

FCC RF Test Report

APPLICANT	:	ZTE CORPORATION
EQUIPMENT	:	LTE/WCDMA/GSM Multi-Mode Digital
		Mobile Phone
BRAND NAME	:	ZTE
MODEL NAME	:	Z2335CA
FCC ID	:	SRQ-Z2335CA
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DSS) Spread Spectrum Transmitter

The product was received on Sep. 25, 2019 and testing was completed on Nov. 05, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes, Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	6
	1.5	Modification of EUT	6
	1.6	Testing Location	7
	1.7	Applicable Standards	7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Test Mode	9
	2.3	Connection Diagram of Test System	.10
	2.4	Support Unit used in test configuration and system	.11
	2.5	EUT Operation Test Setup	.12
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	.13
	3.1	Number of Channel Measurement	.13
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	.21
	3.4	20dB and 99% Bandwidth Measurement	.23
	3.5	Output Power Measurement	.34
	3.6	Conducted Band Edges Measurement	.35
	3.7	Conducted Spurious Emission Measurement	.42
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	.58
4	LIST	OF MEASURING EQUIPMENT	.59
5	UNCE	ERTAINTY OF EVALUATION	.60
AP	PEND	X A. CONDUCTED TEST RESULTS	
AP	PEND	X B. AC CONDUCTED EMISSION TEST RESULT	
		X C. RADIATED SPURIOUS EMISSION	
AP	PEND	X D. DUTY CYCLE PLOTS	
AP	PEND	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Nov. 13, 2019

SUMMARY	OF TEST RESULT
---------	----------------

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.26 dB at 58.130 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 7.90 dB at 0.471 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: SRQ-Z2335CA

1 General Description

1.1 Applicant

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

1.2 Manufacturer

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment LTE/WCDMA/GSM Multi-Mode Digital Mobile Phone				
Brand Name ZTE				
Model Name	Z2335CA			
FCC ID	SRQ-Z2335CA			
	GSM/WCDMA/LTE			
FUT comparis Dadias combination	WLAN 2.4GHz 802.11b/g/n HT20			
EUT supports Radios application	Bluetooth BR/EDR/LE			
	GNSS/FM Receiver			
	Conducted: 862639046003333			
IMEI Code	Conduction: 862639046003077			
	Radiation: 862639046003192			
HW Version	Z2335CAHW1.0			
SW Version	Z2335CAV1.0.0B08			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	79		
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78		
Maximum Output Power to Antenna	Bluetooth BR(1Mbps) : 11.68 dBm (0.0147 W) Bluetooth EDR (2Mbps) : 12.45 dBm (0.0176 W) Bluetooth EDR (3Mbps) : 12.97 dBm (0.0198 W)		
99% Occupied Bandwidth	Bluetooth BR(1Mbps) : 0.906MHz Bluetooth EDR (2Mbps) : 1.181MHz Bluetooth EDR (3Mbps) : 1.178MHz		
Antenna Type / Gain	PIFA Antenna with gain 2.82 dBi		
Type of Modulation	Bluetooth BR (1Mbps) : GFSK Bluetooth EDR (2Mbps) : π /4-DQPSK Bluetooth EDR (3Mbps) : 8-DPSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.					
	No. 1098, Pengxi North	n Road, Kunshan Econom	ic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China					
	TEL : +86-512-57900158					
	FAX : +86-512-57900958					
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.			
Test Site No.	TH01-KS CO01-KS 03CH05-KS	CN1257	314309			

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

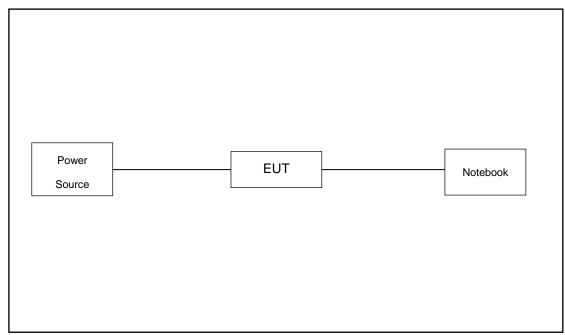
2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

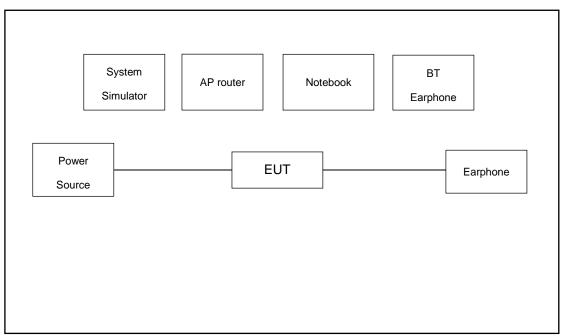
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
	Data Rate / Modulation						
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps				
	GFSK	π /4-DQPSK	8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	B	luetooth EDR 3Mbps 8-DPS	К				
Radiated		Mode 1: CH00_2402 MHz					
Test Cases		Mode 2: CH39_2441 MHz					
		Mode 3: CH78_2480 MHz					
AC	Made 4 + COM 950 Idle + D	lucto oth Link () All AN Link ()	(C) + USD Cable (Charging				
Conducted		luetooth Link + WLAN Link (2.	.4G) + USB Cable (Charging				
Emission	from Adapter 2) + Earphone + Battery Emission						
Remark:							
1. For radiate	ed test cases, the worst mode	data rate 3Mbps was reported	only, because this data rate				
has the hig	hest RF output power at prelir	ninary tests, and no other sign	ificantly frequencies found in				
conducted	spurious emission.						
2 Ear Dadiat	For Dedicted Test Occess. The tests were performed with Adapter and Fornhane						


The following summary table is showing all test modes to demonstrate in compliance with the standard.

2. For Radiated Test Cases, The tests were performed with Adapter and Earphone



2.3 Connection Diagram of Test System

For Radiation

For Conducted Emission

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritus	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	QDS-BRCM1050I	PRC4	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
5.	Earphone	N/A	N/A	N/A	N/A	N/A
6.	SD Card	Kingston	SDC4/4GB	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, the engineering test program was provided and enabled to make EUT connect with Bluetooth base station to continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example : The spectrum analyzer offset is derived from RF cable loss. *Offset = RF cable loss.* Following shows an offset computation example with cable loss 6.2 dB.

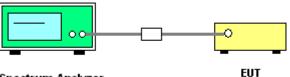
 $Offset(dB) = RF \ cable \ loss(dB)$ = 6.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

Spectrum Ref Level			6.20 dB 👄	anu ana la	-				U V
Att	16.20 dBr 20 dl			VBW 300 kF		Auto FFT			
1Pk Max		20-27		12				23.	
	www	ww	MW	hur	pm	m	ww	ww	ww
) dBm——									
-10 dBm									
-20 dBm									
30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
Start 2.4 G	Hz			691	pts				2.441 GHz
						J			

Number of Hopping Channel Plot on Channel 00 - 78

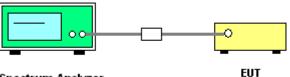
Spectrum Spectrum Ref Level 16.20 dBm Offset 6.20 dB ● RBW 300 kHz SWT 38.1 µs ● VBW 300 kHz Mode Auto FFT Att 20 dB ●1Pk Ma 10/980 W. T WW VV U 7 V Λ 0 dBn -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm--70 dBm -80 dBm-Start 2.441 GHz 691 pts Stop 2.4835 GHz 44 n

Date: 20.OCT.2019 11:27:27

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

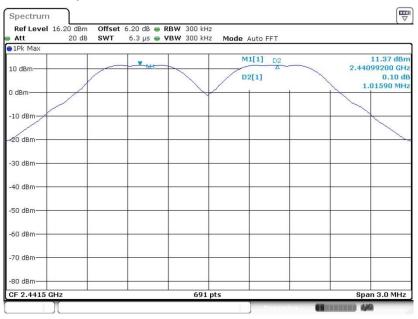
- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

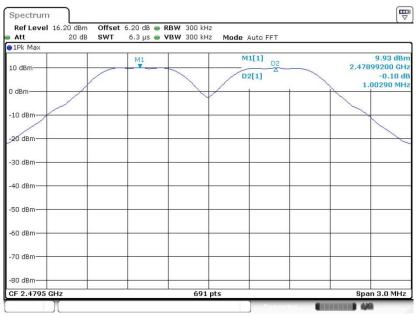
Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

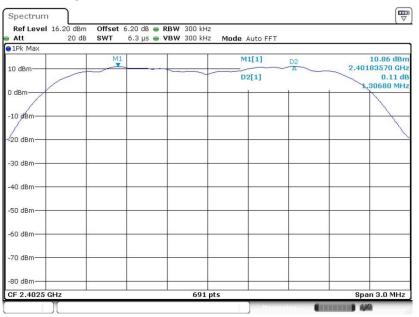

<1Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 20.OCT.2019 11:35:48

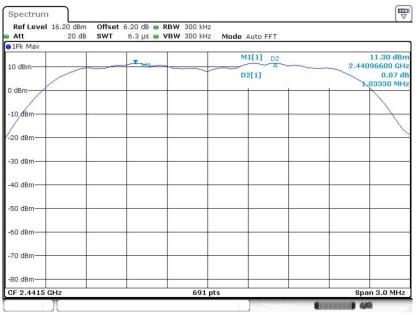
Channel Separation Plot on Channel 39 - 40

Date: 20.OCT.2019 11:45:47



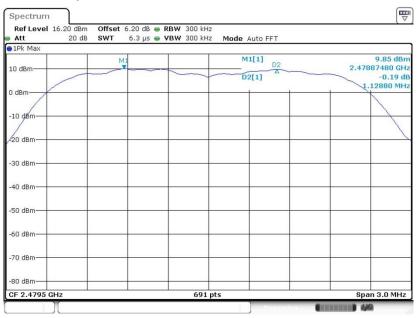
Channel Separation Plot on Channel 77 - 78

Date: 20.OCT.2019 11:50:24


<2Mbps>

Channel Separation Plot on Channel 00 - 01

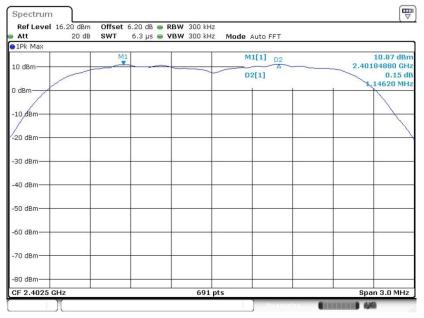
Date: 20.OCT.2019 12:15:30



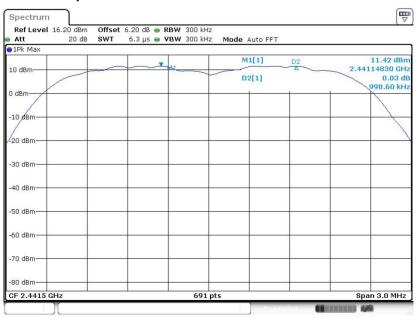
Channel Separation Plot on Channel 39 - 40

Date: 20.OCT.2019 12:06:29

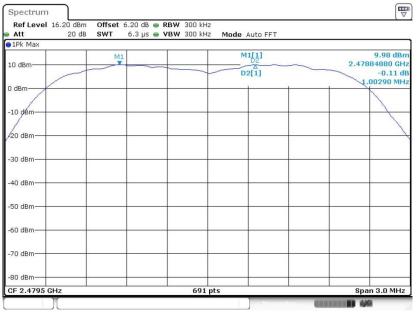
Channel Separation Plot on Channel 77 - 78



Date: 20.OCT.2019 12:00:32


<3Mbps>

Channel Separation Plot on Channel 00 - 01


Date: 20.OCT.2019 13:19:43

Channel Separation Plot on Channel 39 - 40

Date: 20.OCT.2019 13:13:41

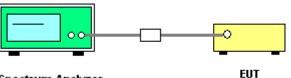
Channel Separation Plot on Channel 77 - 78

Date: 20.OCT.2019 13:06:40

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

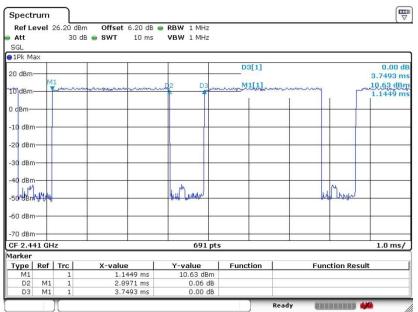

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup



Spectrum Analyzer

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

Package Transfer Time Plot

Remark:

 In normal mode, hopping rate is 1600 hops/s with 6 slots (5 Transmit and 1 Receive slot) in 79 hopping channels.

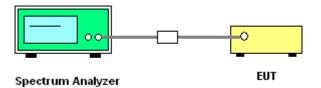
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.

- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
 With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
 Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 99% bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

<1Mbps>

20 dB Bandwidth Plot on Channel 00

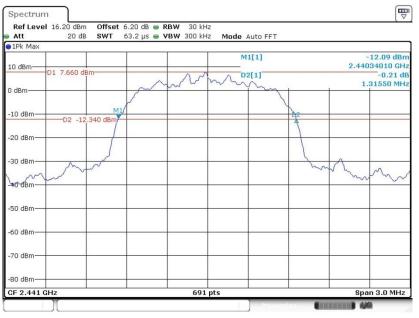
Date: 20.OCT.2019 11:37:16

20 dB Bandwidth Plot on Channel 39

Date: 20.OCT.2019 11:47:09

20 dB Bandwidth Plot on Channel 78

Date: 20.OCT.2019 11:54:10


<2Mbps>

20 dB Bandwidth Plot on Channel 00

Date: 20.OCT.2019 12:14:38

20 dB Bandwidth Plot on Channel 39

Date: 20.0CT.2019 12:08:04

20 dB Bandwidth Plot on Channel 78

Date: 20.OCT.2019 12:54:55

<3Mbps>

20 dB Bandwidth Plot on Channel 00

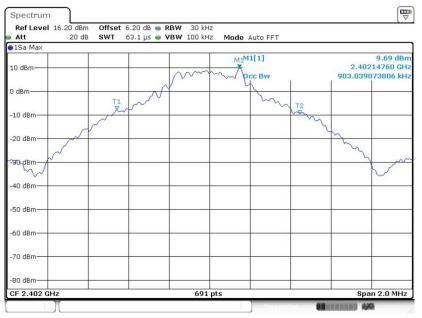
Date: 20.OCT.2019 13:18:00

20 dB Bandwidth Plot on Channel 39

Date: 20.OCT.2019 13:11:59

20 dB Bandwidth Plot on Channel 78

Date: 20.OCT.2019 12:59:41



3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

<1Mbps>

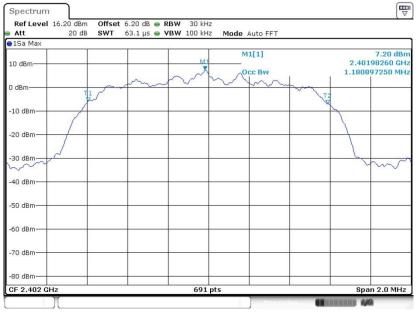
99% Occupied Bandwidth Plot on Channel 00

Date: 20.OCT.2019 11:38:12

99% Occupied Bandwidth Plot on Channel 39

Date: 20.OCT.2019 11:47:43

99% Occupied Bandwidth Plot on Channel 78



Date: 20.OCT.2019 11:54:49

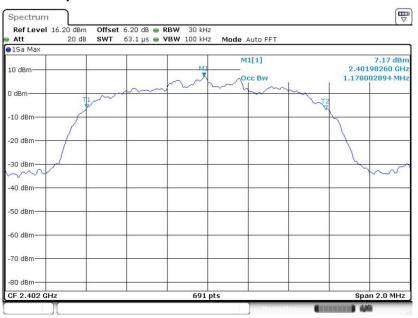
<2Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 20.OCT.2019 12:12:57

99% Occupied Bandwidth Plot on Channel 39

Date: 20.OCT.2019 12:08:39



99% Occupied Bandwidth Plot on Channel 78

Date: 20.OCT.2019 12:02:58

<3Mbps>

99% Occupied Bandwidth Plot on Channel 00

Date: 20.OCT.2019 13:15:50

99% Occupied Bandwidth Plot on Channel 39

Date: 20.0CT.2019 13:10:43

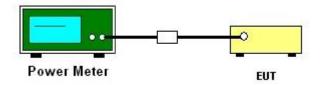
Date: 20.OCT.2019 12:58:04

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

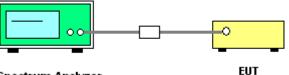
3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

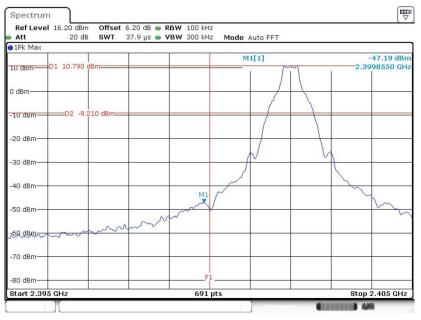

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup


Spectrum Analyzer

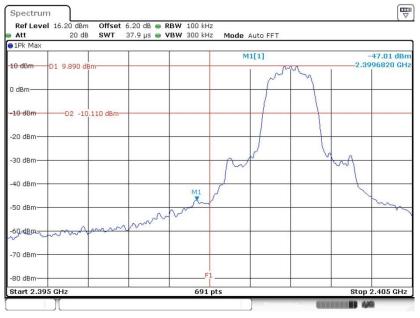
3.6.5 Test Result of Conducted Band Edges


<1Mbps>

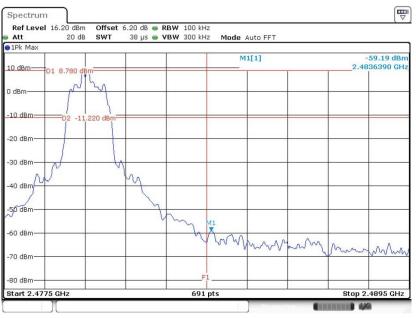
Low Band Edge Plot on Channel 00

Date: 20.OCT.2019 11:38:32

High Band Edge Plot on Channel 78



Date: 20.OCT.2019 11:52:17

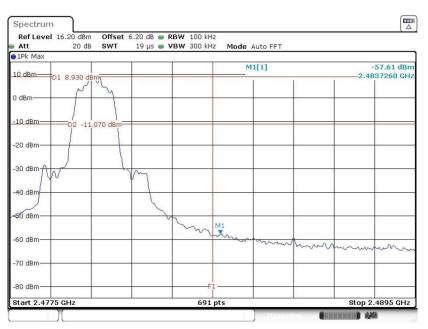

<2Mbps>

Low Band Edge Plot on Channel 00

Date: 20.OCT.2019 12:13:20

High Band Edge Plot on Channel 78

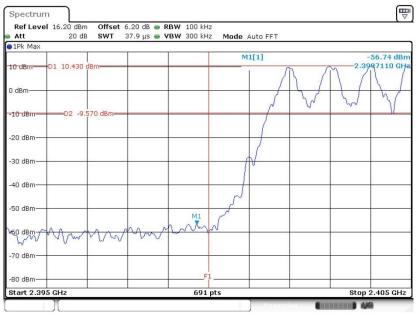
Date: 20.OCT.2019 12:02:17


<3Mbps>

Low Band Edge Plot on Channel 00

Date: 20.OCT.2019 13:16:41

High Band Edge Plot on Channel 78


Date: 8.NOV.2019 06:41:45

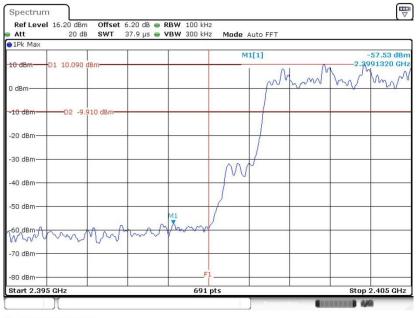
3.6.6 Test Result of Conducted Hopping Mode Band Edges

<1Mbps>

Hopping Mode Low Band Edge Plot

Date: 20.0CT.2019 11:34:12

Hopping Mode High Band Edge Plot



Date: 20.OCT.2019 11:33:34


<2Mbps>

Hopping Mode Low Band Edge Plot

Date: 20.OCT.2019 11:31:07

Hopping Mode High Band Edge Plot

Date: 20.OCT.2019 11:30:32