

ANNEX C: Calibration Reports

EP261 Probe Calibration Report
SID835 Dipole Calibration Report
SID1800 Dipole Calibration Report
SID1900 Dipole Calibration Report
SID2450 Dipole Calibration Report
SID2600 Dipole Calibration Report

EP261 Probe Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref: ACR.332.2.18.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 27/15 EPGO261

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/20/18

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.332.2.18.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	11/21/2018	JES
Checked by :	Jérôme LUC	Product Manager	11/21/2018	23
Approved by :	Kim RUTKOWSKI	Quality Manager	11/21/2018	Rum Authoushi

	Customer Name
	CCIC SOUTHERN
	ELECTRONIC
Distribution:	PRODUCT
Distribution .	TESTING
	(SHENZHEN) Co.,
	Ltd

Issue	Date	Modifications
A	11/21/2018	Initial release

Ref: ACR.332.2.18.SATU.A

TABLE OF CONTENTS

1	Devi	ice Under Test4	
2	Prod	nct Description4	
	2.1	General Information	4
3	Mea	surement Method 4	
	3.1	Linearity	4
			5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
		surement Uncertainty5	
5	Calil	bration Measurement Results 6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
			8
6	List	of Equipment9	

Ref: ACR.332.2.18.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 27/15 EPGO261		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.7 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.219 MΩ		
	Dipole 2: R2=0.220 MΩ		
	Dipole 3: R3=0.226 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref: ACR.332.2.18.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	1	2.887%

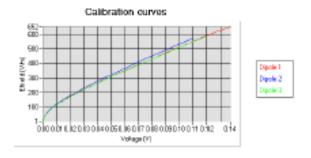
Page: 5/9

Ref: ACR.332.2.18.SATU.A

Field probe linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

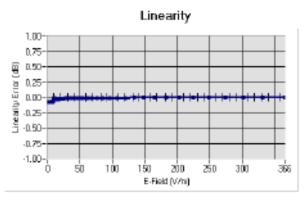

5.1 SENSITIVITY IN AIR

Normx dipole 1 (μV/(V/m) ²)		
0.89	0.63	0.72

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
91	94	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$


Page: 6/9

Ref: ACR.332.2.18.SATU.A

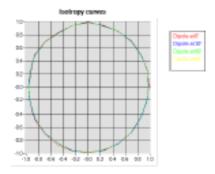
5.2 LINEARITY

Linearity[]+/-1.75% (+/-0.08dB)

5.3 SENSITIVITY IN LIQUID

Liquid	(MHz +/-	Permittivity	Epsilon (S/m)	ConvF
HL5200	100MHz) 5200	35.19	4.79	2.30
BL5200	5200	49.10	5.20	2.37
HL5400	5400	34.58	4.71	2.00
BL5400	5400	49.60	5.44	2.15
HL5600	5600	37.00	5.03	2.14
BL5600	5600	47.51	5.69	2.20
HL5800	5800	34.67	5.12	2.26
BL5800	5800	49.79	5.90	2.38

LOWER DETECTION LIMIT: 9mW/kg



Ref: ACR.332.2.18.SATU.A

5.4 ISOTROPY

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.10 dB

Ref: ACR.332.2.18.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Manufacturer / Description Model		Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Reference Probe	MVG	EP 94 SN 37/08	10/2018	10/2019
Multimeter	Kelthley 2000	1188656	01/2017	01/2020
Signal Generator	Aglient E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	
Wavegulde	Mega Industries	DEDV7_158_13_719	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020

SID835 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.332.4.17.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 835 MHZ SERIAL NO.: SN 09/13 DIP 0G835-217

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.332.4.17.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	11/28/2017	JS
Checked by:	Jérôme LUC	Product Manager	11/28/2017	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	11/28/2017	Mim Authoushi

	Customer Name
	CCIC SOUTHERN
Distribution	ELECTRONIC PRODUCT
Distribution :	TESTING
	(SHENZHEN) Co.,
	Ltd

Issue	Date	Modifications
A	11/28/2017	Initial release

Ref: ACR.332.4.17.SATU.A

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Calil	pration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Valie	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment11	

Ref: ACR.332.4.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID835		
Serial Number	SN 09/13 DIP 0G835-217		
Product Condition (new / used)	Used		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Ref: ACR.332.4.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

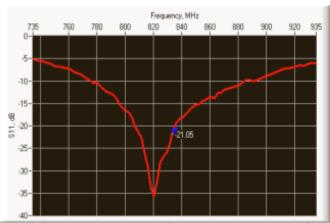
Length (mm)	Expanded Uncertainty on Length	
3 - 300	0.05 mm	

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

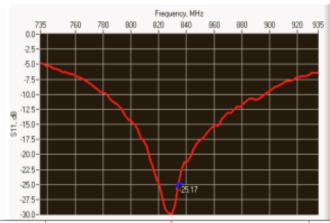
Scan Volume		Expanded Uncertainty	
	1 g	20.3 %	

Page: 5/11



Ref: ACR.332.4.17.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance
835 -21.05 -20 59.7 Ω + 0.2 j Ω

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-25.17	-20	$55.1 \Omega + 2.7 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR 332.4.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε,')		Conductivity (a) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.332.4.17.SATU.A

1800	40.0 ±5 %	1.40 ±5 %
1900	40.0 ±5 %	1.40 ±5 %
1950	40.0 ±5 %	1.40 ±5 %
2000	40.0 ±5 %	1.40 ±5 %
2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1.80 ±5 %
2600	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

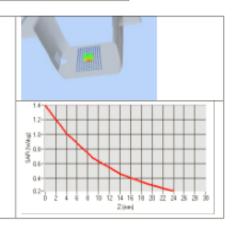
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 40.7 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.61 (0.96)	6.22	6.19 (0.62
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	

Page: 8/11



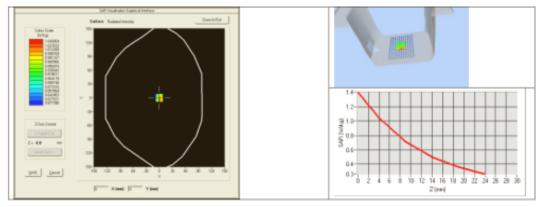
Ref: ACR.332.4.17.SATU.A

1900	39.7	20.5
1950	40.5	20.9
2000	41.1	21.1
2100	43.6	21.9
2300	48.7	23.3
2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25
3700	67.4	24.2

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_{r}')		Conductivity (a) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	PASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2300	52.9 ±5 %		1.81 ±5 %	

Page: 9/11


Ref: ACR.332.4.17.SATU.A

2450	52.7 ±5 %	1.95 ±5 %
2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
3700	51.0 ±5 %	3.55 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 55.1 sigma: 1.00
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx-8mm/dy-8mm/dz-5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	9.88 (0.99)	6.47 (0.65)

Page: 10/11

Ref: ACR.332.4.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	100000000000000000000000000000000000000	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019	
Calipers	Carrera	CALIPER-01	01/2017	01/2020	
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018	
Multimeter	Keithley 2000	1188656	01/2017	01/2020	
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	01/2017	01/2020	
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020	

SID1800 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.332.6.17.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: SN 09/13 DIP 1G800-216

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.332.6.17.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	11/28/2017	J\$
Checked by:	Jérôme LUC	Product Manager	11/28/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	11/28/2017	Kim Puthowski

	Customer Name
	CCIC SOUTHERN
	ELECTRONIC
Distribution .	PRODUCT
Distribution:	TESTING
	(SHENZHEN) Co.,
	Ltd

Issue	Date	Modifications
A	11/28/2017	Initial release

Ref: ACR.332.6.17.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	rice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Ca1	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment 11	

Ref: ACR.332.6.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type COMOSAR 1800 MHz REFERENCE DIPO				
Manufacturer	MVG			
Model	SID1800			
Serial Number	SN 09/13 DIP 1G800-216			
Product Condition (new / used) Used				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEL/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Ref: ACR 332.617.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

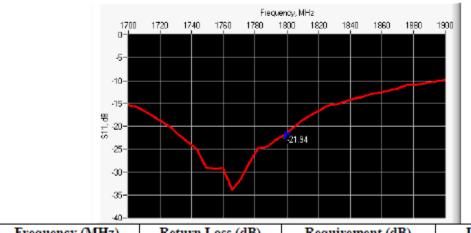
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

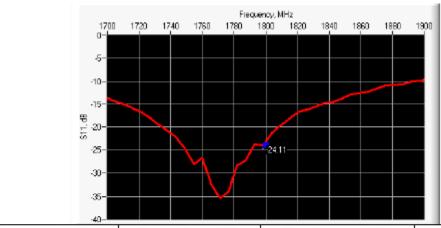
Scan Volume	Expanded Uncertainty		
1 g	20.3 %		

Page: 5/11



Ref: ACR.332.6.17.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 1800 -21.94 -20 $44.7 \Omega + 5.3 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1800	-24.11	-20	$44.3 \Omega + 1.2 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Lmm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.332.6.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PASS
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (s _r ')		ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.332.6.17.SATU.A

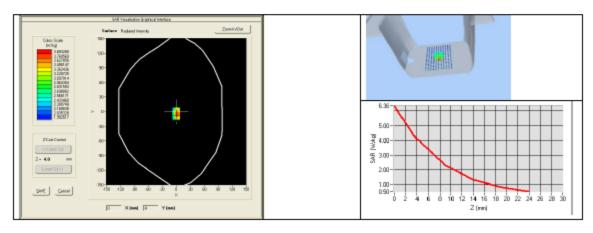
1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 40.6 sigma: 1.39
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	37.35 (3.73)	20.1	19.83 (1.98)


Page: 8/11

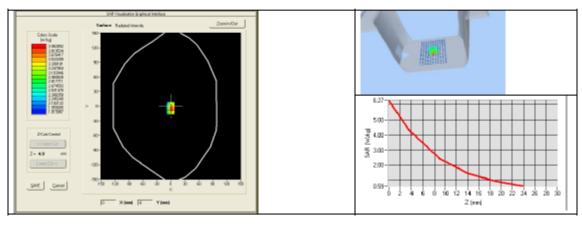
Ref: ACR.332.6.17.SATU.A

1900	39.7	20.5	
1950	40.5	20.9	
2000	41.1	21.1	
2100	43.6	21.9	
2300	48.7	23.3	
2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	
3700	67.4	24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	Relative permittivity (s _r ')		ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2300	52.9 ±5 %		1.81 ±5 %	

Page: 9/11


Ref: ACR.332.6.17.SATU.A

2450	52.7 ±5 %	1.95 ±5 %	
2600	52.5 ±5 %	2.16 ±5 %	
3000	52.0 ±5 %	2.73 ±5 %	
3500	51.3 ±5 %	3.31 ±5 %	
3700	51.0 ±5 %	3.55 ±5 %	
5200	49.0 ±10 %	5.30 ±10 %	
5300	48.9 ±10 %	5.42 ±10 %	
5400	48.7 ±10 %	5.53 ±10 %	
5500	48.6 ±10 %	5.65 ±10 %	
5600	48.5 ±10 %	5.77 ±10 %	
5800	48.2 ±10 %	6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 53.2 sigma: 1.47
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
1800	37.68 (3.77)	20.26 (2.03)

Page: 10/11

Ref: ACR.332.6.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	· · I I I I I I I I I I I I I I I I I I		Next Calibration Date	
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	01/2017	01/2020
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020

SID1900 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.332.7.17.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA

MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ SERIAL NO.: SN 09/13 DIP 1G900-218

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR 332.7.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/28/2017	JE
Checked by :	Jérôme LUC	Product Manager	11/28/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	11/28/2017	them thethowski

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co.,
	Ltd

Issue	Date	Modifications
Α	11/28/2017	Initial release

Ref: ACR 332.7.17.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2	Dev	rice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Mea	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results 6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	V als	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment 11	

Ref: ACR 332.7.17.SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 1900 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID1900	
Serial Number	SN 09/13 DIP 1G900-218	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

Ref: ACR 332.7.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the forementioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEIMEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

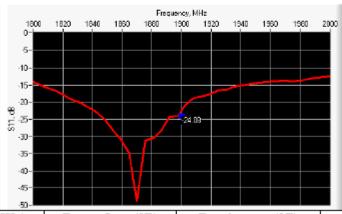
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %

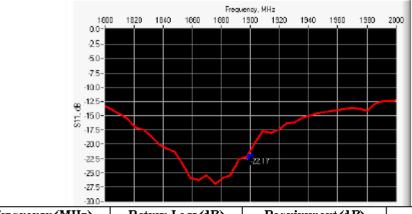
Page: 5/11



Ref: ACR 332.7.17.SATU A

10 g 20.1 %

6 CALIBRATION MEASUREMENT RESULTS


6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

 Frequency (MHz)
 Return Loss (dB)
 Requirement (dB)
 Impedance

 1900
 -24.08
 -20
 51.2 Ω+6.3 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz) Return Loss (dB)		Requirement (dB) Impedant			
1900	-22.17	-20	46.8 Ω+6.8 iΩ		

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		Hz Lmm hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0±1 %.		250.0±1%.		6.35±1.%.	

Page: 6/11

Ref: ACR 332.7.17.SATU.A

450 2900 年 9 1667 年 9 1667 年 9 1667 日 9 1667							
835 161.0 ± %. 89.8 ± %. 3.6 ± %. 3.	450	290.0±1 %.		1667±1%.		6.35±1.%.	
900 149 0 ± %. 83.3 ± %. 3.6 ± %. 1450 89.1 ± %. 51.7 ± %. 3.6 ± %. 3.6 ± %. 1500 80.5 ± %. 50.0 ± %. 3.6 ± %. 3.6 ± %. 1640 79.0 ± %. 45.7 ± %. 3.6 ± %. 3.6 ± %. 1750 75.2 ± %. 429 ± %. 3.6 ± %. 3.6 ± %. 1800 72.0 ± %. 41.7 ± %. 3.6 ± %. 1900 68.0 ± %. PASS 39.5 ± %. PASS 3.6 ± %. PASS 1950 66.3 ± %. 37.5 ± %. 3.6 ± %. 3.6 ± %. 2000 64.5 ± %. 37.5 ± %. 3.6 ± %. 3.6 ± %. 2000 55.5 ± %. 32.6 ± %. 32.6 ± %. 3.6 ± %. 2450 51.5 ± %. 30.4 ± %. 30.4 ± %. 36.5 ± %. 2600 48.5 ± %. 2600 44.5 ± %. 2600 44.5 ± %. 26.4 ± %. 36.5 ±	750	1760±1%.		100.0±1 %.		6.35±1.%.	
1450 89.1 ± %. 51.7 ± %. 3.6 ± %. 1500 80.5 ± %. 50.0 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 42.9 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 9ASS 39.5 ± %. PASS 3.6 ± %. 9ASS 39.5 ± %. PASS 3.6 ± %.	835	1610±1%.		89 S ±1 %.		3.6±1 %.	
1500 80.5 ± %. 50.0 ± %. 3.6 ± %. 1640 79.0 ± %. 45.7 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 3.6 ± %. 9ASS 39.5 ± %. PASS 3.6 ± %. 3.	900	149.0±1%.		83.3 ±1 %.		3.6±1 %.	
1640 79.0 ± %. 45.7 ± %. 3.6 ± %. 1750 75.2 ± %. 42.9 ± %. 3.6 ± %. 1800 72.0 ± %. 41.7 ± %. 3.6 ± %. 1900 68.0 ± %. PASS 39.5 ± %. PASS 3.6 ± %. PASS 1950 66.3 ± %. 37.5 ± %. 36.5 ± %. 2000 64.5 ± %. 37.5 ± %. 36.5 ± %. 36.5 ± %. 2300 55.5 ± %. 32.6 ± %. 32.6 ± %. 36.5 ± %. 2450 51.5 ± %. 30.4 ± %. 36.5 ± %. 36	1450	89.1 ±1 %.		51.7 ±1 %.		3.6±1 %.	
1750 75.2 ± %. 429 ± %. 3.6 ± %. 1800 72.0 ± %. 41.7 ± %. 3.6 ± %. 1900 68.0 ± %. PASS 395 ± %. PASS 1950 66.3 ± %. 35 ± %. 3.6 ± %. 2000 64.5 ± %. 37.5 ± %. 3.6 ± %. 2100 61.0 ± %. 32.6 ± %. 3.6 ± %. 2300 55.5 ± %. 32.6 ± %. 3.6 ± %. 2450 51.5 ± %. 30.4 ± %. 3.6 ± %. 2600 48.5 ± %. 28.5 ± %. 3.6 ± %. 3000 41.5 ± %. 26.4 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	1500	80.5 ±1 %.		50.0 ±1 %.		3.6±1 %.	
1800 72.0 ± %. 41.7 ± %. 3.6 ± %. PASS 195 ± %. PASS 3.6 ± %. PASS 1950 66.3 ± %. 35 ± %. 3.6 ± %.	1640	79.0±1%.		45.7 ±1 %.		3.6±1 %.	
1900 68.0 ± %. PASS 39.5 ± %. PASS 3.6 ± %. 1950 66.3 ± %. 38.5 ± %. 3.6 ± %. 2000 64.5 ± %. 37.5 ± %. 3.6 ± %. 2100 61.0 ± %. 32.6 ± %. 3.6 ± %. 2300 55.5 ± %. 32.6 ± %. 3.6 ± %. 2450 51.5 ± %. 30.4 ± %. 3.6 ± %. 2600 48.5 ± %. 28.2 ± %. 3.6 ± %. 3000 41.5 ± %. 26.4 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	1750	75.2±1%.		429 ±1 %.		3.6±1 %.	
1950 66.3±%. 38.5±%. 3.6±%. 2000 64.5±%. 37.5±%. 3.6±%. 2100 61.0±%. 37.5±%. 3.6±%. 2300 55.5±%. 32.6±%. 3.6±%. 2450 51.5±%. 30.4±%. 3.6±%. 2600 48.5±%. 28.5±%. 3.6±%. 3000 41.5±%. 26.4±%. 3.6±%.	1800	72.0±1 %.		41.7 ±1 %.		3.6±1 %.	
2000 64.5 ± %. 37.5 ± %. 3.6 ± %. 2100 61.0 ± %. 35.7 ± %. 3.6 ± %. 2300 55.5 ± %. 32.6 ± %. 3.6 ± %. 2450 51.5 ± %. 30.4 ± %. 3.6 ± %. 2600 48.5 ± %. 28.5 ± %. 3.6 ± %. 3000 41.5 ± %. 26.0 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	1900	68.0±1%.	PASS	395±1%.	PASS	3.6±1 %.	PASS
2100 61.0 ± %. 35.7 ± %. 3.6 ± %. 2300 55.5 ± %. 32.6 ± %. 3.6 ± %. 2450 51.5 ± %. 30.4 ± %. 3.6 ± %. 2600 48.5 ± %. 28.2 ± %. 3.6 ± %. 3000 41.5 ± %. 26.4 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	1950	66.3±1%.		38.5 ±1.96.		3.6±1 %.	
2300 55.5 ± %. 32.6 ± %. 3.6 ± %. 2450 51.5 ± %. 30.4 ± %. 3.6 ± %. 2600 48.5 ± %. 28.8 ± %. 3.6 ± %. 3000 41.5 ± %. 25.0 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	2000	64.5 ±1 %.		37.5 ±1.%.		3.6±1 %.	
2450 51.5 ± %. 30.4 ± %. 3.6 ± %. 2600 48.5 ± %. 28.8 ± %. 3.6 ± %. 3000 41.5 ± %. 25.0 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	2100	61.0±1%.		35.7 ±1.%.		3.6±1 %.	
2600 48.5 ± %. 28.8 ± %. 3.6 ± %. 3000 41.5 ± %. 25.0 ± %. 3.6 ± %. 3500 37.0 ± %. 26.4 ± %. 3.6 ± %.	2300	55.5 ±1 %.		32.6 ±1 %.		3.6±1 %.	
3000 41.5 ± %. 万.0 ± %. 3.6 ± %. 3500 37.0 ± %. 264 ± %. 3.6 ± %.	2450	51.5 ±1 %.		30.4 ±1.%.		3.6±1 %.	
3500 37.0±%. 264±%. 3.6±%.	2600	48.5 ±1 %.		28.8 ±1.%.		3.6±1 %.	
	3000	41.5 ±1 %.		201%		3.6±1 %.	
750 7575 87	3500	37.0±1.%.		264 ±1 %.		3.6±1 %.	
3/00 34./±1%. 264±1%. 3.6±1%.	3700	34.7±1 %.		264 ±1 %.		3.6±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s /)		Conductivi	itγ (a) s/m
	required	measured	required	measured
300	45.3±5%		0.87 ±5 %	
450	435±5%		0.87 ±5 %	
750	419±5%		0.89 ±5 %	
835	415±5%		0.90±5%	
900	415±5%		0.97 ±5 %	
1450	405±5%		1.20±5%	
1500	40.4±5%		1.23±5 %	
1640	40.2±5 %		1.31±5%	
1750	401±5%		1.37 ±5 %	

Page: 7/11

Ref: ACR 332.7.17.SATU A

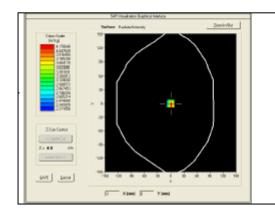
1800	40.0±5%		1.40±5%	
1900	40.0±5%	PASS	1.40±5%	PASS
1950	40.0±5%		1.40±5%	
2000	40.0±5%		1.40±5%	
2100	398±5%		1.49 ±5 %	
2300	395±5%		1.67±5%	
2450	39.2±5 %		1.80±5%	
2600	39.0±5%		1.96±5%	
3000	385±5%		2.40±5%	
3500	379±5%		2.91 ±5 %	

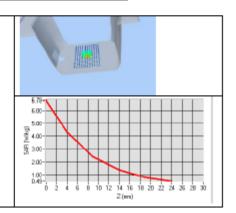
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Pharttorn	SN 2009 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 41.2 sigma: 1.37
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Irput power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1gSAR (W/kg/W)		w/kg/w) 10g SAR (w/kg/w)	
	beniupen	measured	required	measured
300	2.85		194	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		699	
1450	29		16	
1500	30.5		168	
1640	34.2		18 <i>4</i>	
1750	36.4		19.3	
1800	38.4		201	


Page: 8/11



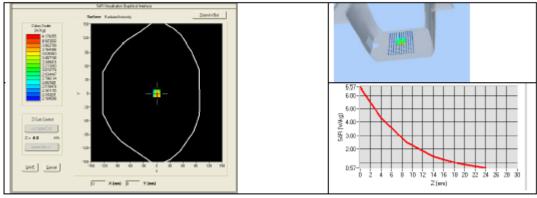
Ref: ACR 332.7.17.SATU.A

1900	39.7	39.35 (3.93)	205	20.48 (2.05)
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (g. /)		Conductivi	itγ (o) s/m
	required	measured	required	measured
150	619±5%		0.80±5%	
300	58.2±5 %		0.92±5%	
450	56.7 ±5 %		0.94±5%	
750	55.5.±5.%		0.96±5%	
835	55.2±5 %		0.97 ±5 %	
900	55.0±5%		1.05±5%	
915	55.0±5%		1.06±5%	
1450	54.0±5 %		1.30±5%	
1610	538±5%		1.40±5%	
1800	53.3±5 %		1.52±5%	
1900	53.3±5 %	PASS	1.52±5%	PASS
2000	53.3±5 %		1.52±5%	
2100	53.2±5 %		1.62±5%	
2300	529±5%		1.81 ±5 %	

Page: 9/11


Ref: ACR 332.7.17.SATU A

2450	52.7 ±5 %	1.95 ±5 %	
2600	525±5%	2.16±5 %	
3000	520±5%	2.73±5 %	
3500	51.3±5 %	3.31.±5 %	
3700	51.0±5 %	3.55 ±5 %	
5200	49.0±10%	5.30±10%	
5300	48.9±10%	5.42±10%	
5400	48.7±10%	553±10%	
5500	48.6±10%	5.65±10%	
5600	48.5±10%	5.77±10%	
5800	48.2±10%	6.00±10%	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phartom	SN 20/09 SAM/71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps ': 51.0 sigma: 1.52
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	1900 MHz
Irput power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (M/kg/៧)
	measured	meas ured
1900	38 84 (388)	20.47 (2.05)

Page: 10/11

Ref: ACR 332.7.17.SATU A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Mod el	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	01/2017	01/2020
Reference Probe	M∨G	EPG122 SN 18/11	10/2017	10/2018
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046		Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	'	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020

SID2450 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.332.9.17.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2450 MHZ SERIAL NO : SN 09/13 DIP 2G450

SERIAL NO.: SN 09/13 DIP 2G450-220

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.332.9.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/28/2017	JS
Checked by:	Jérôme LUC	Product Manager	11/28/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	11/28/2017	num Puthowski

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications
A	11/28/2017	Initial release

Ref: ACR.332.9.17.SATU.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	ice Under Test4	
3	Proc	fuct Description4	
	3.1	General Information	4
4	Mea	surement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	
5	Mea	surement Uncertainty 5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement_	
6	Cali	bration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Ref: ACR.332.9.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE	
Manufacturer	MVG	
Model	SID2450	
Serial Number	SN 09/13 DIP 2G450-220	
Product Condition (new / used)	Used	

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Ref: ACR 332 9 17 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

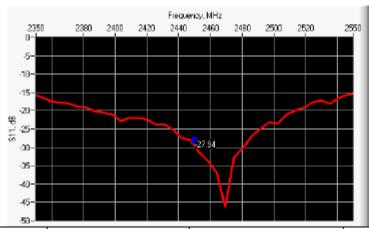
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

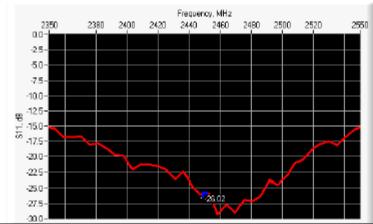
Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11



Ref: ACR.332.9.17.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-27.94	-20	$49.5 \Omega + 3.9 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-26.02	-20	$53.2 \Omega + 4.0 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Frequency MHz L mm h mm		d mm			
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.332.9.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s _r ')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.332.9.17.SATU.A

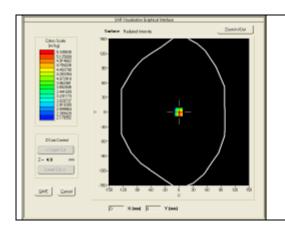
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

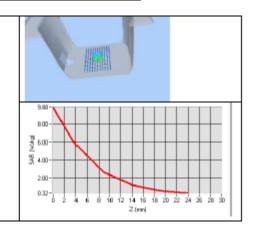
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 40.5 sigma: 1.87
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR ((W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	


Page: 8/11



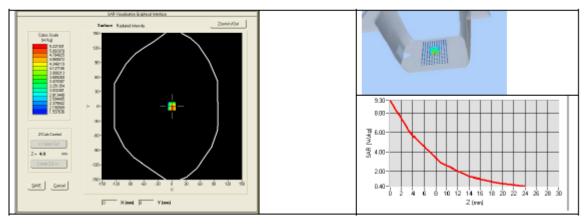
Ref: ACR.332.9.17.SATU.A

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	52.67 (5.27)	24	23.76 (2.38)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s _r ')	Conductivity (σ) S/m	
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2300	52.9 ±5 %		1.81 ±5 %	

Page: 9/11


Ref: ACR.332.9.17.SATU.A

2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
3700	51.0 ±5 %		3.55 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 54.6 sigma: 1.95
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	51.42 (5.14)	23.48 (2.35)

Page: 10/11

Ref: ACR.332.9.17.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019
Calipers	Carrera	CALIPER-01	01/2017	01/2020
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018
Multimeter	Keithley 2000	1188656	01/2017	01/2020
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	01/2017	01/2020
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020

SID2600 Dipole Calibration Report

SAR Reference Dipole Calibration Report

Ref: ACR.332.10.17.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, NO. 43 SHAHE ROAD, XILI JIEDAO, NANSHAN DISTRICT SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 2600 MHZ SERIAL NO.: SN 32/14 DIP 2G600-338

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 11/27/17

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.332.10.17.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/28/2017	JS
Checked by :	Jérôme LUC	Product Manager	11/28/2017	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	11/28/2017	- Rum Puthowski

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
A	11/28/2017	Initial release

Ref: ACR.332.10.17.SATU.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	rice Under Test4	
3	Proc	duct Description4	
	3.1	General Information	4
4	Mea	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	bration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Vali	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	of Equipment	

Ref: ACR.332.10.17.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR 2600 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID2600
Serial Number	SN 32/14 DIP 2G600-338
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Ref: ACR.332.10.17.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

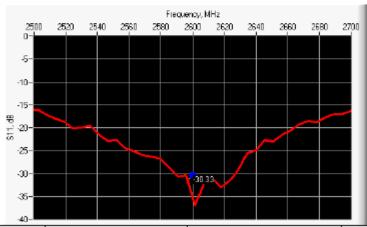
Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

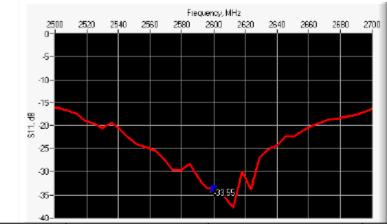
Scan Volume	Expanded Uncertainty
1 g	20.3 %

Page: 5/11



Ref: ACR.332.10.17.SATU.A

10 g	20.1 %


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2600	-30.33	-20	53.1 Ω - 0.7 jΩ

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2600	-33.55	-20	49.4 Ω - 2.1 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L mm		requency MHz L mm h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

Ref: ACR.332.10.17.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.	PASS	28.8 ±1 %.	PASS	3.6 ±1 %.	PASS
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s _r ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %	·	1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	

Page: 7/11

Ref: ACR.332.10.17.SATU.A

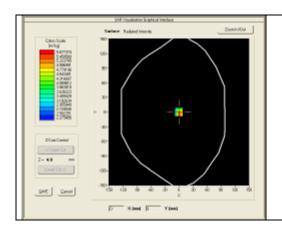
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %		1.80 ±5 %	
2600	39.0 ±5 %	PASS	1.96 ±5 %	PASS
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

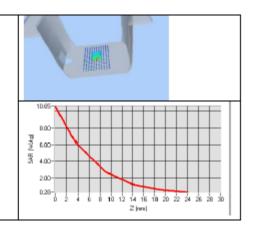
7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 38.5 sigma: 2.01
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR	1 g SAR (W/kg/W)		(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	


Page: 8/11



Ref: ACR.332.10.17.SATU.A

1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4		24	
2600	55.3	55.47 (5.55)	24.6	24.49 (2.45)
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (s _r ')	Conductivi	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2300	52.9 ±5 %		1.81 ±5 %	

Page: 9/11

Ref: ACR.332.10.17.SATU.A

2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %	PASS	2.16 ±5 %	PASS
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
3700	51.0 ±5 %		3.55 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 52.0 sigma: 2.16
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2600 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2600	53.45 (5.34)	24.00 (2.40)

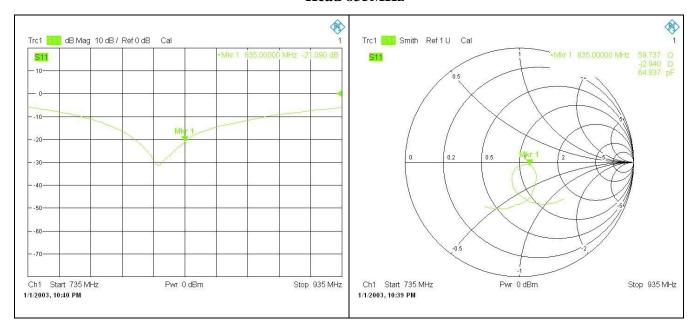
Page: 10/11

Ref: ACR.332.10.17.SATU.A

8 LIST OF EQUIPMENT

	Equipment Summary Sheet						
Equipment Manufacturer / Identification No Model		Identification No.	Current Calibration Date	Next Calibration Date			
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2016	02/2019			
Calipers	Carrera	CALIPER-01	01/2017	01/2020			
Reference Probe	MVG	EPG122 SN 18/11	10/2017	10/2018			
Multimeter	Keithley 2000	1188656	01/2017	01/2020			
Signal Generator	Agilent E4438C	MY49070581	01/2017	01/2020			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	01/2017	01/2020			
Power Sensor	HP ECP-E26A	US37181460	01/2017	01/2020			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Temperature and Humidity Sensor	Control Company	150798832	11/2017	11/2020			

<Justification of the extended calibration>

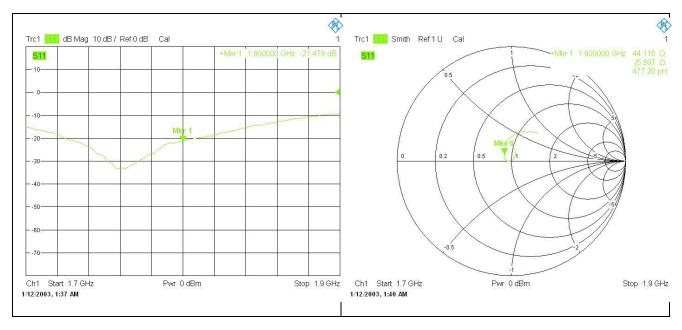

If dipoles are verified in return loss(<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Head 835MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2017.11.27	-21.05	-	59.7	-	
2019.11.26	-21.09	-0.93	59.74	0.04	

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.

<Dipole Verification Data>

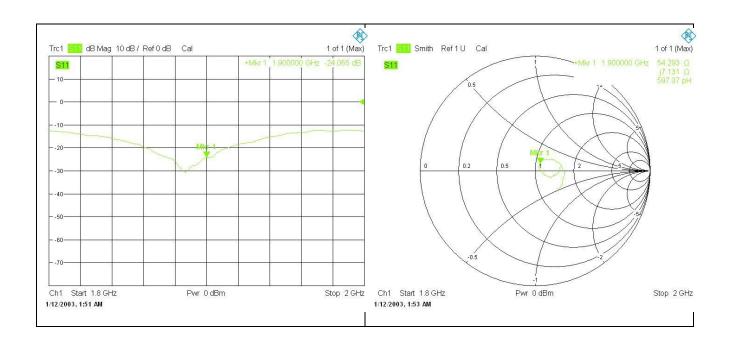
Head 835MHz



Head 1800MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2017.11.27	-21.94	-	44.7	-	
2019.11.26	-21.48	11.17	44.12	-0.58	

<Dipole Verification Data>

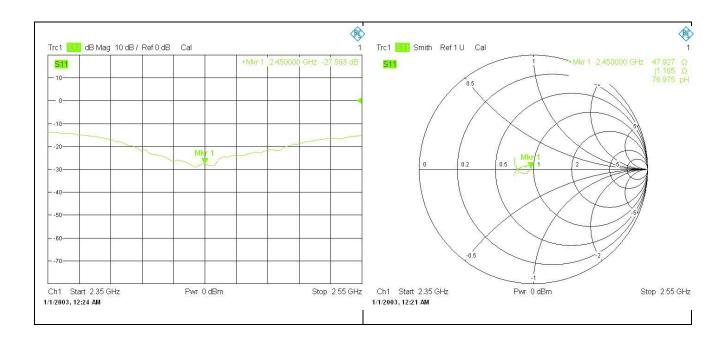
Head 1800MHz



Head 1900MHz					
Date of Measurement Return Loss (dB) Delta (%) Impedance Delta(oh					
2017.11.27	-24.08	-	51.2	-	
2019.11.26	-24.07	0.23	54.29	3.09	

<Dipole Verification Data>

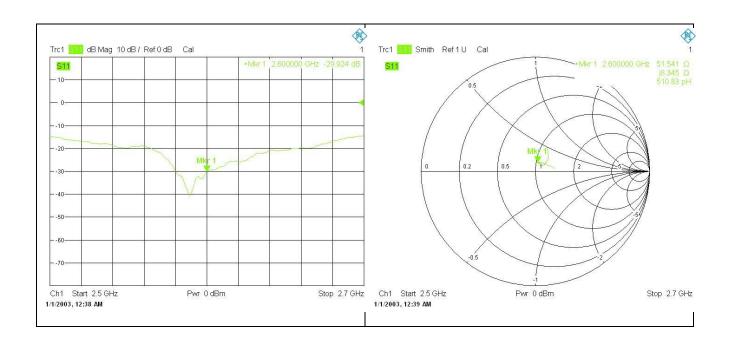
Head 1900MHz



Head 2450MHz					
Date of Measurement Return Loss (dB) Delta (%) Impedance Delta(oh)					
2017.11.27	-27.94	-	49.5	-	
2019.11.26	-27.59	8.39	47.93	-1.57	

<Dipole Verification Data>

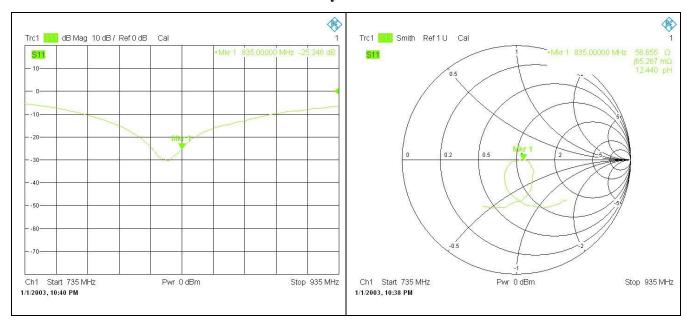
Head 2450MHz



Head 2600MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2017.11.27	-30.33	-	53.1	-	
2019.11.26	-29.92	9.90	51.54	-1.56	

<Dipole Verification Data>

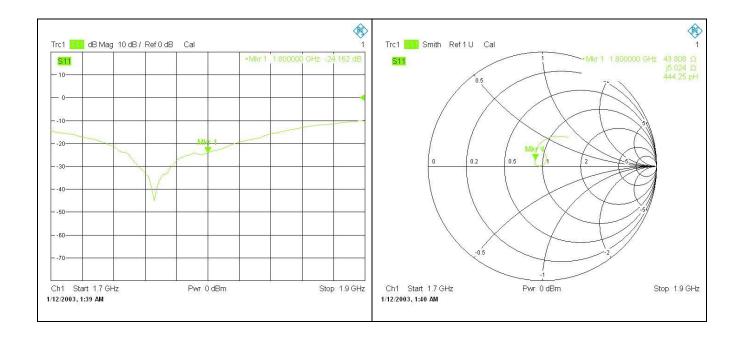
Head 2600MHz



Body 835MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2017.11.27	-25.17	-	55.1	-	
2019.11.26	-25.25	-1.86	56.65	1.55	

<Dipole Verification Data>

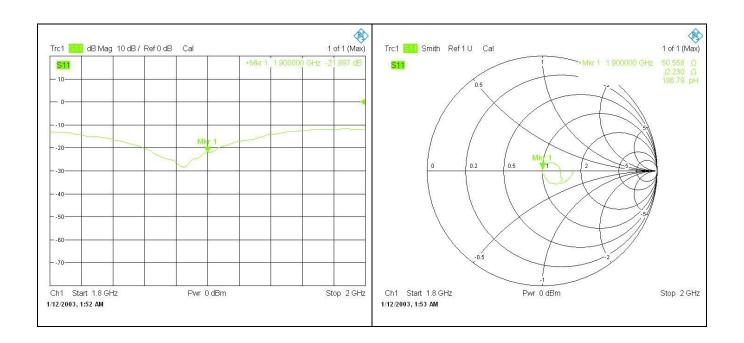
Body 835MHz



Body 1800MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2017.11.27	-24.11	-	44.3	-	
2019.11.26	-24.16	-1.15	43.81	-0.49	

<Dipole Verification Data>

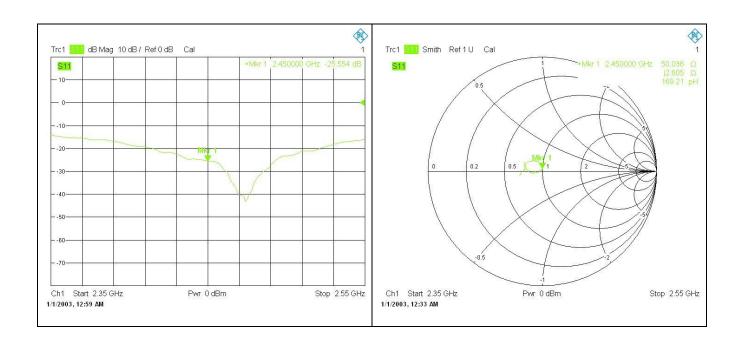
Body 1800MHz



Body 1900MHz					
Date of Measurement Return Loss (dB) Delta (%) Impedance Delta (or					
2017.11.27	-22.17	-	46.8	-	
2019.11.26	-21.90	6.41	50.56	3.76	

<Dipole Verification Data>

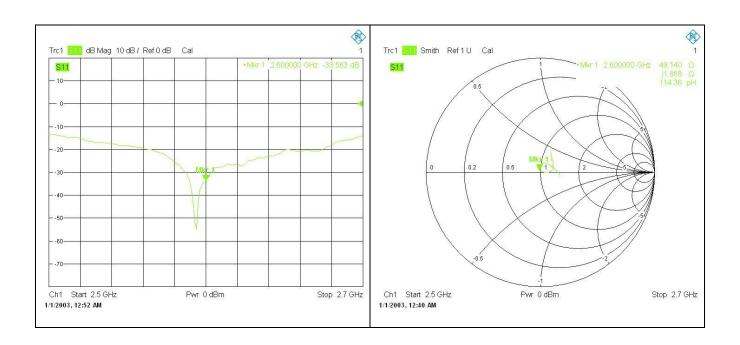
Body 1900MHz



Body 2450MHz					
Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)	
2017.11.27	-26.02	-	53.2	-	
2019.11.26	-25.55	11.43	50.04	-3.16	

<Dipole Verification Data>

Body 2450MHz



Body 2600MHz					
Date of Measurement Return Loss (dB) Delta (%) Impedance Delta(of Delta)					
2017.11.27	-33.55	-	49.4	-	
2019.11.26	-33.56	-0.23	49.14	-0.26	

<Dipole Verification Data>

Body 2600MHz

-End of the Report-