Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 E-mail, ethl@chinattl.com Http://www.chinattl.cn #### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 57.1Ω- 0.57jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.6dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 56.0Ω+3.31jΩ | | |--------------------------------------|--------------|--| | Return Loss | - 23.7dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.192 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: Z14-97075 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Date: 01.09.2014 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China #### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $s_r = 40.2$; p = 1000 kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.48, 4.48, 4.48); Calibrated: 2013-09-05; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8), SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.583 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.3 W/kg 0 dB = 17.3 W/kg = 12.38 dBW/kg Certificate No: Z14-97075 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z14-97075 Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail; cttl@chinattl.com Http://www.chinattl.cn Date: 01.09.2014 #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.988$ S/m; $\epsilon_r = 51.25$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.21, 4.21, 4.21); Calibrated: 2013-09-03; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 2014-01-23 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/2 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.120 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.2 W/kg Maximum value of SAR (measured) = 17.7 W/kg 0 dB = 17.7 W/kg = 12.48 dBW/kg Certificate No: Z14-97075 Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z14-97075 Page 8 of 8 ## **ANNEX I: D2600V2 Dipole Calibration Certificate** Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates TA /Audam) Accreditation No.: SCS 108 | | ERTIFICATE | | | |---|---|--|---| | Object | D2600V2 - SN: 1 | 025 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ove 700 MHz | | Calibration date: | December 08, 20 | 014 | | | This calibration certificate docum | ents the traceability to nati | onal standards, which realize the physical un
robability are given on the following pages ar | its of measurements (SI). Indicate are part of the certificate. | | All calibrations have been conduc | cted in the closed laborator | ry facility: environment temperature (22 ± 3)°(| C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID #
GB37480704 | Cal Date (Certificate No.)
07-Oct-14 (No. 217-02020) | Scheduled Calibration Oct-15 | | Power meter EPM-442A | | | | | Power meter EPM-442A
Power sensor HP 8481A | GB37480704 | 07-Oct-14 (No. 217-02020) | Oct-15 | | Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A | GB37480704
US37292783 | 07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02020) | Oct-15
Oct-15 | | Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327 | 07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02021) | Oct-15
Oct-15
Oct-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205 | 07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02021)
03-Apr-14 (No. 217-01918) | Oct-15
Oct-15
Oct-15
Apr-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327 | 07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02020)
07-Oct-14 (No. 217-02021)
03-Apr-14 (No. 217-01918)
03-Apr-14 (No. 217-01921) | Oct-15
Oct-15
Oct-15
Apr-15
Apr-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) | Oct-15
Oct-15
Oct-15
Apr-15
Apr-15
Dec-14 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205
SN: 601 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) | Oct-15
Oct-15
Oct-15
Apr-15
Apr-15
Dec-14
Aug-15 | | Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205
SN: 601 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) | Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205
SN: 601 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) | Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 3205
SN: 601
ID #
100005
US37390585 S4206 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) | Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) | Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E | GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 | 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02020) 07-Oct-14 (No. 217-02021) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-14) | Oct-15 Oct-15 Oct-15 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-15 | Certificate No: D2600V2-1025_Dec14 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1025_Dec14 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | ин орассі | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 2.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.4 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.5 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.4 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 56.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.36 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 25.1 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1025_Dec14 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.7 Ω - 6.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.2 dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.6 Ω - 5.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.6 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.150 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|--------------|--| | Manufactured on | May 13, 2008 | | Certificate No: D2600V2-1025_Dec14 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 08.12.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.46, 4.46, 4.46); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.3 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.4 W/kg Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg = 12.88 dBW/kg Certificate No: D2600V2-1025_Dec14 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1025_Dec14 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 08.12.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### **DASY52 Configuration:** • Probe: ES3DV3 - SN3205; ConvF(4.24, 4.24, 4.24); Calibrated: 30.12.2013; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2014 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.72 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.9 W/kg **SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.36 W/kg** Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg Certificate No: D2600V2-1025_Dec14 Page 7 of 8 ### Impedance Measurement Plot for Body TSL # **ANNEX J: DAE4 Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 | | ERTIFICATE | | | |---|--|---|--| | bject | DAE4 - SD 000 D0 | 4 BM - SN: 1317 | | | Calibration procedure(s) | QA CAL-06.v29
Calibration proced | ure for the data acquisition electro | onics (DAE) | | Calibration date: | August 02, 2016 | | | | The measurements and the unce | rtainties with confidence pro | nal standards, which realize the physical units obability are given on the following pages and a facility: environment temperature $(22 \pm 3)^{\circ}$ C are | re part of the certificate. | | | | Cal Date (Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&
Primary Standards
Keithley Multimeter Type 2001 | ID # SN: 0810278 | Cal Date (Certificate No.)
09-Sep-15 (No:17153) | Scheduled Calibration Sep-16 | | Primary Standards Keithley Multimeter Type 2001 | ID #
SN: 0810278 | 09-Sep-15 (No:17153) | Sep-16 | | Primary Standards | ID # SN: 0810278 ID # SE UWS 053 AA 1001 | | | | Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit | ID # SN: 0810278 ID # SE UWS 053 AA 1001 | 09-Sep-15 (No:17153) Check Date (in house) 05-Jan-16 (in house check) | Sep-16 Scheduled Check In house check: Jan-17 | | Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name | 09-Sep-15 (No:17153) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check) | Sep-16 Scheduled Check In house check: Jan-17 In house check: Jan-17 | | Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name | 09-Sep-15 (No:17153) Check Date (in house) 05-Jan-16 (in house check) 05-Jan-16 (in house check) | Sep-16 Scheduled Check In house check: Jan-17 In house check: Jan-17 | Certificate No: DAE4-1317_Aug16 Page 1 of 5 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1317_Aug16 Page 2 of 5 ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | 2 | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 403.696 ± 0.02% (k=2) | 404 461 ± 0.02% (k=2) | 403 818 ± 0.02% (k=2) | | Low Range | 3.97862 ± 1.50% (k=2) | 3 96348 ± 1.50% (k=2) | 3 96891 ± 1.50% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY | system | 117.0°±1" | |--|--|-----------| | The second secon | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. | | Certificate No. DAE4-1317_Aug16 Page 3 of 5 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200032.79 | -3.68 | -0.00 | | Channel X + Input | 20006.07 | 1.13 | 0.01 | | Channel X - Input | -20003.21 | 2.37 | -0.01 | | Channel Y + Input | 200031.96 | -4.57 | -0.00 | | Channel Y + Input | 20005.25 | 0.33 | 0.00 | | Channel Y - Input | -20004.62 | 1.11 | -0.01 | | Channel Z + Input | 200034.76 | -1.90 | -0.00 | | Channel Z + Input | 20003.54 | -1.36 | -0.01 | | Channel Z - Input | -20007.05 | -1.23 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.07 | 0.05 | 0.00 | | Channel X | + Input | 200.98 | 0.05 | 0.03 | | Channel X | - Input | -198.75 | 0.16 | -0.08 | | Channel Y | + Input | 2001.23 | 0.25 | 0.01 | | Channel Y | + Input | 200.04 | -0.72 | -0.36 | | Channel Y | - Input | -199.83 | -0.78 | 0.39 | | Channel Z | + Input | 2000.78 | -0.03 | -0.00 | | Channel Z | + Input | 200.06 | -0.74 | -0.37 | | Channel Z | - Input | -201.07 | -1.98 | 1.00 | ### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 12.74 | 10.34 | | | - 200 | -8.06 | -10.25 | | Channel Y | 200 | 10.89 | 10.77 | | | - 200 | -11.81 | -11.91 | | Channel Z | 200 | 1.17 | 1.05 | | | - 200 | -3.56 | -3.36 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 1.62 | -5.02 | | Channel Y | 200 | 8.83 | | 2.99 | | Channel Z | 200 | 10.37 | 5.96 | <u>-</u> | Certificate No: DAE4-1317_Aug16 Page 4 of 5 ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15752 | 15528 | | Channel Y | 16479 | 15966 | | Channel Z | 16106 | 15725 | #### 5. Input Offset Measurement DÅSY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.01 | -0.95 | 1.23 | 0.46 | | Channel Y | 0.35 | -1.00 | 1.91 | 0.54 | | Channel Z | -1.31 | -3.35 | 0.42 | 0.79 | ### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-1317_Aug16 # **ANNEX K: The EUT Appearances and Test Configuration** a: EUT Picture 8: Constituents of EUT Picture 9: Back Side, the distance from handset to the bottom of the Phantom is 10mm Picture 10: Front Side, the distance from handset to the bottom of the Phantom is 10mm Picture 11: Left Side, the distance from handset to the bottom of the Phantom is 10mm Picture 12: Right Side, the distance from handset to the bottom of the Phantom is 10mm Picture 13: Top Side, the distance from handset to the bottom of the Phantom is 10mm Picture 14: Bottom Side, the distance from handset to the bottom of the Phantom is 10mm