS) |  |
| Amplifier                               | Keysight     | 83017A                     | MY532702<br>03   | 500MHz~26.5G<br>Hz         | Apr. 15, 2019       | Mar. 02, 2020                    | Apr. 14, 2020 | Radiation<br>(03CH05-KS) |  |
| AC Power Source                         | Chroma       | 61601                      | F1040900<br>04   | N/A                        | NCR                 | Mar. 02, 2020                    | NCR           | Radiation<br>(03CH05-KS) |  |
| Turn Table                              | ChamPro      | EM 1000-T                  | 060762-T         | 0~360 degree               | NCR                 | Mar. 02, 2020                    | NCR           | Radiation<br>(03CH05-KS) |  |
| Antenna Mast                            | ChamPro      | EM 1000-A                  | 060762-A         | 1 m~4 m                    | NCR                 | Mar. 02, 2020                    | NCR           | Radiation<br>(03CH05-KS) |  |
| EMI Receiver                            | R&S          | ESCI7                      | 100768           | 9kHz~7GHz;                 | Apr. 16, 2019       | Jan. 21, 2020                    | Apr. 15, 2020 | Conduction<br>(CO01-KS)  |  |
| AC LISN<br>(for auxiliary<br>equipment) | MessTec      | AN3016                     | 060103           | 9kHz~30MHz                 | Oct. 18, 2019       | Jan. 21, 2020                    | Oct. 17, 2020 | Conduction<br>(CO01-KS)  |  |
| AC LISN                                 | MessTec      | AN3016                     | 060105           | 9kHz~30MHz                 | Oct. 28, 2019       | Jan. 21, 2020                    | Oct. 27, 2020 | Conduction<br>(CO01-KS)  |  |
| AC Power Source                         | Chroma       | 61602                      | ABP00000<br>0811 | AC 0V~300V,<br>45Hz~1000Hz | Oct. 18, 2019       | Jan. 21, 2020                    | Oct. 17, 2020 | Conduction<br>(CO01-KS)  |  |

NCR: No Calibration Required



# 5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

#### Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

| Measuring Uncertainty for a Level of Confidence | 2.9dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 2.908 |

#### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.0dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 3.00B |

#### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.0dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 3.00B |

#### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

| Measuring Uncertainty for a Level of Confidence | 5.0dB |
|-------------------------------------------------|-------|
| of 95% (U = 2Uc(y))                             | 3.00B |



# **Appendix A. Conducted Test Results**

Report Number : FR010602A

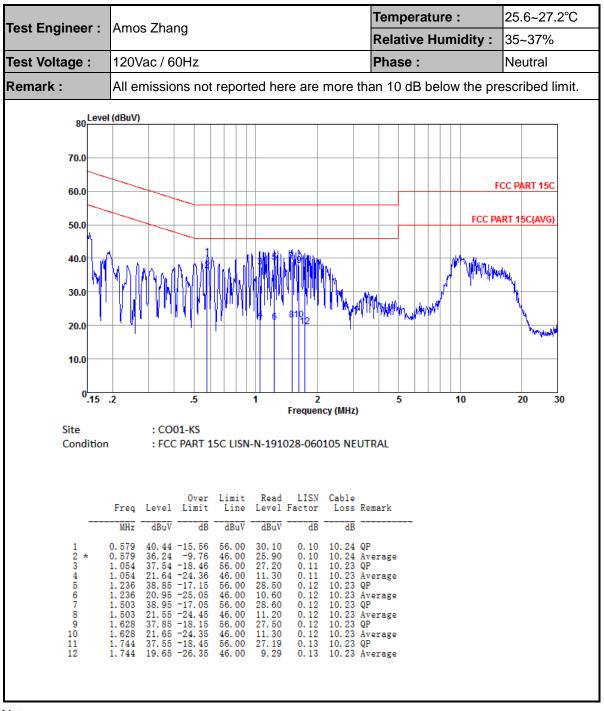
#### **Bluetooth**

| Test Engineer: | Lex Wu              | Temperature:       | 20~26 | °C |
|----------------|---------------------|--------------------|-------|----|
| Test Date:     | 2020/1/17~2020/1/31 | Relative Humidity: | 40~51 | %  |

|      | <u>TEST RESULTS DATA</u><br>20dB and 99% Occupied Bandwidth and Hopping Channel Separation |     |     |                |                  |                        |                                                       |                                                             |           |  |
|------|--------------------------------------------------------------------------------------------|-----|-----|----------------|------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------|--|
| Mod. | Data<br>Rate                                                                               | NTX | CH. | Freq.<br>(MHz) | 20db BW<br>(MHz) | 99% Bandwidth<br>(MHz) | Hopping Channel<br>Separation<br>Measurement<br>(kHz) | Hopping Channel<br>Separation<br>Measurement<br>Limit (MHz) | Pass/Fail |  |
| DH   | 1Mbps                                                                                      | 1   | 0   | 2402           | 0.854            | 0.761                  | 1002.900                                              | 0.5692                                                      | Pass      |  |
| DH   | 1Mbps                                                                                      | 1   | 39  | 2441           | 0.854            | 0.761                  | 1002.900                                              | 0.5692                                                      | Pass      |  |
| DH   | 1Mbps                                                                                      | 1   | 78  | 2480           | 0.857            | 0.770                  | 933.400                                               | 0.5711                                                      | Pass      |  |
| 2DH  | 2Mbps                                                                                      | 1   | 0   | 2402           | 1.237            | 1.140                  | 1167.900                                              | 0.8249                                                      | Pass      |  |
| 2DH  | 2Mbps                                                                                      | 1   | 39  | 2441           | 1.242            | 1.140                  | 1319.800                                              | 0.8278                                                      | Pass      |  |
| 2DH  | 2Mbps                                                                                      | 1   | 78  | 2480           | 1.242            | 1.143                  | 1315.500                                              | 0.8278                                                      | Pass      |  |
| 3DH  | 3Mbps                                                                                      | 1   | 0   | 2402           | 1.211            | 1.140                  | 1059.300                                              | 0.8075                                                      | Pass      |  |
| 3DH  | 3Mbps                                                                                      | 1   | 39  | 2441           | 1.216            | 1.123                  | 1315.500                                              | 0.8104                                                      | Pass      |  |
| 3DH  | 3Mbps                                                                                      | 1   | 78  | 2480           | 1.211            | 1.123                  | 998.600                                               | 0.8075                                                      | Pass      |  |

| <u>TEST RESULTS DATA</u><br>Dwell Time |                                   |                                      |                                             |                     |                 |           |  |  |  |  |
|----------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------|---------------------|-----------------|-----------|--|--|--|--|
| Mod.                                   | Hopping<br>Channel Number<br>Rate | Hops Over<br>Occupancy<br>Time(hops) | Package<br>Transfer<br>Time (msec)<br>(MHz) | Dwell Time<br>(sec) | Limits<br>(sec) | Pass/Fail |  |  |  |  |
| Nomal                                  | 79                                | 106.67                               | 2.90                                        | 0.31                | 0.4             | Pass      |  |  |  |  |
| AFH                                    | 20                                | 53.33                                | 2.90                                        | 0.15                | 0.4             | Pass      |  |  |  |  |

|      | <u>TEST RESULTS DATA</u><br><u>Peak Power Table</u> |     |            |             |        |  |  |  |  |  |
|------|-----------------------------------------------------|-----|------------|-------------|--------|--|--|--|--|--|
| DH   | CH.                                                 | NTX | Peak Power | Power Limit | Test   |  |  |  |  |  |
|      | -                                                   |     | (dBm)      | (dBm)       | Result |  |  |  |  |  |
|      | 0                                                   | 1   | 9.17       | 20.97       | Pass   |  |  |  |  |  |
|      | 39                                                  | 1   | 9.71       | 20.97       | Pass   |  |  |  |  |  |
|      | 78                                                  | 1   | 9.43       | 20.97       | Pass   |  |  |  |  |  |
|      |                                                     |     |            |             |        |  |  |  |  |  |
| 2DH  | CH.                                                 | NTX | Peak Power | Power Limit | Test   |  |  |  |  |  |
|      |                                                     |     | (dBm)      | (dBm)       | Result |  |  |  |  |  |
|      | 0                                                   | 1   | 8.87       | 20.97       | Pass   |  |  |  |  |  |
| 2DH1 | 39                                                  | 1   | 8.96       | 20.97       | Pass   |  |  |  |  |  |
|      | 78                                                  | 1   | 9.32       | 20.97       | Pass   |  |  |  |  |  |
|      |                                                     |     |            |             |        |  |  |  |  |  |
| 3DH  | CH.                                                 | NTX | Peak Power | Power Limit | Test   |  |  |  |  |  |
| 0211 |                                                     |     | (dBm)      | (dBm)       | Result |  |  |  |  |  |
|      | 0                                                   | 1   | 8.89       | 20.97       | Pass   |  |  |  |  |  |
| 3DH1 | 39                                                  | 1   | 8.92       | 20.97       | Pass   |  |  |  |  |  |
|      | 78                                                  | 1   | 9.33       | 20.97       | Pass   |  |  |  |  |  |


| <u>TEST RESULTS DATA</u><br>Number of Hopping Frequency |                                            |                     |           |  |  |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------|---------------------|-----------|--|--|--|--|--|--|
| Number of Hopping<br>(Channel)                          | Adaptive Frequency<br>Hopping<br>(Channel) | Limits<br>(Channel) | Pass/Fail |  |  |  |  |  |  |
| 79                                                      | 79                                         | > 15                | Pass      |  |  |  |  |  |  |



# **Appendix B. AC Conducted Emission Test Results**

| Fest Engineer : | Amoo Zhong               |                                                 | Temperature :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.6~27.2°C         |
|-----------------|--------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| lest Engineer.  | Amos Zhang               |                                                 | Relative Humidity :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35~37%              |
| Fest Voltage :  | 120Vac / 60Hz            |                                                 | Phase :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Line                |
| Remark :        | All emissions not        | reported here are more t                        | han 10 dB below the pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | escribed limit.     |
| 80 Level        | (dBuV)                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 70.0            |                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 60.0            |                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FCC PART 15C        |
| 50.0            |                          |                                                 | FCC P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ART 15C(AVG)        |
| 40.0            | A MADAGARA AT I          | L. OL AND MARKING                               | And the second s | hallon,             |
| 30.0 4          |                          |                                                 | 1 Walkard Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X.                  |
| 20.0            |                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Manager and Manager |
| 10.0            |                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 0.15            | .2 .5                    | 1 2                                             | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 30               |
| Site            | : CO01-KS                | Frequency (MHz)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                 |                          | 5C LISN-L-191028-060105 LINE                    | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| Condition       |                          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                 | Over<br>Freq Level Limit | Limit Read LISN Cable<br>Line Level Factor Loss | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|                 |                          |                                                 | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |





Note:

- 1. Level(dB $\mu$ V) = Read Level(dB $\mu$ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB $\mu$ V) Limit Line(dB $\mu$ V)

Table Peak Pol.



ΒT

Note

# Appendix C. Radiated Spurious Emission

## 2.4GHz 2400~2483.5MHz

# BT (Band Edge @ 3m) Frequency Level Over Limit Read Antenna Cable Preamp Antenna Limit Limit Line Level Factor Loss Factor Pos (MHz) (dBµV/m) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm)

|             |   |                                   |            | Limit   | Line       | Level         | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|-------------|---|-----------------------------------|------------|---------|------------|---------------|----------|--------|--------|--------|-------|-------|-------|
|             |   | (MHz)                             | ( dBµV/m ) | (dB)    | ( dBµV/m ) | (dBµV)        | ( dB/m ) | ( dB ) | ( dB ) | ( cm ) | (deg) | (P/A) | (H/V) |
|             |   | 2314.68                           | 53.48      | -20.52  | 74         | 48.15         | 31.15    | 6.89   | 32.71  | 308    | 97    | Ρ     | н     |
|             |   | 2314.68                           | 28.69      | -25.31  | 54         | -             | -        | -      | -      | -      | -     | А     | н     |
|             | * | 2402                              | 104.64     | -       | -          | 99.02         | 31.2     | 7.04   | 32.62  | 308    | 97    | Ρ     | Н     |
| BT<br>CH00  |   | 2402                              | 79.85      | -       | -          | -             | -        | -      | -      | -      | -     | А     | Н     |
| 2402MHz     |   | 2352.38                           | 52.8       | -21.2   | 74         | 47.31         | 31.18    | 6.98   | 32.67  | 390    | 169   | Ρ     | V     |
| 240210112   |   | 2352.38                           | 28.01      | -25.99  | 54         | -             | -        | -      | -      | -      | -     | А     | V     |
|             | * | 2402                              | 102.82     | -       | -          | 97.2          | 31.2     | 7.04   | 32.62  | 390    | 169   | Ρ     | V     |
|             |   | 2402                              | 78.03      | -       | -          | -             | -        | -      | -      | -      | -     | А     | V     |
|             |   | 2485.54                           | 54.4       | -19.6   | 74         | 48.07         | 31.77    | 7.16   | 32.6   | 329    | 99    | Ρ     | Н     |
|             |   | 2485.54                           | 29.61      | -24.39  | 54         | -             | -        | -      | -      | -      | -     | А     | Н     |
| рт          | * | 2480                              | 105.07     | -       | -          | 98.74         | 31.77    | 7.16   | 32.6   | 329    | 99    | Ρ     | Н     |
| ВТ<br>СН 78 |   | 2480                              | 80.28      | -       | -          | -             | -        | -      | -      | -      | -     | А     | Н     |
| 2480MHz     |   | 2484.28                           | 54.56      | -19.44  | 74         | 48.23         | 31.77    | 7.16   | 32.6   | 376    | 31    | Ρ     | V     |
| 24001112    |   | 2484.28                           | 29.77      | -24.23  | 54         | -             | -        | -      | -      | -      | -     | А     | V     |
|             | * | 2480                              | 101.05     | -       | -          | 94.72         | 31.77    | 7.16   | 32.6   | 376    | 31    | Ρ     | V     |
|             |   | 2480                              | 76.26      | -       | -          | -             | -        | -      | -      | -      | -     | А     | V     |
| Remark      |   | o other spurio<br>I results are P |            | st Peak | and Averag | je limit line | e.       |        |        |        |       |       |       |



| BT (Harmonic @ 3m) |      |                                   |            |               |                    |              |                    |              |        |      |       |       |       |
|--------------------|------|-----------------------------------|------------|---------------|--------------------|--------------|--------------------|--------------|--------|------|-------|-------|-------|
| вт                 | Note | Frequency                         | Level      | Over          | Limit              | Read         | Antenna            | Cable        | Preamp | Ant  | Table | Peak  | Pol.  |
|                    |      | (MHz)                             | (dBµV/m)   | Limit<br>(dB) | Line<br>( dBµV/m ) |              | Factor<br>( dB/m ) | Loss<br>(dB) | Factor | Pos  | Pos   | Avg.  | /⊔^/  |
| BT                 |      | ( 10172 )                         | ( ασμν/π ) | (ub)          | (ασμν/ιπ)          | (dBµV)       | ( 06/11 )          | (UB)         | (dB)   | (cm) | (deg) | (P/A) | (п/v) |
|                    |      | 4806                              | 38.06      | -35.94        | 74                 | 57.11        | 33.7               | 9.81         | 62.56  | 150  | 360   | Р     | Н     |
| CH 00              |      | 4000                              | 00.04      | 04.00         | 74                 | 50.00        | 00.7               | 0.04         | 00.50  | 450  | 000   |       |       |
| 2402MHz            |      | 4806                              | 39.31      | -34.69        | 74                 | 58.36        | 33.7               | 9.81         | 62.56  | 150  | 360   | Р     | V     |
| 57                 |      | 4884                              | 39.74      | -34.26        | 74                 | 58.56        | 33.77              | 9.95         | 62.54  | 100  | 360   | Р     | н     |
| BT                 |      | 7320                              | 40.43      | -33.57        | 74                 | 55.55        | 35.89              | 12.64        | 63.65  | 100  | 360   | Р     | н     |
| CH 39<br>2441MHz   |      | 4884                              | 38.78      | -35.22        | 74                 | 57.6         | 33.77              | 9.95         | 62.54  | 100  | 360   | Р     | V     |
| 244 111172         |      | 7320                              | 41.22      | -32.78        | 74                 | 56.34        | 35.89              | 12.64        | 63.65  | 100  | 360   | Ρ     | V     |
|                    |      | 4962                              | 39.15      | -34.85        | 74                 | 57.68        | 33.85              | 10.13        | 62.51  | 150  | 360   | Ρ     | Н     |
| ВТ<br>СН 78        |      | 7440                              | 39.22      | -34.78        | 74                 | 55.04        | 36.11              | 12.84        | 64.77  | 150  | 360   | Ρ     | Н     |
| 2480MHz            |      | 4962                              | 38.12      | -35.88        | 74                 | 56.65        | 33.85              | 10.13        | 62.51  | 150  | 360   | Р     | V     |
| 24001112           |      | 7440                              | 38.73      | -35.27        | 74                 | 54.55        | 36.11              | 12.84        | 64.77  | 150  | 360   | Р     | V     |
| Remark             |      | o other spurio<br>I results are P |            | st Peak       | and Averag         | je limit lin | e.                 |              |        |      |       |       |       |

#### 2.4GHz 2400~2483.5MHz



# Emission below 1GHz

# 2.4GHz BT (LF)

| BT           | Note | Frequency                         | Level      | Over        | Limit    | Read   | Antenna  | Cable  | Preamp | Ant    | Table | Peak  | Pol.  |
|--------------|------|-----------------------------------|------------|-------------|----------|--------|----------|--------|--------|--------|-------|-------|-------|
|              |      |                                   |            | Limit       | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
|              |      | (MHz)                             | ( dBµV/m ) | (dB)        | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
|              |      | 49.4                              | 17.89      | -22.11      | 40       | 35.85  | 14.3     | 0.7    | 32.96  | -      | -     | Ρ     | Н     |
|              |      | 120.21                            | 32.03      | -11.47      | 43.5     | 45.65  | 18.2     | 1.12   | 32.94  | 100    | 360   | Р     | Н     |
|              |      | 185.2                             | 28.52      | -14.98      | 43.5     | 44.63  | 15.38    | 1.43   | 32.92  | -      | -     | Р     | Н     |
|              |      | 220.12                            | 26.99      | -19.01      | 46       | 43.01  | 15.3     | 1.62   | 32.94  | -      | -     | Р     | Н     |
| 0.4011-      |      | 259.89                            | 25.32      | -20.68      | 46       | 36.77  | 19.8     | 1.75   | 33     | -      | -     | Ρ     | Н     |
| 2.4GHz<br>BT |      | 593.57                            | 22.39      | -23.61      | 46       | 28.62  | 24.53    | 2.58   | 33.34  | -      | -     | Р     | Н     |
| LF           |      | 48.43                             | 17.29      | -22.71      | 40       | 34.86  | 14.7     | 0.69   | 32.96  | -      | -     | Р     | V     |
| -            |      | 117.3                             | 24.13      | -19.37      | 43.5     | 37.95  | 18.01    | 1.1    | 32.93  | -      | -     | Р     | V     |
|              |      | 195.87                            | 26.15      | -17.35      | 43.5     | 42.01  | 15.54    | 1.51   | 32.91  | -      | -     | Р     | V     |
|              |      | 264.74                            | 30.75      | -15.25      | 46       | 42.4   | 19.59    | 1.76   | 33     | 100    | 0     | Ρ     | V     |
|              |      | 442.25                            | 19.37      | -26.63      | 46       | 27.91  | 22.46    | 2.21   | 33.21  | -      | -     | Ρ     | V     |
|              |      | 839.95                            | 24.21      | -21.79      | 46       | 27.52  | 26.26    | 3.1    | 32.67  | -      | -     | Р     | V     |
| Remark       |      | o other spurio<br>I results are P |            | st limit li | ne.      |        |          |        |        |        |       |       |       |



# Note symbol

| *   | Fundamental Frequency which can be ignored. However, the level of any       |
|-----|-----------------------------------------------------------------------------|
|     | unwanted emissions shall not exceed the level of the fundamental frequency. |
| !   | Test result is <b>over limit</b> line.                                      |
| P/A | Peak or Average                                                             |
| H/V | Horizontal or Vertical                                                      |



# A calculation example for radiated spurious emission is shown as below:

| WIFI    | Note | Frequency | Level    | Over   | Limit    | Read   | Antenna  | Cable  | Preamp | Ant    | Table | Peak  | Pol.  |
|---------|------|-----------|----------|--------|----------|--------|----------|--------|--------|--------|-------|-------|-------|
| Ant.    |      |           |          | Limit  | Line     | Level  | Factor   | Loss   | Factor | Pos    | Pos   | Avg.  |       |
| 1+2     |      | (MHz)     | (dBµV/m) | ( dB ) | (dBµV/m) | (dBµV) | ( dB/m ) | ( dB ) | (dB)   | ( cm ) | (deg) | (P/A) | (H/V) |
| 802.11b |      | 2390      | 55.45    | -18.55 | 74       | 54.51  | 32.22    | 4.58   | 35.86  | 103    | 308   | Р     | н     |
| CH 01   |      |           |          |        |          |        |          |        |        |        |       |       |       |
| 2412MHz |      | 2390      | 43.54    | -10.46 | 54       | 42.6   | 32.22    | 4.58   | 35.86  | 103    | 308   | А     | Н     |

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

#### For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

```
= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

#### For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".




# Appendix D. Duty Cycle Plots

DH5 on time (One Pulse) Plot on Channel 39

| Swept               |                   | ·                               | •     | +   |                                                        |        |                            |              |                                           |                            |                  |                                          | \$                      | Marker   | • 🔣                 |
|---------------------|-------------------|---------------------------------|-------|-----|--------------------------------------------------------|--------|----------------------------|--------------|-------------------------------------------|----------------------------|------------------|------------------------------------------|-------------------------|----------|---------------------|
|                     | SIGHT             | Input: F<br>Couplin<br>Align: ( |       |     | Input Z: 50 Ω<br>Corrections: Off<br>Freq Ref: Int (S) |        | Atten: 10 dB               | Gate<br>IF G | : Fast<br>: Off<br>ain: Low<br>'rack: Off | #Avg Type:<br>Trig: Free F | Power (RM<br>Run | S <mark>123456</mark><br>WWWWWW<br>PPPPP | Select Mark<br>Marker 3 | er       |                     |
| N<br>1 Spect        |                   |                                 | ۲     |     |                                                        |        | LvI Offset                 | 6.00 dB      | TACK. OII                                 |                            | ΔMkr3            | 3.750 ms<br>-0.01 dB                     | Marker ∆ T<br>3.75000 m |          | Settings            |
| Log                 | Div 10 o          | 38                              | . 1   |     |                                                        | Ref    | Level 112.9<br><u>∧2∆1</u> |              |                                           |                            |                  | -0.01 08                                 | Marker Mo               | de       | Peak<br>Search      |
| 103<br>93.0<br>83.0 |                   |                                 | Ŷ     |     |                                                        |        |                            |              |                                           | _                          |                  |                                          | Normal                  |          | Pk Search<br>Config |
|                     |                   |                                 |       |     |                                                        |        |                            |              |                                           |                            |                  |                                          | Delta (2)               | 7)       | Properties          |
| 53.0<br>53.0        |                   | 1                               |       |     |                                                        |        |                            |              |                                           |                            |                  |                                          | Fixed                   |          | Marker              |
| 43.0<br>33.0 —      | W                 | ki kopana                       | ×     |     |                                                        |        | had have                   | M            |                                           |                            | MP 4W            | ***                                      | Off                     |          | Function            |
|                     |                   |                                 |       |     |                                                        |        |                            |              |                                           |                            |                  |                                          | Delta                   | Marker   | Marker→             |
|                     | 2.4020<br>N 1.0 M |                                 | GHz   |     |                                                        | #\     | /ideo BW 1.                | 0 MHz        |                                           | Sv                         | veep 10.0        | Span 0 Hz<br>ms (1001 pts)               | (Rese<br>Marker Tab     | t Delta) | Counter             |
| 5 Marke             | er Table          |                                 | •     |     |                                                        |        |                            |              |                                           |                            |                  |                                          | On                      |          |                     |
|                     | Mode              | Trace                           | Scale |     | Х                                                      |        | Y                          | Fund         | tion                                      | Function Width             | n Fund           | tion Value                               | / Marker                | Settings |                     |
| 1                   | Ν                 | 1                               | t     |     | 1.520 n                                                |        | 96.80 dBµ\                 |              |                                           |                            |                  |                                          |                         | gram     |                     |
| 2                   | Δ1                | 1                               | t     | (Δ) | 2.880 n                                                | ns (Δ) | 0.01617 dl                 | 3            |                                           |                            |                  |                                          |                         |          |                     |
| 3<br>4              | Δ1                | 1                               | t     | (Δ) | 3.750 h                                                | 1S (Δ- | 0.007349 di                | <u> </u>     |                                           |                            |                  |                                          | All Mar                 | kers Off |                     |
| 5                   |                   |                                 |       |     |                                                        |        |                            |              |                                           |                            |                  |                                          | Couple Ma<br>On<br>Off  | rkers    | 1                   |
| A                   | บ                 | 2                               |       | ?   | Mar 02, 2020<br>9:47:32 AM                             | 0      |                            |              |                                           |                            | H N.             |                                          |                         |          |                     |

# DH5 on time (Count Pulses) Plot on Channel 39



#### Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 \* 2.88 / 100 = 5.76 %
- 2. Worst case Duty cycle correction factor = 20\*log(Duty cycle) = -24.79 dB
- 3. DH5 has the highest duty cycle worst case and is reported.