

February 16, 2021

| 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc)  | WLAN | 8.57 | +06%    |
|-------|-----|---------------------------------------|------|------|---------|
| 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc)  | WLAN |      | ± 9.6 % |
| 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc)  | WLAN | 8.78 | ± 9.6 % |
| 10675 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc)  | WLAN | 8.74 | ± 9.6 % |
| 10676 | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc)  |      | 8.90 | ± 9.6 % |
| 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc)  | WLAN | 8.77 | ± 9.6 % |
| 10678 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc)  | WLAN | 8.73 | ± 9.6 % |
| 10679 | -   | IEEE 802.11ax (20MHz, MCS7, 90pc dc)  | WLAN | 8.78 | ± 9.6 % |
| 10680 | AAD |                                       | WLAN | 8.89 | ± 9.6 % |
| 10681 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc)  | WLAN | 8.80 | ± 9.6 % |
| 10682 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % |
| 10683 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % |
| 10684 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc)  | WLAN | 8.42 | ± 9.6 % |
| 10685 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc)  | WLAN | 8.26 | ± 9.6 % |
|       | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc)  | WLAN | 8.33 | ± 9.6 % |
| 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc)  | WLAN | 8.28 | ± 9.6 % |
| 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc)  | WLAN | 8.45 | ± 9.6 % |
| 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc)  | WLAN | 8.29 | ± 9.6 % |
| 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc)  | WLAN | 8.55 | ± 9.6 % |
| 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc)  | WLAN | 8.29 | ± 9.6 % |
| 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc)  | WLAN | 8.25 | ± 9.6 % |
| 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc)  | WLAN | 8.29 | ± 9.6 % |
| 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % |
| 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % |
| 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc)  | WLAN | 8.78 | ± 9.6 % |
| 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc)  | WLAN | 8.91 | ± 9.6 % |
| 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc)  | WLAN | 8.61 | ± 9.6 % |
| 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc)  | WLAN | 8.89 | ± 9.6 % |
| 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc)  | WLAN | 8.82 |         |
| 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc)  | WLAN | 8.73 | ± 9.6 % |
| 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc)  | WLAN | 8.86 | ± 9.6 % |
| 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc)  | WLAN | 8.70 |         |
| 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc)  | WLAN |      | ± 9.6 % |
| 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc)  | WLAN | 8.82 | ± 9.6 % |
| 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) |      | 8.56 | ± 9.6 % |
| 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.69 | ± 9.6 % |
| 10707 | AAC | IEEE 802.11ax (40MHz, MCS1, 90pc dc)  | WLAN | 8.66 | ± 9.6 % |
| 10708 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc)  | WLAN | 8.32 | ± 9.6 % |
| 10709 |     | IEEE 802.11ax (40MHz, MCS1, 99pc dc)  | WLAN | 8.55 | ± 9.6 % |
| 10710 | AAC |                                       | WLAN | 8.33 | ± 9.6 % |
| 10711 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc)  | WLAN | 8.29 | ± 9.6 % |
| 10712 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc)  | WLAN | 8.39 | ± 9.6 % |
| 10713 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc)  | WLAN | 8.67 | ± 9.6 % |
| 10714 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc)  | WLAN | 8.33 | ± 9.6 % |
| 10715 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc)  | WLAN | 8.26 | ± 9.6 % |
|       | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc)  | WLAN | 8.45 | ± 9.6 % |
| 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc)  | WLAN | 8.30 | ± 9.6 % |
| 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % |
| 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % |
| 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc)  | WLAN | 8.81 | ± 9.6 % |
| 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc)  | WLAN | 8.87 | ± 9.6 % |
| 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc)  | WLAN | 8.76 | ± 9.6 % |
| 0722  | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc)  | WLAN | 8.55 | ± 9.6 % |
| 0723  | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc)  | WLAN | 8.70 | ± 9.6 % |
| 0724  | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc)  | WLAN | 8.90 | ± 9.6 % |
| 0725  | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc)  | WLAN | 8.74 | ± 9.6 % |
| 0726  | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc)  | WLAN | 8.72 |         |
| 0727  | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc)  | WLAN | 0.72 | ± 9.6 % |

Certificate No: EX3-7628\_Feb21

Page 19 of 23



February 16, 2021

| 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc)                                                           | WLAN          | 8.65 | ± 9.6 % |
|-------|-----|------------------------------------------------------------------------------------------------|---------------|------|---------|
| 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc)                                                          | WLAN          | 8.64 | ± 9.6 % |
| 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc)                                                          | WLAN          | 8.67 | ± 9.6 % |
| 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc)                                                           | WLAN          | 8.42 | ± 9.6 % |
| 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc)                                                           | WLAN          | 8.46 | ± 9.6 % |
| 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc)                                                           | WLAN          | 8.40 | ± 9.6 % |
| 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc)                                                           | WLAN          | 8.25 | ± 9.6 % |
| 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc)                                                           | WLAN          | 8.33 | ± 9.6 % |
| 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc)                                                           | WLAN          | 8.27 | ± 9.6 % |
| 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc)                                                           | WLAN          | 8.36 | ± 9.6 % |
| 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc)                                                           | WLAN          | 8.42 | ± 9.6 % |
| 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc)                                                           | WLAN          | 8.29 | ± 9.6 % |
| 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc)                                                           | WLAN          | 8.48 | ± 9.6 % |
| 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc)                                                          | WLAN          | 8.40 | ±9.6%   |
| 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc)                                                          | WLAN          | 8.43 | ± 9.6 % |
| 10743 | AAC | IEEE 802 11ax (160MHz, MCS0, 90pc dc)                                                          | WLAN          | 8.94 | ± 9.6 % |
| 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc)                                                          | WLAN          | 9.16 | ± 9.6 % |
| 10745 | AAC | IEEE 802,11ax (160MHz, MCS2, 90pc dc)                                                          | WLAN          | 8.93 | ± 9.6 % |
| 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc)                                                          | WLAN          | 9.11 | -       |
| 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc)                                                          | WLAN          | 9.04 | ± 9,6 % |
| 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc)                                                          | WLAN          | 8.93 | ± 9.6 % |
| 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc)                                                          | WLAN          |      | ± 9.6 % |
| 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc)                                                          | WLAN          | 8.90 | ± 9.6 % |
| 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc)                                                          | WLAN          | 8.79 | ± 9.6 % |
| 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc)                                                          | WLAN          | 8.82 | ±9.6 %  |
| 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc)                                                         |               | 8.81 | ± 9.6 % |
| 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc)                                                         | WLAN          | 9.00 | ± 9.6 % |
| 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc)                                                          | WLAN          | 8.94 | ± 9.6 % |
| 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc)                                                          | 1.000         | 8.64 | ±9.6 %  |
| 10757 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc)                                                          | WLAN          | 8,77 | ± 9,6 % |
| 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc)                                                          | WLAN          | 8.77 | ± 9.6 % |
| 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc)                                                          | WLAN          | 8.69 | ±9.6 %  |
| 10760 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc)                                                          | WLAN          | 8.58 | ±9.6 %  |
| 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc)                                                          | WLAN          | 8.49 | ±9.6 %  |
| 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc)                                                          | WLAN          | 8.58 | ± 9.6 % |
| 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc)                                                          | WLAN          | 8.49 | ± 9.6 % |
| 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc)                                                          | WLAN          | 8.53 | ± 9.6 % |
| 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc)                                                         | WLAN          | 8.54 | ± 9.6 % |
| 10766 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc)                                                         | WLAN          | 8.54 | ± 9.6 % |
| 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz)                                                     | WLAN          | 8.51 | ± 9.6 % |
| 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)                                                    | 5G NR FR1 TDD | 7.99 | ± 9.6 % |
| 10769 |     | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 KHz)                                                    | 5G NR FR1 TDD | 8.01 | ± 9.6 % |
| 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 KHz)                                                    | 5G NR FR1 TDD | 8.01 | ± 9.6 % |
| 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 KHz)<br>5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)     | 5G NR FR1 TDD | 8.02 | ± 9.6 % |
| 10772 |     | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)                                                    | 5G NR FR1 TDD | 8.02 | ± 9.6 % |
| 10773 | AAC |                                                                                                | 5G NR FR1 TDD | 8.23 | ± 9.6 % |
| 0774  | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, OPSK, 15 kHz)<br>5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 15 kHz)     | 5G NR FR1 TDD | 8.03 | ± 9.6 % |
| 0775  | AAC | 5G NR (CP-OFDM, TRB, 50 MHZ, QPSK, 15 KHZ)                                                     | 5G NR FR1 TDD | 8.02 | ± 9.6 % |
| 0776  | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD | 8.31 | ± 9.6 % |
| 0777  | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)<br>5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % |
| 0778  | AAC |                                                                                                | 5G NR FR1 TDD | 8.30 | ± 9.6 % |
| 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD | 8.34 | ± 9.6 % |
| 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD | 8.42 | ± 9.6 % |
| 0780  | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD | 8.38 | ± 9,6 % |
| 0782  | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD | 8.38 | ± 9.6 % |
|       | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, OPSK, 15 kHz)                                                  | 5G NR FR1 TDD | 8.43 | ± 9.6 % |
| 0783  | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)                                                  | 5G NR FR1 TDD | 8.31 | ± 9.6 % |

Certificate No: EX3-7628\_Feb21

Page 20 of 23



February 16, 2021

| 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.29 | ± 9.6 % |
|-------|-----|--------------------------------------------------------------------------------------------------|--------------------------------|------|---------|
| 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.40 | ± 9.6 % |
| 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.35 | ± 9.6 % |
| 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.44 | ± 9.6 % |
| 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.39 | ± 9.6 % |
| 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.37 | ± 9.6 % |
| 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)                                                   | 5G NR FR1 TDD                  | 8.39 | ± 9.6 % |
| 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD                  | 7.83 | ± 9.6 % |
| 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.92 |         |
| 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.92 | ± 9.6 % |
| 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.95 | ± 9.6 % |
| 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.84 | ± 9.6 % |
| 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.82 | ± 9.6 % |
| 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 8.01 |         |
| 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.89 | ± 9.6 % |
| 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  |      | ±9.6 %  |
| 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7,93 | ± 9.6 % |
| 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD                  | 7.89 | ± 9.6 % |
| 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)                                                     | 5G NR FR1 TDD                  | 7.87 | ± 9.6 % |
| 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)                                                    |                                | 7.93 | ± 9.6 % |
| 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD<br>5G NR FR1 TDD | 8.34 | ±9.6%   |
| 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)                                                    |                                | 8.37 | ± 9.6 % |
| 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD                  | 8.34 | ± 9.6 % |
| 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD                  | 8.34 | ± 9.6 % |
| 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD                  | 8.35 | ±9.6 %  |
| 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)                                                   | 5G NR FR1 TDD                  | 8.35 | ± 9.6 % |
| 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)                                                   | 5G NR FR1 TDD                  | 8.34 | ± 9.6 % |
| 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)                                                   | 5G NR FR1 TDD                  | 8.33 | ± 9.6 % |
| 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz)                                                   | 5G NR FR1 TDD                  | 8.30 | ±9.6 %  |
| 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 KHz)                                                   | 5G NR FR1 TDD                  | 8.41 | ± 9.6 % |
| 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 KHz)                                                   | 5G NR FR1 TDD                  | 8.41 | ±9.6 %  |
| 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)                                                   | 5G NR FR1 TDD                  | 8.36 | ± 9.6 % |
| 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz)                                                   | 5G NR FR1 TDD                  | 8.39 | ± 9.6 % |
| 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz)                                                   | 5G NR FR1 TDD                  | 8.41 | ±96%    |
| 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 KHz)                                                   | 5G NR FR1 TDD                  | 8.42 | ± 9.6 % |
| 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)                                                   | 5G NR FR1 TDD                  | 8.43 | ±9.6 %  |
| 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz)                                                      | 5G NR FR1 TDD                  | 8.40 | ± 9.6 % |
| 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7,63 | ± 9.6 % |
| 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7,73 | ± 9.6 % |
| 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7.74 | ± 9.6 % |
| 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7.70 | ± 9.6 % |
| 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7.75 | ± 9.6 % |
| 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7,70 | ± 9.6 % |
| 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7.66 | ± 9.6 % |
| 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7.68 | ± 9.6 % |
| 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD                  | 7.70 | ± 9.6 % |
| 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz)                                                     | 5G NR FR1 TDD                  | 7.67 | ± 9.6 % |
| 10843 | AAD | 5G NR (CP-OFDM, TRB, 100 MHz, QPSK, 60 kHz)<br>5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)     | 5G NR FR1 TDD                  | 7.71 | ± 9.6 % |
| 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz)                                                    | 5G NR FR1 TDD                  | 8.49 | ± 9.6 % |
| 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz)                                                    | 5G NR FR1 TDD                  | 8.34 | ± 9.6 % |
| 10854 | AAD | 5G NR (CP-OFDM, 30% RB, 30 MHz, QPSK, 60 KHz)                                                    | 5G NR FR1 TDD                  | 8.41 | ± 9.6 % |
| 10855 |     | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz)<br>5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD                  | 8.34 | ± 9.6 % |
| 10856 | AAD |                                                                                                  | 5G NR FR1 TDD                  | 8.36 | ± 9,6 % |
| 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz)                                                   | 5G NR FR1 TDD                  | 8.37 | ±9.6%   |
| 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz)                                                   | 5G NR FR1 TDD                  | 8.35 | ±9.6 %  |
| 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz)                                                   | 5G NR FR1 TDD                  | 8.36 | ±9.6%   |
|       | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz)                                                   | 5G NR FR1 TDD                  | 8.34 | ±9.6%   |

Certificate No: EX3-7628\_Feb21

Page 21 of 23

February 16, 2021

| 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz)                                                       | 5G NR FR1 TDD | 8.41 | ±9.6%   |
|-------|-----|------------------------------------------------------------------------------------------------------|---------------|------|---------|
| 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz)                                                       | 5G NR FR1 TDD | 8.40 | ±9.6%   |
| 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz)                                                       | 5G NR FR1 TDD | 8.41 | ±9.6 %  |
| 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz)                                                       | 5G NR FR1 TDD | B.37 | ± 9.6 % |
| 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz)                                                      | 5G NR FR1 TDD | 8.41 | ± 9.6 % |
| 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD | 5.68 | ±9.6 %  |
| 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz)                                                   | 5G NR FR1 TDD | 5.89 | ± 9.6 % |
| 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)                                                     | 5G NR FR2 TDD | 5.75 | ±9.6 %  |
| 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz)                                                  | 5G NR FR2 TDD | 5.86 | ± 9.6 % |
| 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)                                                    | 5G NR FR2 TDD | 5.75 | ±9.6 %  |
| 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 KHz)                                                 | 5G NR FR2 TDD | 6.52 | ± 9.6.% |
| 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 KHz)                                                    | 5G NR FR2 TDD | 6.61 | ± 9.6 % |
| 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz)                                                 | 5G NR FR2 TDD | 6.65 | ± 9.6 % |
| 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz)                                                        | 5G NR FR2 TDD | 7.78 | ± 9.6 % |
| 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 KHz)                                                     | 5G NR FR2 TDD | 8.39 | ± 9.6 % |
| 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz)                                                       | 5G NR FR2 TDD | 7.95 | ± 9.6 % |
| 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz)                                                    | 5G NR FR2 TDD | 8.41 | ± 9.6 % |
| 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 KHz)                                                       | 5G NR FR2 TDD |      | -       |
| 10880 | AAD | 5G NR (CP-OFDM. 100% RB, 100 MHz, 64QAM, 120 kHz)                                                    | 5G NR FR2 TDD | 8.12 | ± 9.6 % |
| 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)                                                      | 5G NR FR2 TDD | 8.38 | ± 9.6 % |
| 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)                                                   | 5G NR FR2 TDD | 5.75 | ± 9.6 % |
| 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 KHz)                                                     | 5G NR FR2 TDD | 5.96 | ± 9.6 % |
| 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)                                                  | 5G NR FR2 TDD | 6.57 | ± 9.6 % |
| 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 KHz)                                                     | 5G NR FR2 TDD | 6.53 | ± 9,6 % |
| 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)                                                  | 5G NR FR2 TDD | 6.61 | ± 9.6 % |
| 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz)                                                         |               | 6.65 | ± 9.6 % |
| 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz)                                                      | 5G NR FR2 TDD | 7.78 | ±9.6 %  |
| 10889 | AAD | 5G NR (CP-OFDM: 1 RB, 50 MHz, 16QAM, 120 KHz)                                                        | 5G NR FR2 TDD | 8.35 | ± 9.6 % |
| 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz)                                                     | 5G NR FR2 TDD | 8.02 | ± 9.6 % |
| 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 KHz)                                                        | 5G NR FR2 TDD | 8.40 | ± 9.6 % |
| 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)                                                     | 5G NR FR2 TDD | 8.13 | ± 9.6 % |
| 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)                                                        | 5G NR FR2 TDD | 8.41 | ± 9.6 % |
| 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz)                                                       | 5G NR FR1 TDD | 5.66 | ± 9.6 % |
| 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 KHz)                                                       | 5G NR FR1 TDD | 5.67 | ±9.6%   |
| 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD | 5.67 | ± 9.6 % |
| 10901 | AAD | 5G NR (DFT-s-OFDM. 1 RB, 25 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD | 5.68 | ±9.6 %  |
| 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD | 5.68 | ±9.6%   |
| 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD | 5,68 | ±9.6 %  |
| 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 KHz)                                                       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)                                                       | 5G NR FR1 TDD | 5.68 | ± 9.6 % |
| 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD | 5.68 | ±9.6 %  |
| 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz)                                                      | 5G NR FR1 TDD | 5.78 | ± 9.6 % |
| 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)                                                     | 5G NR FR1 TDD | 5.93 | ±9.6%   |
| 10910 | AAD |                                                                                                      | 5G NR FR1 TDD | 5.96 | ±9.6 %  |
| 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz)<br>5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5,83 | ± 9.6 % |
| 10912 | AAD |                                                                                                      | 5G NR FR1 TDD | 5.93 | ±9.6 %  |
| 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)                                                     | 5G NR FR1 TDD | 5.84 | ±9.6 %  |
| 10914 |     | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)<br>5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % |
| 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)<br>5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % |
| 10916 | AAD | SG NR (DET-S-OFDM, 50% RB, 50 MHz, QPSK, 30 KHz)                                                     | 5G NR FR1 TDD | 5.83 | ± 9.6 % |
| 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)                                                     | 5G NR FR1 TDD | 5.87 | ± 9.6 % |
| 10918 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD | 5.94 | ± 9.6 % |
| 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)                                                     | 5G NR FR1 TDD | 5.86 | ± 9.6 % |
| 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD | 5.86 | ±9.6 %  |
| 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD | 5.87 | ± 9.6 % |
| 10321 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)                                                    | 5G NR FR1 TDD | 5.84 | ±9.6 %  |

Certificate No: EX3-7628\_Feb21

Page 22 of 23



February 16, 2021

| 10922          | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)   | 50 NR 504 700 |       | ary 10, 20 |
|----------------|-----|-----------------------------------------------------|---------------|-------|------------|
| 10923          | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.82  | ± 9.6 %    |
| 10924          | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)   | 5G NR FR1 TDD | 5.84  | ± 9.6 %    |
| 10925          | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz)   | 5G NR FR1 TDD | 5.84  | ± 9.6 %    |
| 10926          | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 KHz)   | 5G NR FR1 TDD | 5.95  | ± 9.6 %    |
| 10927          | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz)   | 5G NR FR1 TDD | 5.84  | ± 9.6 %    |
| 10928          | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 KHz)       | 5G NR FR1 TDD | 5.94  | ± 9.6 %    |
| 10929          | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.52  | ± 9.6 %    |
| 10930          | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.52  | ± 9.6 %    |
| 10931          | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.52  | ± 9.6 %    |
| 10932          | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51  | ± 9.6 %    |
| 10933          | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51  | ± 9.6 %    |
| 10934          | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, OPSK, 15 kHz)      | 5G NR FR1 FDD | 5.51  | ± 9.6 %    |
| 10935          | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)      | 5G NR FR1 FDD | 5,51  | ± 9.6 %    |
| 10936          | AAC | 5G NR (DET & OEDM, FIRE, 50 MHZ, QPSR, 15 KHZ)      | 5G NR FR1 FDD | 5.51  | ± 9.6 %    |
| 10937          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)     | 5G NR FR1 FDD | 5.90  | ±9.6 %     |
| 10938          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.77  | ± 9.6 %    |
| 10939          |     | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.90  | ± 9.6 %    |
| 10940          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.82  | ± 9.6 %    |
| 10941          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.89  | ± 9.6 %    |
| 10942          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.83  | ± 9.6 %    |
| 10942          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.85  | ±9.6%      |
| 10944          | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.95  | ± 9.6 %    |
| 10944          | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)    | 5G NR FR1 FDD | 5.81  | ± 9.6 %    |
| 10945          | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.85  | ± 9.6 %    |
|                | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.83  | ± 9.6 %    |
| 10947          | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.87  | ± 9.6 %    |
| 10948          | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.94  | ± 9.6 %    |
| Long .         | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.87  | ± 9.6 %    |
| 10950          | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)   | 5G NR FR1 FDD | 5.94  | ±9.6%      |
| 10951<br>10952 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 KHz)   | 5G NR FR1 FDD | 5.92  | ± 9.6 %    |
| 1212           | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)   | 5G NR FR1 FDD | 8.25  | ± 9.6 %    |
| 10953          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD | 8.15  | ± 9.6 %    |
| 10954          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD | 8.23  | ± 9.6 %    |
| 10955          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 FDD | 8.42  | ± 9.6 %    |
| 10956          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-OAM, 30 kHz)   | 5G NR FR1 FDD | 8.14  | ± 9.6 %    |
| 10957          | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD | 8.31  | ± 9.6 %    |
| 10958          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD | 8.61  | ± 9.6 %    |
| 10959          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 FDD | 8.33  | ± 9.6 %    |
| 10960          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)   | 5G NR FR1 TDD | 9.32  | ± 9.6 %    |
| 10961          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 TDD | 9.36  | ± 9.6 %    |
| 10962          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 TDD | 9.40  | ±9.6%      |
| 10963          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)  | 5G NR FR1 TDD | 9.55  | ± 9.6 %    |
| 10964          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)   | 5G NR FR1 TDD | 9.29  | ± 9.6 %    |
| 10965          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD | 9.37  | ± 9.6 %    |
| 10966          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD | 9.55  | ± 9.6 %    |
| 10967          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)  | 5G NR FR1 TDD | 9.42  | ± 9.6 %    |
| 10968          | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49  | ± 9.6 %    |
| 0972           | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)         | 5G NR FR1 TDD | 11.59 | ±9.6%      |
| 10973          | AAB | 5G NR (DFT-s-OFDM, 1 RB. 100 MHz, QPSK, 30 kHz)     | 5G NR FR1 TDD | 9.06  | ± 9.6 %    |
| 10974          | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)  | 5G NR FR1 TDD | 10.28 | ± 9.6 %    |

<sup>6</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-7628\_Feb21

Page 23 of 23



## ANNEX E: Probe Calibration Certificate (SN: 7543)

| Add: No 52 Hua<br>Tel: +86-10-6230                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-mail ettl a chir<br>Client TA(                                                                                                                                                                                                                                                                                                                        | Shanghai)                                                                                                                                                                                                                   | Certificate No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 721-60417                                                                                                                                                      |
| CALIBRATION                                                                                                                                                                                                                                                                                                                                             | the second second second second                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21100411                                                                                                                                                       |
| Object                                                                                                                                                                                                                                                                                                                                                  | EX3DV4 - S                                                                                                                                                                                                                  | SN : 7543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                |
| Calibration Procedure(s)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                         | FF-Z11-004                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                         | Calibration                                                                                                                                                                                                                 | Procedures for Dosimetric E-field Probes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |
| Calibration date:                                                                                                                                                                                                                                                                                                                                       | December :                                                                                                                                                                                                                  | 28, 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                             | eability to national standards, which real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                |
| pages and are part of the<br>All calibrations have bee                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                             | Closed Johnston, Insiling and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |
| numidity<70%.                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                             | closed laboratory lacility: environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | temperature(22±3)°C and                                                                                                                                        |
| Calibration Equipment use                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | temperature(22±3)℃ and                                                                                                                                         |
| Calibration Equipment use<br>Primary Standards                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2                                                                                                                                                                                                                                                                                      | ed (M&TE critical for ca<br>ID #<br>101919                                                                                                                                                                                  | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scheduled Calibration                                                                                                                                          |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291                                                                                                                                                                                                                                                              | ed (M&TE critical for ca<br>ID #<br>101919<br>101547                                                                                                                                                                        | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)                                                                                                                                                                                                                                                                                                                                                                                                                                      | temperature(22±3)℃ and<br>Scheduled Calibration<br>Jun-22<br>Jun-22                                                                                            |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91                                                                                                                                                                                                                                      | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548                                                                                                                                                              | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)                                                                                                                                                                                                                                                                                                                                                                                                     | Scheduled Calibration<br>Jun-22                                                                                                                                |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 10dBAttenua                                                                                                                                                                                                             | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>101548<br>ator 18N50W-10dB                                                                                                                                | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)                                                                                                                                                                                                                                                                                                                                                                    | Scheduled Calibration<br>Jun-22<br>Jun-22                                                                                                                      |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 10dBAttenua<br>Reference 20dBAttenua                                                                                                                                                                                    | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB                                                                                                                      | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)<br>10-Feb-20(CTTL, No.J20X00526)                                                                                                                                                                                                                                                                                                                                   | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22                                                                                        |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 10dBAttenua<br>Reference 20dBAttenua                                                                                                                                                                                    | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617                                                                                                        | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)<br>10-Feb-20(CTTL, No.J20X00526)<br>27-Jan-21(SPEAG, No.EX3-3617_Jan2                                                                                                                                                                                                                                                                                              | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22                                                                           |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D                                                                                                                                                            | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB                                                                                                                      | libration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)<br>10-Feb-20(CTTL, No.J20X00526)                                                                                                                                                                                                                                                                                                                                   | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22                                                                           |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards                                                                                                                             | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #                                                                                     | Alibration)<br>Cal Date(Calibrated by, Centificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)<br>10-Feb-20(CTTL, No.J20X00526)<br>27-Jan-21(SPEAG, No.EX3-3617_Jan2<br>20-Aug-21(SPEAG, No.DAE4-1555_Aug                                                                                                                                                                                                                                                        | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>921/2) Aug-22                                                          |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370                                                                                                    | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605                                                                   | Ibibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan2)           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)                                                                                                    | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration                                           |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370                                                                                                    | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605                                                                   | Ibibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan2'           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)           16-Jun-21(CTTL, No.J21X04467)                                                                                                    | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22                       |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507                                                                           | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605                                                                   | Ibibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan2)           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)                                                                                                    | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22<br>Jan-22             |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507                                                                           | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605<br>1C MY46110673                                                  | Ibibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan2*           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)           16-Jun-21(CTTL, No.J21X04467)           21-Jan-21(CTTL, No.J20X00515)           Function | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22                       |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507                                                                           | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605<br>1C MY46110673<br>Name<br>Yu Zongying                           | Ibibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan22           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)           16-Jun-21(CTTL, No.J21X04467)           21-Jan-21(CTTL, No.J20X00515)                                                            | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22<br>Jan-22             |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507                                                                           | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605<br>1C MY46110673<br>Name                                          | Ibibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan2*           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)           16-Jun-21(CTTL, No.J21X04467)           21-Jan-21(CTTL, No.J20X00515)           Function | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22<br>Jan-22             |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507<br>Calibrated by:<br>Reviewed by:                                         | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605<br>1C MY46110673<br>Name<br>Yu Zongying<br>Lin Hao                | Alibration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)<br>10-Feb-20(CTTL, No.J20X00526)<br>27-Jan-21(SPEAG, No.EX3-3617_Jan2<br>20-Aug-21(SPEAG, No.DAE4-1555_Aug<br>Cal Date(Calibrated by, Certificate No.)<br>16-Jun-21(CTTL, No.J21X04467)<br>21-Jan-21(CTTL, No.J21X04467)<br>21-Jan-21(CTTL, No.J20X00515)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer                                                                                    | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22<br>Jan-22             |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-291<br>Power sensor NRP-291<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507<br>Calibrated by:<br>Reviewed by:                                         | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605<br>1C MY46110673<br>Name<br>Yu Zongying                           | Alibration)           Cal Date(Calibrated by, Certificate No.)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           15-Jun-21(CTTL, No.J21X04466)           10-Feb-20(CTTL, No.J20X00525)           10-Feb-20(CTTL, No.J20X00526)           27-Jan-21(SPEAG, No.EX3-3617_Jan2'           20-Aug-21(SPEAG, No.DAE4-1555_Aug           Cal Date(Calibrated by, Certificate No.)           16-Jun-21(CTTL, No.J21X04467)           21-Jan-21(CTTL, No.J20X00515)           Function           SAR Test Engineer             | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>g21/2) Aug-22<br>Scheduled Calibration<br>Jun-22<br>Jan-22             |
| Calibration Equipment use<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference 10dBAttenua<br>Reference 20dBAttenua<br>Reference Probe EX3D<br>DAE4<br>Secondary Standards<br>SignalGenerator MG370<br>Network Analyzer E507<br>Calibrated by:<br>Reviewed by:<br>Approved by: | ed (M&TE critical for ca<br>ID #<br>101919<br>101547<br>101548<br>ator 18N50W-10dB<br>ator 18N50W-20dB<br>V4 SN 3617<br>SN 1555<br>ID #<br>00A 6201052605<br>1C MY46110673<br>Name<br>Yu Zongying<br>Lin Hao<br>Qi Dianyuan | Alibration)<br>Cal Date(Calibrated by, Certificate No.)<br>15-Jun-21(CTTL, No.J21X04466)<br>15-Jun-21(CTTL, No.J21X04466)<br>10-Feb-20(CTTL, No.J20X00525)<br>10-Feb-20(CTTL, No.J20X00526)<br>27-Jan-21(SPEAG, No.EX3-3617_Jan2<br>20-Aug-21(SPEAG, No.DAE4-1555_Aug<br>Cal Date(Calibrated by, Certificate No.)<br>16-Jun-21(CTTL, No.J21X04467)<br>21-Jan-21(CTTL, No.J21X04467)<br>21-Jan-21(CTTL, No.J20X00515)<br>Function<br>SAR Test Engineer<br>SAR Test Engineer                                                                                    | Scheduled Calibration<br>Jun-22<br>Jun-22<br>Jun-22<br>Feb-22<br>Feb-22<br>1) Jan-22<br>21/2) Aug-22<br>Scheduled Calibration<br>Jun-22<br>Jan-22<br>Signature |



Add. No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel +86-10-62304633-2512 Fax: +86-10-62304633-2504 U-mail: cttl@chinattl.cm Http://www.chinattl.cn

#### Glossary:

| TSL            | tissue simulating liquid                                                                     |
|----------------|----------------------------------------------------------------------------------------------|
| NORMx,y,z      | sensitivity in free space                                                                    |
| ConvF          | sensitivity in TSL / NORMx, y,z                                                              |
| DCP            | diode compression point                                                                      |
| CF             | crest factor (1/duty_cycle) of the RF signal                                                 |
| A.B.C.D        | modulation dependent linearization parameters                                                |
| Polarization Φ | Φ rotation around probe axis                                                                 |
| Polarization 0 | e rotation around an axis that is in the plane normal to probe axis (at measurement center). |
|                | θ=0 is normal to probe axis                                                                  |

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)". July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z\* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
  frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f<800MHz) and inside waveguide using analytical field distributions based on power measurements for f>800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical Isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
  phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
  probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60417

Page 2 of 9





 Add No 52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel +86-10-62304633-2512

 Fax: +86-10-62304633-2504

 U-mail ettl@chinattl.com

 Http://www.chinattl.cn

### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7543

### **Basic Calibration Parameters**

|                      | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|----------------------|----------|----------|----------|-----------|
| Norm(µV/(V/m)2)^     | 0.62     | 0.69     | 0.55     | ±10.0%    |
| DCP(mV) <sup>8</sup> | 100.4    | 104.2    | 102.3    |           |

### Modulation Calibration Parameters

| UID | Communication<br>System Name | - 1 | A<br>dB | B<br>dBõV | C   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|------------------------------|-----|---------|-----------|-----|---------|----------|---------------------------|
| 0   | CW                           | X   | 0.0     | 0.0       | 1.0 | 0.00    | 197.2    | ±2.7%                     |
|     |                              | Y   | 0.0     | 0.0       | 1.0 |         | 206.6    | 10-00                     |
|     |                              | Z   | 0.0     | 0.0       | 1.0 | 1       | 180.8    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 4).

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:Z21-60417

Page 3 of 9





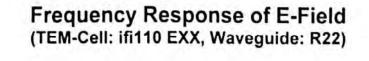
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel. +86-10-62304633-2512 E-mail: ettl@chinattl.com Limat. +86-10-62304633-2504

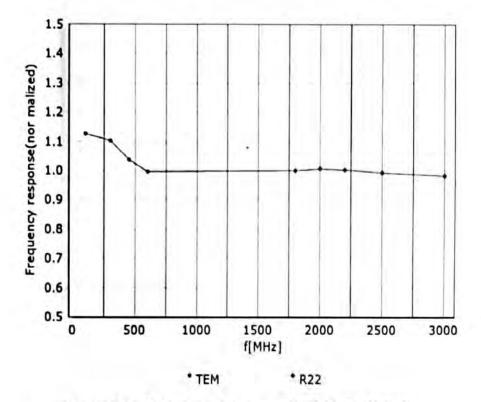
## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7543

### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>c</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 10.27   | 10.27   | 10.27   | 0.17               | 1.26                       | ±12.1%         |
| 835                  | 41.5                                  | 0.90                               | 9.89    | 9.89    | 9.89    | 0.14               | 1.62                       | ±12.1%         |
| 1750                 | 40.1                                  | 1.37                               | 8.42    | 8.42    | 8.42    | 0.28               | 0.95                       | ±12.1%         |
| 1900                 | 40.0                                  | 1.40                               | 8.20    | 8.20    | 8.20    | 0.28               | 1.03                       | ±12.1%         |
| 2000                 | 40.0                                  | 1.40                               | 8.23    | 8.23    | 8.23    | 0.26               | 1.08                       | ±12.1%         |
| 2300                 | 39.5                                  | 1.67                               | 7.68    | 7.68    | 7.68    | 0.62               | 0.70                       | ±12.1%         |
| 2450                 | 39.2                                  | 1.80                               | 7.49    | 7.49    | 7.49    | 0.68               | 0.69                       | ±12.1%         |
| 2600                 | 39.0                                  | 1.96                               | 7.24    | 7.24    | 7.24    | 0.50               | 0.81                       | ±12.1%         |
| 3300                 | 38.2                                  | 2.71                               | 6.94    | 6.94    | 6.94    | 0.41               | 1.05                       | ±13.3%         |
| 3500                 | 37.9                                  | 2.91                               | 6.79    | 6.79    | 6.79    | 0.43               | 1.03                       | ±13.3%         |
| 3700                 | 37.7                                  | 3.12                               | 6.51    | 6.51    | 6.51    | 0.44               | 1.01                       | ±13.3%         |
| 3900                 | 37.5                                  | 3.32                               | 6.40    | 6.40    | 6.40    | 0.35               | 1.35                       | ±13.3%         |
| 4100                 | 37.2                                  | 3.53                               | 6.49    | 6.49    | 6.49    | 0.40               | 1.15                       | ±13.3%         |
| 4400                 | 36.9                                  | 3.84                               | 6.32    | 6.32    | 6.32    | 0.35               | 1.35                       | ±13.3%         |
| 4600                 | 36.7                                  | 4.04                               | 6.22    | 6.22    | 6.22    | 0.45               | 1.20                       | ±13.3%         |
| 4800                 | 36.4                                  | 4.25                               | 6.16    | 6.16    | 6.16    | 0.45               | 1.20                       | ±13.3%         |
| 4950                 | 36.3                                  | 4.40                               | 5.95    | 5.95    | 5.95    | 0.45               | 1.25                       | ±13.3%         |
| 5250                 | 35.9                                  | 4.71                               | 5.44    | 5.44    | 5.44    | 0.45               | 1.25                       | ±13.3%         |
| 5600                 | 35.5                                  | 5.07                               | 4.81    | 4.81    | 4.81    | 0.55               | 1.20                       | ±13.3%         |
| 5750                 | 35.4                                  | 5.22                               | 4.94    | 4.94    | 4.94    | 0.55               | 1.25                       | ±13.3%         |

<sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.


<sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

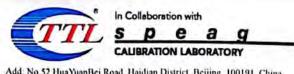

Certificate No:Z21-60417

Page 4 of 9



Add No 52 Hua Yuantier Road Tel. +86-10-62304633-2512 E-mail: ettl a chinattl com Haidian District, Beijing, 100191, C Fax: +86-10-62304633-2504 Http://www.chinattl.cn






Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

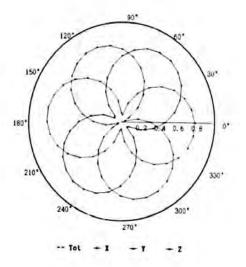
Certificate No:Z21-60417

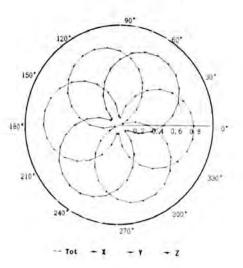
Page 5 of 9

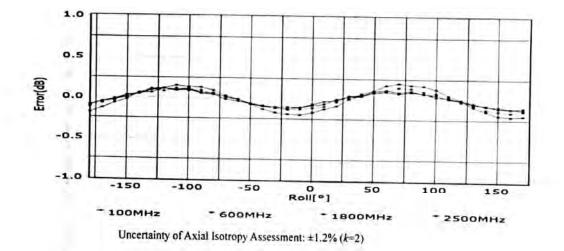




 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

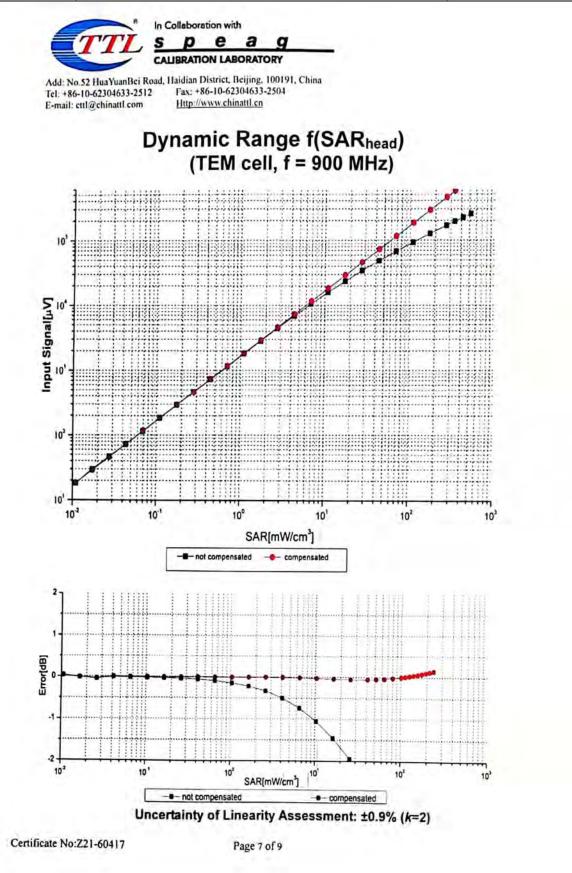

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504


 E-mail: cttl@chinattl.com
 IIttp://www.chinattl.cn

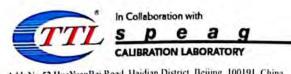

# Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22






Certificate No:Z21-60417

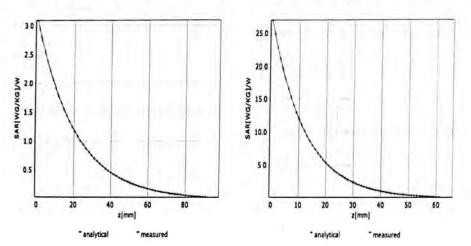
Page 6 of 9



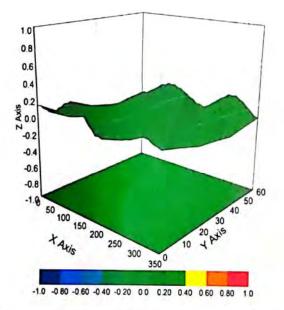




 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China.


 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 <u>Ittp://www.chinattl.cn</u>


## **Conversion Factor Assessment**

f=750 MHz,WGLS R9(H\_convF)

f=1750 MHz,WGLS R22(H\_convF)



# **Deviation from Isotropy in Liquid**



Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60417

Page 8 of 9





 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 <u>Ilttp://www.chinattl.cn</u>

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:7543

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 50.7       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 9mm        |
| Tip Diameter                                  | 2.5mm      |
| Probe Tip to Sensor X Calibration Point       | 1mm        |
| Probe Tip to Sensor Y Calibration Point       | 1mm        |
| Probe Tip to Sensor Z Calibration Point       | 1mm        |
| Recommended Measurement Distance from Surface | 1.4mm      |

#### **Other Probe Parameters**

Certificate No:Z21-60417

Page 9 of 9





### **ANNEX F: D750V3 Dipole Calibration Certificate**

| E-mail: ettl@chinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | www.chinattl.en                                                                                                                                                                                                                                                                                                                                                                        | the second s                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shanghai)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Certificate No: Z2                                                                                                                                                                                                                                                                                                                                                                     | 20-60299                                                                                                                             |
| CALIBRATION CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERTIFICAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |
| Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D750V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 - SN: 1045                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                      |
| Calibration Procedure(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EE 711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -003-01                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion Procedures for dipole validation kits                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                      |
| Calibration date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28, 2020                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |
| pages and are part of the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ertificate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the uncertainties with confidence probability                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      |
| pages and are part of the co<br>All calibrations have been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ertificate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |
| pages and are part of the co<br>All calibrations have beer<br>humidity<70%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ertificate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                            | temperature(22±3)*C an                                                                                                               |
| pages and are part of the contract of the cont | ertificate.<br>n conducted in<br>I (M&TE critical for<br>ID #<br>106276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                                           | temperature(22±3)°C an<br>Scheduled Calibration<br>May-21                                                                            |
| pages and are part of the contract of the cont | ertificate.<br>n conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                         | temperature(22±3)°C an<br>Scheduled Calibration<br>May-21<br>May-21                                                                  |
| pages and are part of the contract of the cont | ID #<br>106276<br>101369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                                           | temperature(22±3)°C an<br>Scheduled Calibration<br>May-21                                                                            |
| pages and are part of the contract of the cont | ertificate.<br>conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)                                                                                                                                                                   | temperature(22±3)*C an<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21                                              |
| pages and are part of the constraints have been humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ertificate.<br>a conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>ID #<br>ID #<br>ID #<br>ID #<br>ID #<br>ID #<br>ID 369<br>ID 369<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 4<br>ID 3617<br>ID 4<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 4<br>ID 3617<br>ID 3617<br>ID 4<br>ID 4<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4<br>ID 3617<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4 | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)                                               | temperature(22±3)*C an<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21                                              |
| pages and are part of the constraints have been humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ertificate.<br>a conducted in<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)                                                                                 | temperature(22±3)*C an<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration                     |
| pages and are part of the control of | ertificate.<br>a conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>ID #<br>ID #<br>ID #<br>ID #<br>ID #<br>ID #<br>ID 369<br>ID 369<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 4<br>ID 3617<br>ID 4<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 4<br>ID 3617<br>ID 3617<br>ID 4<br>ID 4<br>ID 3617<br>ID 3617<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4<br>ID 3617<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4<br>ID 4<br>ID 4<br>ID 3617<br>ID 4<br>ID 4 | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)                                               | temperature(22±3)*C an<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21           |
| pages and are part of the control of | ertificate.<br>a conducted in<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46110673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)             | temperature(22±3)*C an<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |
| pages and are part of the constraints have been humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ertificate.<br>a conducted in<br>a (M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46110673<br>Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)<br>Function | temperature(22±3)*C an<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |

Certificate No: Z20-60299

Page 1 of 8



Tel: +86-10-62304633-2079 B-moul: ettligehimatil.com

Add: No.51 Xucyuan Road, Haidian District; Beijing, 100191, China Fax: +86+10-62304633-25D4 http://www.chiaattl.en

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz.

#### Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. .
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60299

Page 2 of 8



In Collaboration with



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

#### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 15 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 750 MHz ± 1 MHz          |             |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.3 ± 6 %   | 0.87 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 2.07 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 8.37 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 1.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.57 W/kg ± 18.7 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.4 ± 6 %   | 0.94 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.58 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Body TSL        | Condition          |                          |
| SAR measured                                          | 250 mW input power | 1.41 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 5.70 W/kg ±18.7 % (k=2)  |

Certificate No: Z20-60299



Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

### Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.3Ω- 2.29jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.6dB      |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 47.7Ω- 4.58jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 25.6dB      |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 0.900 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: Z20-60299

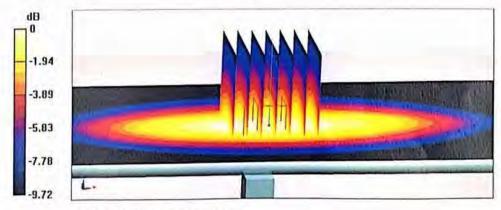
Page 4 of 8



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

DASY5 Validation Report for Head TSL

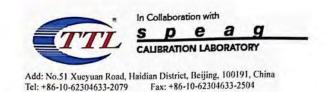
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn


Date: 08.28.2020

Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz;  $\sigma = 0.873 \text{ S/m}$ ;  $c_r = 41.28$ ;  $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section **DASY5** Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: ٠ 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

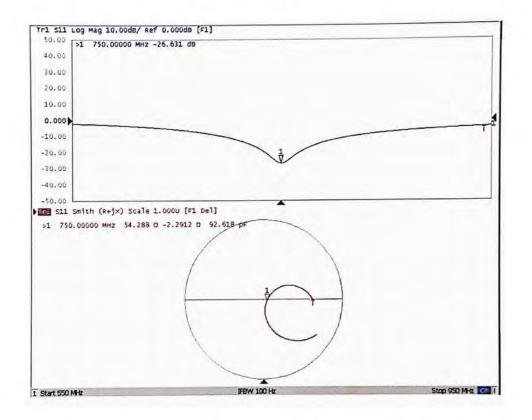
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.97 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 3.00 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.38 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 68.7% Maximum value of SAR (measured) = 2.71 W/kg



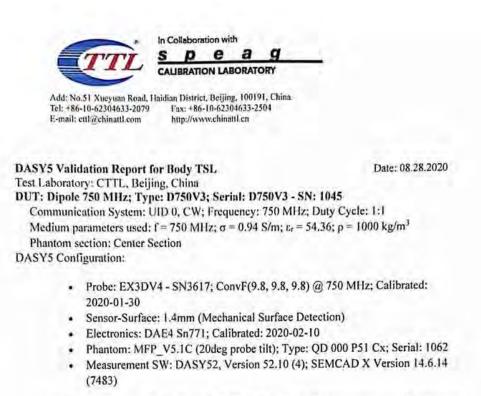
0 dB = 2.71 W/kg = 4.33 dBW/kg

Certificate No: Z20-60299


Page 5 of 8

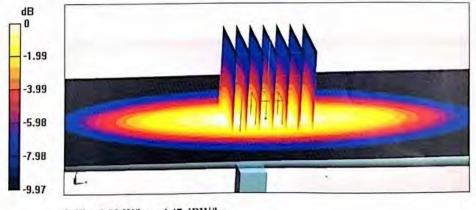


http://www.chinattl.cn


Impedance Measurement Plot for Head TSL

E-mail: cttl@chinattl.com




Certificate No: Z20-60299

Page 6 of 8



Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.84 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.14 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 18.4 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 2.80 W/kg

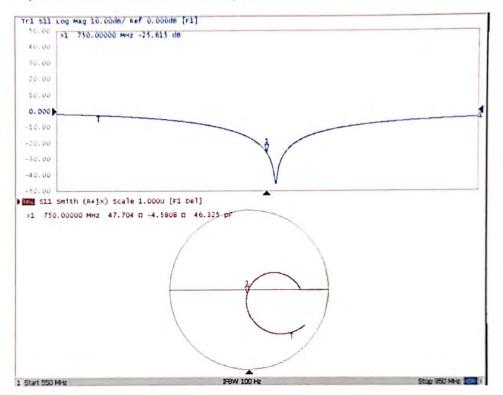


0 dB = 2.80 W/kg = 4.47 dBW/kg

Certificate No: Z20-60299

Page 7 of 8





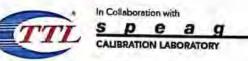

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

#### Impedance Measurement Plot for Body TSL




Certificate No: Z20-60299

Page 8 of 8



### ANNEX G: D835V2 Dipole Calibration Certificate

| E-mail: cttl@chinat<br>Client TA(Sh                                                                                                                                                                                                                    | tl.com http://<br>hanghai)                                                                                                | www.chinattl.cn                                                                                                                                                                                                        | security .                                                                                                                                      |                                                |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------|
| CALIBRATION C                                                                                                                                                                                                                                          |                                                                                                                           | Oert                                                                                                                                                                                                                   | ificate No: Z                                                                                                                                   | 20-60296                                       |                                                                                  |
|                                                                                                                                                                                                                                                        | ERTIFICAT                                                                                                                 | E                                                                                                                                                                                                                      |                                                                                                                                                 |                                                |                                                                                  |
| Dbject                                                                                                                                                                                                                                                 | D835V                                                                                                                     | 2 - SN: 4d020                                                                                                                                                                                                          |                                                                                                                                                 |                                                |                                                                                  |
| Calibration Procedure(s)                                                                                                                                                                                                                               | FF-Z11<br>Calibra                                                                                                         | -003-01<br>tion Procedures for dipole                                                                                                                                                                                  | validation kits                                                                                                                                 |                                                |                                                                                  |
| Calibration date:                                                                                                                                                                                                                                      |                                                                                                                           | 28, 2020                                                                                                                                                                                                               |                                                                                                                                                 |                                                |                                                                                  |
| pages and are part of the co<br>All calibrations have been                                                                                                                                                                                             |                                                                                                                           | the closed laboratory fa                                                                                                                                                                                               | cility: environmer                                                                                                                              | nt temperature                                 | (22±3)°C and                                                                     |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used                                                                                                                                                                              | conducted in                                                                                                              | or calibration)                                                                                                                                                                                                        |                                                                                                                                                 | -                                              | (22±3)°C and                                                                     |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used                                                                                                                                                                              | i conducted in                                                                                                            |                                                                                                                                                                                                                        | , Certificate No.)                                                                                                                              | Scheduled                                      |                                                                                  |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A                                                                                                               | I conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369                                                          | calibration)<br>Cal Date(Calibrated by<br>12-May-20 (CTTL, No.J<br>12-May-20 (CTTL, No.J                                                                                                                               | , Certificate No.)<br>20X02965)<br>20X02965)                                                                                                    | Scheduled<br>Ma<br>Ma                          | Calibration<br>ay-21<br>ay-21                                                    |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2                                                                                                                                     | I conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369                                                          | or calibration)<br>Cal Date(Calibrated by<br>12-May-20 (CTTL, No.J:                                                                                                                                                    | , Certificate No.)<br>20X02965)<br>20X02965)<br>X3-3617_Jan20)                                                                                  | Scheduled<br>Ma<br>Ma<br>Ja                    | Calibration<br>ay-21                                                             |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                                                     | Conducted in<br>(M&TE critical for<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #                                       | Cal Date(Calibrated by<br>12-May-20 (CTTL, No.J<br>12-May-20 (CTTL, No.J<br>30-Jan-20(SPEAG,No.E                                                                                                                       | , Certificate No.)<br>20X02965)<br>20X02965)<br>23-3617_Jan20)<br>G,No.Z20-60017)                                                               | Scheduled<br>Ma<br>Ja<br>Fe                    | Calibration<br>ay-21<br>ay-21<br>ay-21<br>an-21                                  |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4                                                                             | I conducted in<br>(M&TE critical for<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430                       | Cal Date(Calibrated by<br>12-May-20 (CTTL, No.J<br>12-May-20 (CTTL, No.J<br>30-Jan-20 (SPEAG,No.E<br>10-Feb-20 (CTTL-SPEAG                                                                                             | Certificate No.)<br>20X02965)<br>20X02965)<br>X3-3617_Jan20)<br>G,No.Z20-60017)<br>Certificate No.)<br>20X00516)                                | Scheduled<br>Ma<br>Ja<br>Fe<br>Scheduled       | Calibration<br>ay-21<br>ay-21<br>an-21<br>ab-21                                  |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | I conducted in<br>(M&TE critical for<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430                       | Cal Date(Calibrated by,<br>12-May-20 (CTTL, No.J.<br>12-May-20 (CTTL, No.J.<br>30-Jan-20(SPEAG,No.E<br>10-Feb-20(CTTL-SPEA<br>Cal Date(Calibrated by,<br>25-Feb-20 (CTTL, No.J.                                        | Certificate No.)<br>20X02965)<br>20X02965)<br>X3-3617_Jan20)<br>G,No.Z20-60017)<br>Certificate No.)<br>20X00516)                                | Scheduled<br>Ma<br>Ja<br>Fe<br>Scheduled       | Calibration<br>ay-21<br>ay-21<br>ay-21<br>ab-21<br>calibration<br>ab-21<br>ab-21 |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | I conducted in<br>(M&TE critical fe<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46110673          | Cal Date(Calibrated by,<br>12-May-20 (CTTL, No.J.<br>12-May-20 (CTTL, No.J.<br>30-Jan-20(SPEAG,No.E<br>10-Feb-20(CTTL-SPEA<br>Cal Date(Calibrated by,<br>25-Feb-20 (CTTL, No.J2<br>10-Feb-20 (CTTL, No.J2              | Certificate No.)<br>20X02965)<br>20X02965)<br>X3-3617_Jan20)<br>G,No.Z20-60017)<br>Certificate No.)<br>20X00516)<br>20X00515)                   | Scheduled<br>Ma<br>Ja<br>Fe<br>Scheduled<br>Fé | Calibration<br>ay-21<br>ay-21<br>ay-21<br>ab-21<br>calibration<br>ab-21<br>ab-21 |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>NetworkAnalyzer E5071C | a conducted in<br>(M&TE critical for<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46110673<br>Name | Cal Date(Calibrated by,<br>12-May-20 (CTTL, No.J.<br>12-May-20 (CTTL, No.J.<br>30-Jan-20(SPEAG,No.E<br>10-Feb-20(CTTL-SPEAC<br>Cal Date(Calibrated by,<br>25-Feb-20 (CTTL, No.J.<br>10-Feb-20 (CTTL, No.J.<br>Function | Certificate No.)<br>20X02965)<br>20X02965)<br>20X02965)<br>20X02965)<br>20X02965)<br>20X02960017)<br>Certificate No.)<br>20X00516)<br>20X00515) | Scheduled<br>Ma<br>Ja<br>Fe<br>Scheduled<br>Fé | Calibration<br>ay-21<br>ay-21<br>ay-21<br>ab-21<br>calibration<br>ab-21<br>ab-21 |



Tel: +86-10-62304633-2079 E-mail: cul a chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary: tissue simulating liquid TSL ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60296

Page 2 of 8



In Collaboration with





Add: No.51 Xueyuan Road, Haidian Distriet, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.en

Measurement Conditions DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 15 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 835 MHz ± 1 MHz          |             |

Head TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.90 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.2 ± 6 %   | 0.88 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.37 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 9.65 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL        | Condition          |                          |
| SAR measured                                          | 250 mW input power | 1.57 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 6.37 W/kg ± 18.7 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.2         | 0.97 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.0 ± 6 %   | 0.96 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         | اسب          |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 2.42 W/kg                 |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 9.76 W /kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          | 1000                      |
| SAR measured                                            | 250 mW input power | 1.59 W/kg                 |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.40 W/kg ± 18.7 % (k=2)  |

Certificate No: Z20-60296

Page 3 of 8



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.en

#### Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 54.8Ω+ 1.73jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.2dB      |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.0Ω- 2.47jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 26.2dB      |  |

#### **General Antenna Parameters and Design**

| 1.258 ns |
|----------|
|          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: Z20-60296

Page 4 of 8



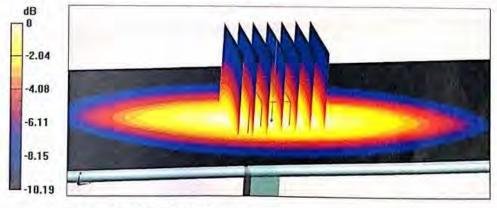


Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

**DASY5 Validation Report for Head TSL** 

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Date: 08.28.2020


Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz;  $\sigma = 0.877$  S/m;  $\epsilon_r = 41.23$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Center Section

**DASY5** Configuration:

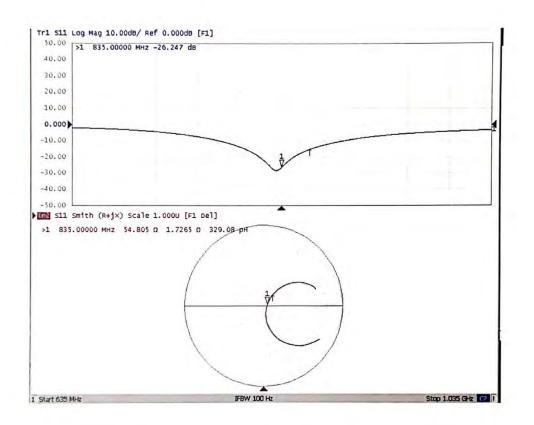
- Probe: EX3DV4 SN3617; ConvF(9.66, 9.66, 9.66) @ 835 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 .
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.09 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 3.46 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg Smallest distance from peaks to all points 3 dB below = 16.6 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 3.12 W/kg

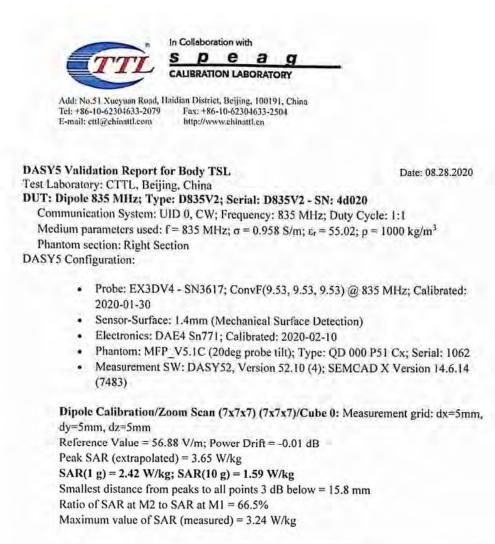


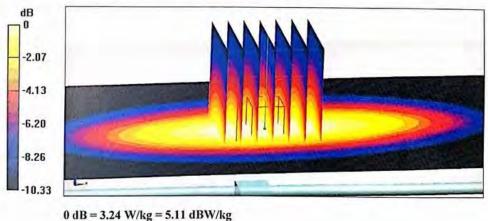
0 dB = 3.12 W/kg = 4.94 dBW/kg


Certificate No: Z20-60296

Page 5 of 8

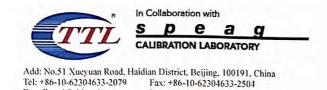



Impedance Measurement Plot for Head TSL


E-mail: cttl@chinattl.com



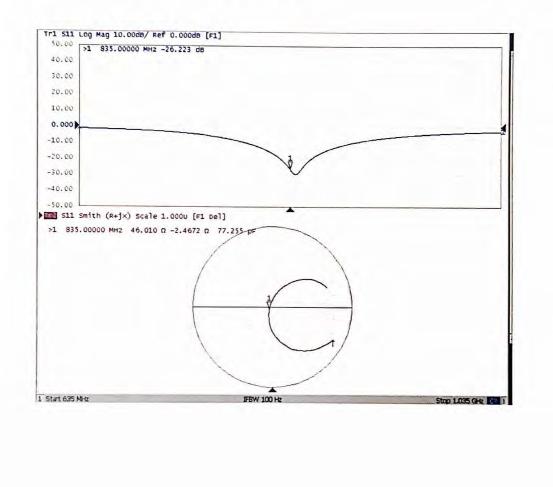
Certificate No: Z20-60296


Page 6 of 8





Certificate No: Z20-60296


Page 7 of 8



http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

E-mail: cttl@chinattl.com



Certificate No: Z20-60296

Page 8 of 8



### ANNEX H: D1750V2 Dipole Calibration Certificate

| Client TA(SI<br>CALIBRATION C<br>Object                                                                                                                                                                                  | eRTIFICAT                                                                                                                        |                                                                                                                                                                                                                                                                                                                        | 0-60079                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          | ERTIFICAT                                                                                                                        | E                                                                                                                                                                                                                                                                                                                      |                                                                                                            |
| Object                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                            |
|                                                                                                                                                                                                                          | D1750                                                                                                                            | /2 - SN: 1033                                                                                                                                                                                                                                                                                                          |                                                                                                            |
| Calibration Procedure(s)                                                                                                                                                                                                 | FE-711                                                                                                                           | -003-01                                                                                                                                                                                                                                                                                                                |                                                                                                            |
|                                                                                                                                                                                                                          |                                                                                                                                  | tion Procedures for dipole validation kits                                                                                                                                                                                                                                                                             |                                                                                                            |
| Calibration date:                                                                                                                                                                                                        | Febura                                                                                                                           | ry 25, 2020                                                                                                                                                                                                                                                                                                            |                                                                                                            |
|                                                                                                                                                                                                                          | ertificate.                                                                                                                      |                                                                                                                                                                                                                                                                                                                        |                                                                                                            |
| humidity<70%.                                                                                                                                                                                                            | n conducted in                                                                                                                   | the closed laboratory facility: environment<br>or calibration)                                                                                                                                                                                                                                                         | t temperature(22±3)°C and                                                                                  |
| numidity<70%.<br>Calibration Equipment used                                                                                                                                                                              | n conducted in                                                                                                                   |                                                                                                                                                                                                                                                                                                                        | t temperature(22±3)℃ and<br>Scheduled Calibration                                                          |
| numidity<70%.<br>Calibration Equipment used                                                                                                                                                                              | n conducted in<br>I (M&TE critical f                                                                                             | or calibration)                                                                                                                                                                                                                                                                                                        |                                                                                                            |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A                                                                                                               | n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369                                                                 | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)                                                                                                                                                                                                           | Scheduled Calibration                                                                                      |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                                                     | n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>4 SN 3846                                                    | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19(CTTL-SPEAG,No.Z19-60064)                                                                                                                                                                     | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20                                                        |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A                                                                                                               | n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369                                                                 | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)                                                                                                                                                                                                           | Scheduled Calibration<br>Apr-20<br>Apr-20                                                                  |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                                                     | n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>4 SN 3846                                                    | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19(CTTL-SPEAG,No.Z19-60064)                                                                                                                                                                     | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20                                                        |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4                                                                             | n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>6 SN 3846<br>SN 1555<br>ID #                                 | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19 (CTTL-SPEAG,No.Z19-60064)<br>22-Aug-19(CTTL-SPEAG,No.Z19-60295)                                                                                                                              | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20<br>Aug-20                                              |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                      | Conducted in<br>(M&TE critical f<br>10 #<br>106276<br>101369<br>SN 3846<br>SN 1555<br>ID #<br>MY49071430                         | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19(CTTL-SPEAG,No.Z19-60064)<br>22-Aug-19(CTTL-SPEAG,No.Z19-60295)<br>Cal Date(Calibrated by, Certificate No.)                                                                                   | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20<br>Aug-20<br>Scheduled Calibration                     |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | Conducted in<br>(M&TE critical f<br>10 #<br>106276<br>101369<br>SN 3846<br>SN 1555<br>ID #<br>MY49071430                         | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19 (CTTL-SPEAG,No.Z19-60064)<br>22-Aug-19(CTTL-SPEAG,No.Z19-60295)<br>Cal Date(Calibrated by, Certificate No.)<br>10-Feb-20 (CTTL, No.J20X00516)                                                | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20<br>Aug-20<br>Scheduled Calibration<br>Feb-21           |
| numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>NetworkAnalyzer E5071C | n conducted in<br>(M&TE critical f<br>ID #<br>106276<br>101369<br>SN 3846<br>SN 1555<br>ID #<br>MY49071430<br>MY46110673         | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19(CTTL-SPEAG,No.Z19-60064)<br>22-Aug-19(CTTL-SPEAG,No.Z19-60295)<br>Cal Date(Calibrated by, Certificate No.)<br>10-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)               | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20<br>Aug-20<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |
| humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | a conducted in<br>(M&TE critical f<br>10 #<br>106276<br>101369<br>SN 3846<br>SN 1555<br>ID #<br>MY49071430<br>MY46110673<br>Name | Cal Date(Calibrated by, Certificate No.)<br>11-Apr-19 (CTTL, No.J19X02605)<br>11-Apr-19 (CTTL, No.J19X02605)<br>25-Mar-19 (CTTL-SPEAG,No.Z19-60064)<br>22-Aug-19 (CTTL-SPEAG,No.Z19-60295)<br>Cal Date(Calibrated by, Certificate No.)<br>10-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)<br>Function | Scheduled Calibration<br>Apr-20<br>Apr-20<br>Mar-20<br>Aug-20<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |

Certificate No: Z20-60079

Page 1 of 8

Glossary:

TSL

N/A

ConvF



s p е а CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60079

Page 2 of 8



In Collaboration with



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1750 MHz ± 1 MHz         |             |

#### Head TSL parameters

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.1 ± 6 %   | 1.35 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

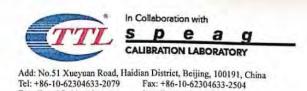
#### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 8.93 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 35.9 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 4.71 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 18.9 W/kg ± 18.7 % (k=2) |

#### Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.4 ± 6 %   | 1.48 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              | )                |


#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 9.24 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 36.9 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 4.95 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 19.8 W/kg ± 18.7 % (k=2) |

Certificate No: Z20-60079

Page 3 of 8





http://www.chinattl.cn Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

E-mail: cttl@chinattl.com

| Impedance, transformed to feed point | 48.8Ω- 0.06 jΩ |  |
|--------------------------------------|----------------|--|
| Return Loss                          | - 38.3 dB      |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 44.5Ω- 0.85 jΩ |   |
|--------------------------------------|----------------|---|
| Return Loss                          | - 24.5 dB      | _ |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.085 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

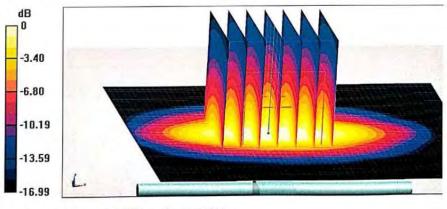
#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|

Certificate No: Z20-60079

Page 4 of 8

SAR Test Report



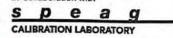

Date: 02.25.2020

**DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz;  $\sigma = 1.349$  S/m;  $\varepsilon_r = 39.06$ ;  $\rho = 1000$  kg/m3 Phantom section: Right Section DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(8.2, 8.2, 8.2) @ 1750 MHz; Calibrated: 2019-03-25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

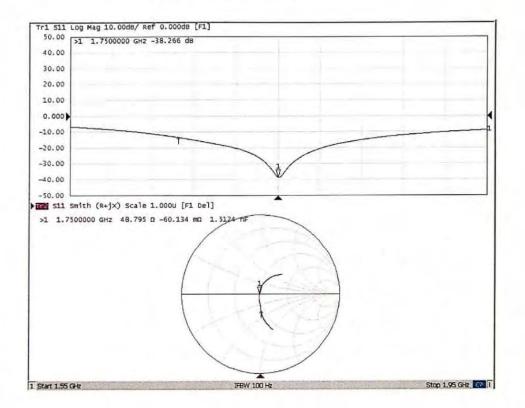
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.26 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 8.93 W/kg; SAR(10 g) = 4.71 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 13.9 W/kg




0 dB = 13.9 W/kg = 11.43 dBW/kg

Certificate No: Z20-60079

Page 5 of 8








Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

### Impedance Measurement Plot for Head TSL

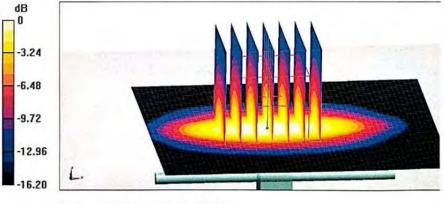








### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China


Date: 02.25.2020

**DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz;  $\sigma = 1.482$  S/m;  $\varepsilon_r = 52.35$ ;  $\rho = 1000$  kg/m3 Phantom section: Center Section

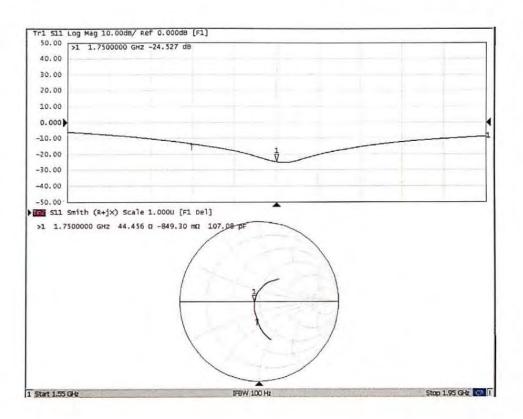
DASY5 Configuration:

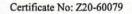
- Probe: EX3DV4 SN3846; ConvF(7.8, 7.8, 7.8) @ 1750 MHz; Calibrated: 2019-03-25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.32 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 56% Maximum value of SAR (measured) = 14.1 W/kg



0 dB = 14.1 W/kg = 11.49 dBW/kg


Certificate No: Z20-60079


Page 7 of 8





### Impedance Measurement Plot for Body TSL





Page 8 of 8



# **ANNEX I: D1900V2 Dipole Calibration Certificate**

| Client TA                                                                                                                                                                                                                                              | Shanghai)                                                                                                                                                | Certificate No: Z                                                                                                                                                                                                                                                                                                    | 20-60297                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| CALIBRATION C                                                                                                                                                                                                                                          | EDTIFIC AT                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                                                                            |
|                                                                                                                                                                                                                                                        | ERTIFICA                                                                                                                                                 | E                                                                                                                                                                                                                                                                                                                    |                                                                                                            |
| Object                                                                                                                                                                                                                                                 | D1900                                                                                                                                                    | V2 - SN: 5d060                                                                                                                                                                                                                                                                                                       |                                                                                                            |
| Calibration Procedure(s)                                                                                                                                                                                                                               | EE 744                                                                                                                                                   | -003-01                                                                                                                                                                                                                                                                                                              |                                                                                                            |
|                                                                                                                                                                                                                                                        |                                                                                                                                                          | ation Procedures for dipole validation kits                                                                                                                                                                                                                                                                          |                                                                                                            |
| Calibration date:                                                                                                                                                                                                                                      |                                                                                                                                                          | 27, 2020                                                                                                                                                                                                                                                                                                             |                                                                                                            |
| pages and are part of the c                                                                                                                                                                                                                            |                                                                                                                                                          | the closed laboratory facility: environment                                                                                                                                                                                                                                                                          | temperature/22+3)% and                                                                                     |
| All calibrations have been humidity<70%.                                                                                                                                                                                                               | ertificate.<br>n conducted in                                                                                                                            | the closed laboratory facility: environment<br>or calibration)                                                                                                                                                                                                                                                       | temperature(22±3)°C and                                                                                    |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used                                                                                                                                                                              | ertificate.<br>n conducted in                                                                                                                            |                                                                                                                                                                                                                                                                                                                      | temperature(22±3)°C and<br>Scheduled Calibration                                                           |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2                                                                                                                                     | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276                                                                                    | or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                        | Scheduled Calibration<br>May-21                                                                            |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A                                                                                                               | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369                                                                          | or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                      | Scheduled Calibration<br>May-21<br>May-21                                                                  |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2                                                                                                                                     | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369                                                                          | or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                        | Scheduled Calibration<br>May-21                                                                            |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                                                     | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>4 SN 3617                                                             | or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)                                                                                                                                                | Scheduled Calibration<br>May-21<br>May-21<br>Jan-21                                                        |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4                                                                             | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #                                             | Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)                                                                                 | Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21                                              |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                      | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>ID #<br>MY49071430                       | or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)                            | Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration                     |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>ID #<br>MY49071430                       | Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)                                               | Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21 |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>NetworkAnalyzer E5071C | ertificate.<br>n conducted in<br>d (M&TE critical f<br>ID #<br>106276<br>101369<br>4 SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46110673               | Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)             | Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | ertificate.<br>n conducted in<br>d (M&TE critical f<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 771<br>1D #<br>1D #<br>MY49071430<br>MY46110673<br>Name | Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)<br>Function | Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |

Certificate No: Z20-60297

Page 1 of 8



Tel: +86-10-62304633-2079 E-mail: cnl a chinanl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.en

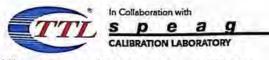
| TSL   | Resus standation through                                   |
|-------|------------------------------------------------------------|
| ConvF | tissue simulating liquid<br>sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured                             |

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

e) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60297

Page 2 of 8



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 1900 MHz ± 1 MHz         |             |

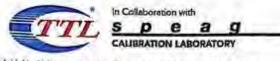
Head TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.0         | 1.40 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.1 ± 6 %   | 1.40 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 9.82 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 39.5 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 5.04 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 20.2 W/kg ± 18.7 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.


|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.3         | 1.52 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 53.5 ± 6 %   | 1.51 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 9.89 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 39.8 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 5.13 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.6 W/kg ± 18.7 % (k=2) |

Certificate No: Z20-60297

Page 3 of 8



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel:-186-10-62304623-2079. Fax:=86-10-62304633-2504 E-mail: enlsichinatil.enen http://www.chinatil.en

# Appendix (Additional assessments outside the scope of CNAS L0570)

# Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.5Ω+ 6.58jΩ |  |
|--------------------------------------|---------------|--|
| Return Loss                          | - 23.3dB      |  |

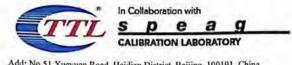
### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.0Ω+ 6.72jΩ |   |
|--------------------------------------|---------------|---|
| Return Loss                          | - 22.9dB      | _ |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.061 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: 720-60297

Page 4 of 8

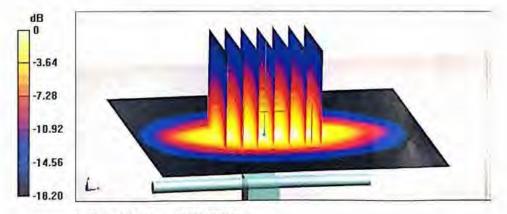


 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: ettl@chinattl.com
 http://www.chinattl.cn

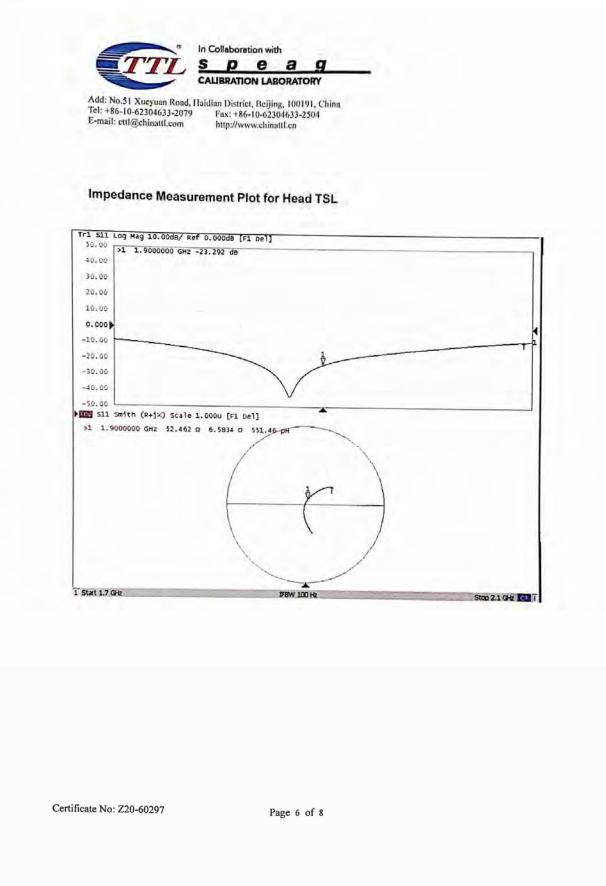
DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MUE: True D1000V2: Se

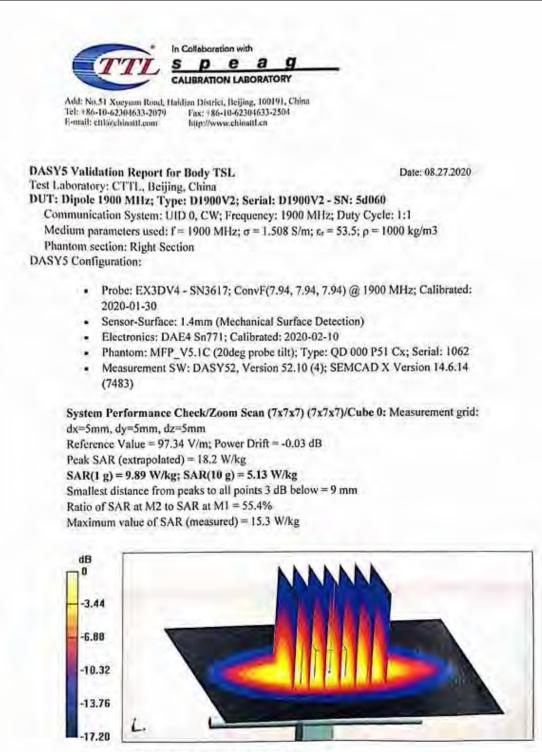

Date: 08.27.2020

**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz;  $\sigma = 1.404$  S/m;  $\varepsilon_r = 41.12$ ;  $\rho = 1000$  kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.04 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 15.6 W/kg



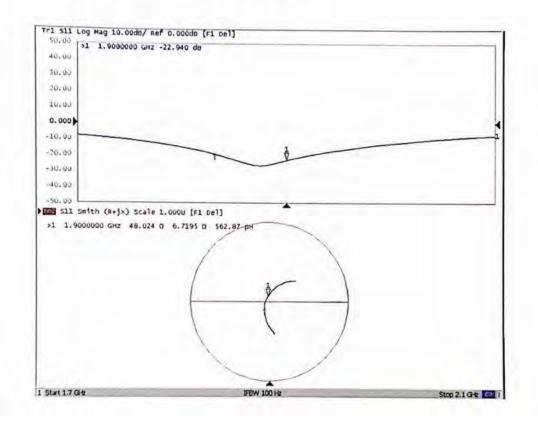

0 dB = 15.6 W/kg = 11.93 dBW/kg

Certificate No: Z20-60297

Page 5 of 8






0 dB = 15.3 W/kg = 11.85 dBW/kg

Certificate No: Z20-60297

Page 7 of 8

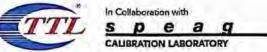


Impedance Measurement Plot for Body TSL



Certificate No: Z20-60297

Page 8 of 8




# ANNEX J: D2450V2 Dipole Calibration Certificate

| E-mail: cttl@chinat                                                                                                                                                                                                                                    | tl.com http://s                                                                                                                                  | www.chinattl.cn                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        | 20-60298                                                                                                                                |
|                                                                                                                                                                                                                                                        | hanghai)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                        | 20-00230                                                                                                                                |
| CALIBRATION C                                                                                                                                                                                                                                          | ERTIFICAT                                                                                                                                        | E                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |
| Dbject                                                                                                                                                                                                                                                 | D2450                                                                                                                                            | /2 - SN: 786                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                         |
| Calibration Procedure(s)                                                                                                                                                                                                                               | FF-Z11                                                                                                                                           | -003-01                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |
|                                                                                                                                                                                                                                                        |                                                                                                                                                  | tion Procedures for dipole validation kits                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |
| Calibration date:                                                                                                                                                                                                                                      |                                                                                                                                                  | 27, 2020                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |
| pages and are part of the ce                                                                                                                                                                                                                           | ertificate.                                                                                                                                      | the uncertainties with confidence probability                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |
| bages and are part of the ce                                                                                                                                                                                                                           | ertificate.                                                                                                                                      | the closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |
| ages and are part of the co<br>Il calibrations have been<br>numidity<70%.<br>Calibration Equipment used                                                                                                                                                | ertificate.                                                                                                                                      | the closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |
| ages and are part of the ce<br>II calibrations have been<br>umidity<70%.<br>Calibration Equipment used<br>rimary Standards<br>Power Meter NRP2                                                                                                         | ertificate.<br>conducted in<br>(M&TE critical fo<br>ID #<br>106276                                                                               | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                                           | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21                                                                            |
| ages and are part of the ce<br>II calibrations have been<br>umidity<70%.<br>Calibration Equipment used<br>rimary Standards<br>Power Meter NRP2<br>Power sensor NRP6A                                                                                   | I (M&TE critical for<br>I 0 #<br>106276<br>101369                                                                                                | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                         | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21                                                                  |
| ages and are part of the ce<br>II calibrations have been<br>umidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                        | I (M&TE critical for<br>I 0 #<br>106276<br>101369                                                                                                | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                                           | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21                                                                            |
| ages and are part of the ce<br>unidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4                                                                             | ertificate.<br>1 conducted in<br>1 (M&TE critical for<br>10 #<br>106276<br>101369<br>5N 3617                                                     | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)                                                                                                                             | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21                                              |
| ages and are part of the co<br>Il calibrations have been<br>uumidity<70%.                                                                                                                                                                              | ertificate.<br>conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771                                               | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)                                                                                                                                                                   | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21                                                        |
| ages and are part of the ce<br>unidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | ertificate.<br>conducted in<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #                                       | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)                                                                                 | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration                     |
| ages and are part of the ce<br>unidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                           | ertificate.<br>a conducted in<br>(M&TE critical for<br>ID#<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID#<br>ID#<br>ID#<br>ID#                  | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)                                               | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21           |
| ages and are part of the ce<br>unidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>NetworkAnalyzer E5071C | ertificate.<br>a conducted in<br>a (M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46107873       | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)             | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |
| ages and are part of the ce<br>all calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                       | ertificate.<br>a conducted in<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 771<br>ID #<br>MY49071430<br>MY46107873<br>Name | the closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>30-Jan-20(SPEAG,No.EX3-3617_Jan20)<br>10-Feb-20(CTTL-SPEAG,No.Z20-60017)<br>Cal Date(Calibrated by, Certificate No.)<br>25-Feb-20 (CTTL, No.J20X00516)<br>10-Feb-20 (CTTL, No.J20X00515)<br>Function | t temperature(22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-21<br>Feb-21<br>Scheduled Calibration<br>Feb-21<br>Feb-21 |

Certificate No: Z20-60298

Page 1 of 8



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

| Glossary: |                                |
|-----------|--------------------------------|
| TSL       | tissue simulating liquid       |
| ConvF     | sensitivity in TSL / NORMx,y,z |
| N/A       | not applicable or not measured |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

### Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60298

Page 2 of 8



E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52.10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5.1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |             |
| Frequency                    | 2450 MHz ± 1 MHz         | 2           |

g

### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.5 ± 6 %   | 1.79 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         | -            |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.0 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 52.3 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL        | Condition          |                          |
| SAR measured                                          | 250 mW input power | 5.99 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 24.0 W/kg ± 18.7 % (k=2) |

Body TSL parameters The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.1 ± 6 %   | 1.94 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         | 1 Sec.       |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL   | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 13.1 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 52.4 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | Condition          |                          |
| SAR measured                                            | 250 mW input power | 6.08 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.3 W/kg ± 18.7 % (k=2) |

Certificate No: Z20-60298

### Page 3 of 8



### Appendix (Additional assessments outside the scope of CNAS L0570)

http://www.chinattl.cn

### Antenna Parameters with Head TSL

E-mail: cttl@chinattl.com

| Impedance, transformed to feed point | 54.5Ω+ 1.44 jΩ |
|--------------------------------------|----------------|
| Return Loss                          | - 26.9dB       |

### Antenna Parameters with Body TSL

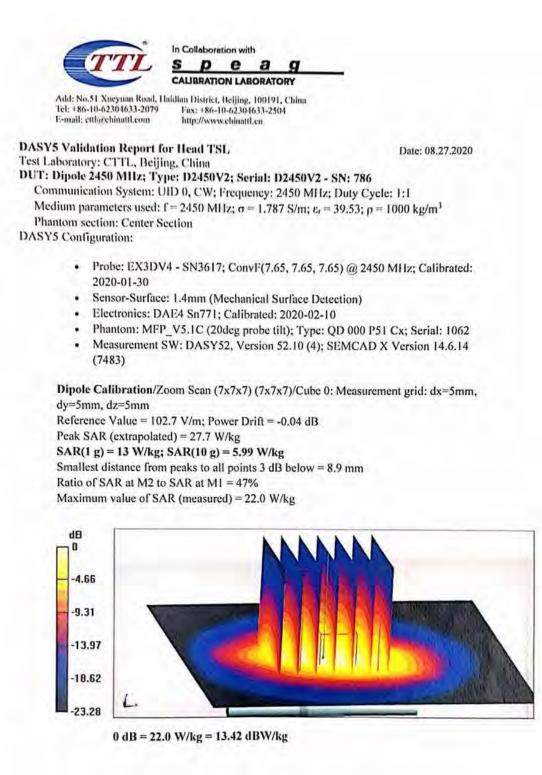
| Impedance, transformed to feed point | 50.9Ω+ 5.09 jΩ |
|--------------------------------------|----------------|
| Return Loss                          | - 25.8dB       |

## General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.018 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

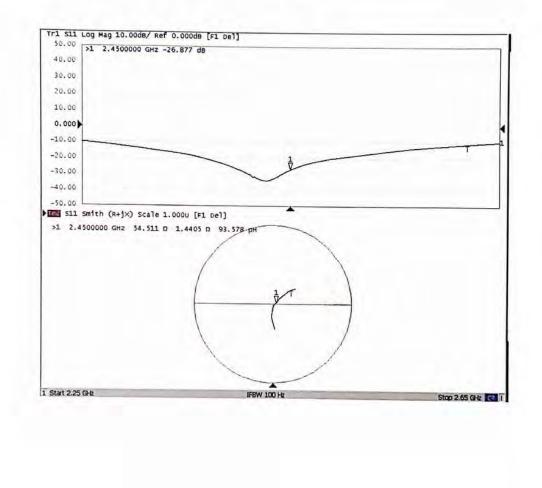

### Additional EUT Data

| Manufactured by | SPEAG |  |
|-----------------|-------|--|
|                 |       |  |

Certificate No: Z20-60298

Page 4 of 8






Certificate No: Z20-60298

Page 5 of 8



Impedance Measurement Plot for Head TSL



Certificate No: Z20-60298

Page 6 of 8



DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China

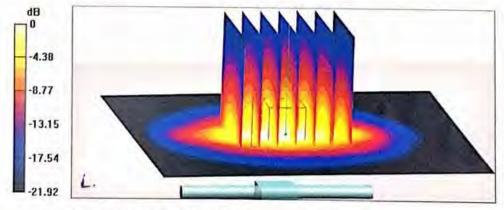
Date: 08.27.2020

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz;  $\sigma = 1.938 \text{ S/m}$ ;  $r_t = 52.06$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.76, 7.76, 7.76) @ 2450 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP\_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.9 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm

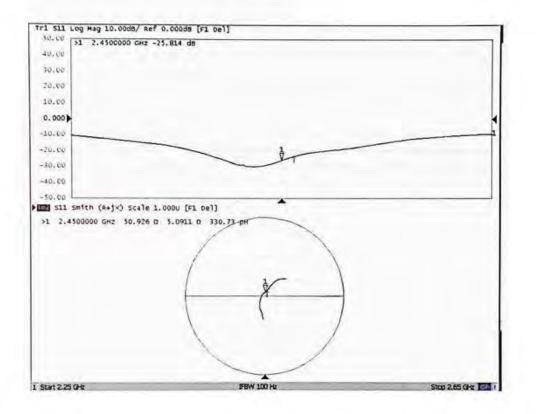
Ratio of SAR at M2 to SAR at M1 = 49,9%

Maximum value of SAR (measured) = 21.8 W/kg



0 dB = 21.8 W/kg = 13.38 dBW/kg

Certificate No: Z20-60298


Page 7 of 8



SAR Test Report



Impedance Measurement Plot for Body TSL



Certificate No: Z20-60298

Page 8 of 8



# ANNEX K: D2600V2 Dipole Calibration Certificate

|                                                                                                                                                                                                                                                             | CALIBRAT                                                                                                                                         | TION LABORATORY                                                                                                                                                                                                                                                                                                                                                                           | NAS 校准<br>CALIBRATIO                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Add: No.52 HuaYua<br>Tel: +86-10-6230463<br>E-mail: enl@chinati                                                                                                                                                                                             | 33-2079 Fax: +                                                                                                                                   | District, Beijing, 100191, Chi<br>86-10-62304633-2504<br>www.chinattl.en                                                                                                                                                                                                                                                                                                                  | CNAS L0570                                                                                                                                          |
|                                                                                                                                                                                                                                                             | hanghai)                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                           | 21-60156                                                                                                                                            |
| CALIBRATION CE                                                                                                                                                                                                                                              | RTIFICAT                                                                                                                                         | E                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     |
| Object                                                                                                                                                                                                                                                      | D2600\                                                                                                                                           | /2 - SN: 1025                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |
| Calibration Procedure(s)                                                                                                                                                                                                                                    | -                                                                                                                                                | a                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     |
|                                                                                                                                                                                                                                                             | FF-Z11                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     |
|                                                                                                                                                                                                                                                             | Galibra                                                                                                                                          | tion Procedures for dipole validation kits                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| Calibration date:                                                                                                                                                                                                                                           | April 23                                                                                                                                         | 3, 2021                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                     |
| measurements (SI). The me<br>pages and are part of the ce                                                                                                                                                                                                   |                                                                                                                                                  | the uncertainties with confidence probability                                                                                                                                                                                                                                                                                                                                             | are given on the rollowing                                                                                                                          |
| pages and are part of the ce                                                                                                                                                                                                                                | ertificate.                                                                                                                                      | he closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| pages and are part of the ce<br>All calibrations have been<br>humidity<70%<br>Calibration Equipment used                                                                                                                                                    | ertificate.                                                                                                                                      | he closed laboratory facility: environment                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |
| bages and are part of the ce<br>All calibrations have been<br>humidity<70%.<br>Calibration Equipment used                                                                                                                                                   | conducted in t                                                                                                                                   | he closed laboratory facility: environment<br>or calibration)                                                                                                                                                                                                                                                                                                                             | temperature (22±3)°C and                                                                                                                            |
| bages and are part of the ce<br>All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards                                                                                                                              | entificate.<br>conducted in t<br>I (M&TE critical for<br>ID #                                                                                    | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)                                                                                                                                                                                                                                                                                 | temperature (22±3)°C and<br>Scheduled Calibration                                                                                                   |
| All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                                                           | entificate.<br>conducted in t<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617                                                       | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                                                               | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21                                                                                         |
| Pages and are part of the ce<br>All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A                                                                                     | entificate.<br>conducted in t<br>(M&TE critical for<br>ID #<br>106276<br>101369                                                                  | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)                                                                                                                                                                                                             | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21                                                                               |
| All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4                                                                                           | entificate.<br>conducted in t<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617                                                       | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>27-Jan-21(SPEAG,No.EX3-3617_Jan21)                                                                                                                                                                       | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-22                                                                     |
| pages and are part of the ce<br>All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4                                                   | entificate.<br>conducted in t<br>(M&TE critical for<br>ID #<br>106276<br>101369<br>SN 3617<br>SN 777                                             | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>27-Jan-21(CTTL-SPEAG,No.EX3-3617_Jan21)<br>08-Jan-21(CTTL-SPEAG,No.Z21-60003)                                                                                                                            | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-22<br>Jan-22                                                           |
| All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                            | entificate.<br>conducted in t<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 777<br>ID #<br>MY49071430                       | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>27-Jan-21 (CTTL, No.J20X02965)<br>28-Jan-21 (CTTL-SPEAG,No.Z21-60003)<br>Cal Date(Calibrated by, Certificate No.)<br>01-Feb-21 (CTTL, No.J21X00593)                                                      | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-22<br>Jan-22<br>Scheduled Calibration                                  |
| All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C                                 | entificate.<br>conducted in t<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 777<br>ID #<br>MY49071430                       | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>27-Jan-21 (CTTL, No.J20X02965)<br>28-Jan-21 (CTTL-SPEAG,No.Z21-60003)<br>Cal Date(Calibrated by, Certificate No.)<br>01-Feb-21 (CTTL, No.J21X00593)                                                      | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-22<br>Jan-22<br>Scheduled Calibration<br>Jan-22                        |
| pages and are part of the ce<br>All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C | entificate.<br>conducted in t<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 777<br>ID #<br>MY49071430<br>MY46110673         | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>27-Jan-21 (CTTL, No.J20X02965)<br>27-Jan-21 (CTTL-SPEAG,No.Z21-60003)<br>Cal Date(Calibrated by, Certificate No.)<br>01-Feb-21 (CTTL, No.J21X00593)<br>14-Jan-21 (CTTL, No.J21X00232)                    | temperature (22±3) <sup>®</sup> C and<br>Scheduled Calibration<br>May-21<br>May-21<br>Jan-22<br>Jan-22<br>Scheduled Calibration<br>Jan-22<br>Jan-22 |
| All calibrations have been<br>humidity<70%<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP6A<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>Signal Generator E4438C<br>Network Analyzer E5071C      | entificate.<br>conducted in t<br>(M&TE critical for<br>10 #<br>106276<br>101369<br>SN 3617<br>SN 777<br>ID #<br>MY49071430<br>MY46110673<br>Name | he closed laboratory facility: environment<br>or calibration)<br>Cal Date(Calibrated by, Certificate No.)<br>12-May-20 (CTTL, No.J20X02965)<br>12-May-20 (CTTL, No.J20X02965)<br>27-Jan-21 (SPEAG, No.EX3-3617_Jan21)<br>08-Jan-21 (CTTL-SPEAG, No.221-60003)<br>Cal Date(Calibrated by, Certificate No.)<br>01-Feb-21 (CTTL, No.J21X00593)<br>14-Jan-21 (CTTL, No.J21X00232)<br>Function | temperature (22±3)°C and<br>Scheduled Calibration<br>May-21<br>Jan-22<br>Jan-22<br>Scheduled Calibration<br>Jan-22<br>Jan-22                        |

Certificate No: Z21-60156

Page 1 of 6



In Collaboration with p e s а CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2564 E-mail: etil@chinatil.com http://www.chinatil.cn

#### Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices. Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless

communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016

- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss. These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required,
- SAR measured. SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60156

Page 2 of 6



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | V52 10.4    |
|------------------------------|--------------------------|-------------|
| Extrapolation                | Advanced Extrapolation   |             |
| Phantom                      | Triple Flat Phantom 5 1C |             |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$   |             |
| Frequency                    | 2600 MHz ± 1 MHz         |             |

#### Head TSL parameters

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.9±6 %     | 1.94 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              | _                |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.9 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 56.1 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 cm3 (10 g) of Head TSL           | Condition          | -                        |
| SAR measured                                          | 250 mW input power | 6.10 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 24.5 W/kg ± 18.7 % (k=2) |

Certificate No: Z21-60156

Page 3 of 6

| - CHICKIN                              | inc     | ollabora            | stion with | th       |            |
|----------------------------------------|---------|---------------------|------------|----------|------------|
| TIL                                    | S       | p                   | е          | а        | g          |
|                                        | CAL     | BRATI               | ON LAP     | ORATO    | DRY        |
| No.52 HuaYuanBei Roa                   | d, Haid | lian Dist           | tict, Beij | ing. 100 | 191. Chini |
| -10-62304633-2079<br>ettl@chinattl.com | Fa      | x: +86-1<br>0://www | 0-62304    | 633-250  | 14         |

# Appendix(Additional assessments outside the scope of CNAS L0570)

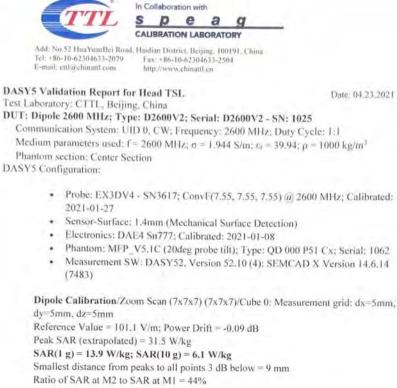
### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.1Ω- 7.19)Ω |
|--------------------------------------|---------------|
| Return Loss                          | - 22 9dB      |

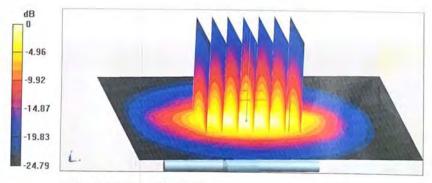
### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1 055 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data


| Manufactured by | SPEAG  |
|-----------------|--------|
|                 | OF EAG |

Certificate No: Z21-60156

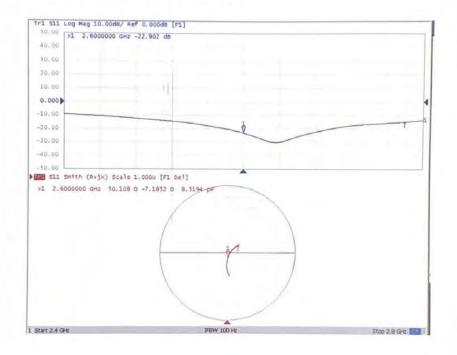
Page 4 of 6



Maximum value of SAR (measured) = 24.4 W/kg



0 dB = 24.4 W/kg = 13.87 dBW/kg


Certificate No: Z21-60156

Page 5 of 6





### Impedance Measurement Plot for Head TSL



Certificate No: Z21-60156

Page 6 of 6



# ANNEX L: DAE4 Calibration Certificate (SN: 1317)

| Object                                               |                                  |                                                                                                                           |                                     |
|------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 00,000                                               | DAE4 -                           | SN: 1317                                                                                                                  |                                     |
| Calibration Procedure(s)                             |                                  | -002-01<br>lion Procedure for the Data Acqui                                                                              | sition Electronics                  |
| Calibration date:                                    | Februa                           | ry 23, 2021                                                                                                               |                                     |
| measurements(SI). The n<br>pages and are part of the | neasurements and<br>certificate. | raceability to national standards, whe<br>the uncertainties with confidence prol<br>he closed laboratory facility: enviro | bability are given on the following |
| Calibration Equipment us                             | ed (M&TE critical fr             | or calibration)                                                                                                           |                                     |
| Primary Standards                                    |                                  | Date(Calibrated by, Certificate No.)                                                                                      | Scheduled Calibration               |
| Process Calibrator 753                               | 1971018                          | 16-Jun-20 (CTTL, No.J20X04342)                                                                                            | Jun-21                              |
|                                                      | Name                             | Function                                                                                                                  | Simula                              |
| Calibrated by:                                       | Yu Zongying                      | SAR Test Engineer                                                                                                         | Signature                           |
| Reviewed by:                                         | Lin Hao                          | SAR Test Engineer                                                                                                         | at the                              |
|                                                      |                                  | SAR Project Leader                                                                                                        | 300 /                               |
| Approved by:                                         | Qi Dianyuan                      | Unit i fojeti Leadel                                                                                                      |                                     |





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 F-mail: ettl.d chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

## Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z21-60041

Page 2 of 3

SAR Test Report



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

## DC Voltage Measurement

A/D - Converter Resolution nominal

| <b>Calibration Factors</b> | x                     | Y                               | Z                     |
|----------------------------|-----------------------|---------------------------------|-----------------------|
| High Range                 | 403.746 ± 0.15% (k=2) | $404.512\pm0.15\%~(\text{k=2})$ | 403.872 ± 0.15% (k=2) |
| Low Range                  | 3.97990 ± 0.7% (k=2)  | 3.99299 ± 0.7% (k=2)            | 3.96969 ± 0.7% (k=2)  |

### **Connector Angle**

| Connector Angle to be used in DASY system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 333° ± 1 ° |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| The state of the s | 000 - 1    |

Certificate No: Z21-60041

Page 3 of 3



# ANNEX M: DAE4 Calibration Certificate (SN: 1291)

| Client : IA                                                                                                          | Shanghai)                                                                                        | Certifica                                                                                                                | te No: Z22-60098                |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| CALIBRATION                                                                                                          | CERTIFICATI                                                                                      |                                                                                                                          |                                 |
| Object                                                                                                               | DAE4 - S                                                                                         | SN: 1291                                                                                                                 |                                 |
|                                                                                                                      | P DOM CONST                                                                                      |                                                                                                                          |                                 |
| Calibration Procedure(s)                                                                                             | FF-211-0                                                                                         | 002-01<br>on Procedure for the Data Acqu                                                                                 | uisition Electronics            |
| Calibration date:                                                                                                    | March 24                                                                                         | 4, 2022                                                                                                                  | Contractor of the second        |
|                                                                                                                      | e certificate.<br>een conducted in th                                                            | e closed laboratory facility: envi                                                                                       | ronment temperature(22±3)°C and |
| humidity<70%.<br>Calibration Equipment us                                                                            | een conducted in th<br>sed (M&TE critical for                                                    |                                                                                                                          |                                 |
| All calibrations have be<br>humidity<70%.<br>Calibration Equipment us<br>Primary Standards<br>Process Calibrator 753 | een conducted in th<br>sed (M&TE critical for<br>ID # Cal [                                      | r calibration)                                                                                                           |                                 |
| humidity<70%.<br>Calibration Equipment us<br>Primary Standards                                                       | een conducted in th<br>sed (M&TE critical for<br>ID # Cal [                                      | r calibration)<br>Date(Calibrated by, Certificate No.)                                                                   | Scheduled Calibration           |
| humidity<70%.<br>Calibration Equipment us<br>Primary Standards<br>Process Calibrator 753                             | een conducted in th<br>sed (M&TE critical for<br>ID # Cal [                                      | r calibration)<br>Date(Calibrated by, Certificate No.)                                                                   | Scheduled Calibration           |
| humidity<70%.<br>Calibration Equipment us<br>Primary Standards                                                       | een conducted in th<br>sed (M&TE critical for<br>ID # Cal [<br>1971018 1                         | r calibration)<br>Date(Calibrated by, Certificate No.)<br>5-Jun-21 (CTTL, No.J21X04465)                                  | Scheduled Calibration<br>Jun-22 |
| humidity<70%.<br>Calibration Equipment us<br>Primary Standards<br>Process Calibrator 753                             | een conducted in th<br>sed (M&TE critical for<br>ID# Cal [<br>1971018 1<br>Name                  | r calibration)<br>Date(Calibrated by, Certificate No.)<br>5-Jun-21 (CTTL, No.J21X04465)<br>Function                      | Scheduled Calibration<br>Jun-22 |
| humidity<70%.<br>Calibration Equipment us<br>Primary Standards<br>Process Calibrator 753<br>Calibrated by:           | een conducted in the<br>sed (M&TE critical for<br>ID # Cal I<br>1971018 1<br>Name<br>Yu Zongying | r calibration)<br>Date(Calibrated by, Certificate No.)<br>5-Jun-21 (CTTL, No.J21X04465)<br>Function<br>SAR Test Engineer | Scheduled Calibration<br>Jun-22 |



SAR Test Report



 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

## Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

# Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

| Certificate | No: | Z22-60098 |
|-------------|-----|-----------|
|             |     |           |

Page 2 of 3







Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

### DC Voltage Measurement

| High Range: | 1LSB = | 6.1µV , | full range = | -100+300 mV |
|-------------|--------|---------|--------------|-------------|
| Low Range:  | 1LSB = | 61nV .  | full range = | -1+3mV      |

| Calibration Factors | x                     | Y                     | z                          |
|---------------------|-----------------------|-----------------------|----------------------------|
| High Range          | 402.577 ± 0.15% (k=2) | 403.249 ± 0.15% (k=2) | $403.164 \pm 0.15\%$ (k=2) |
| Low Range           | 3.97371 ± 0.7% (k=2)  | 3.97778 ± 0.7% (k=2)  | $3.97281 \pm 0.7\%$ (k=2)  |

### **Connector Angle**

| Connector Angle to be u | used in DASY system                                                                                            | n           | 167° ± 1 | 0 |
|-------------------------|----------------------------------------------------------------------------------------------------------------|-------------|----------|---|
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          | 3 |
|                         | obt                                                                                                            |             |          | 1 |
|                         | Rates                                                                                                          |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         | 7                                                                                                              |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
|                         |                                                                                                                |             |          |   |
| rtificate No: Z22-60098 | de la compañía de la | Page 3 of 3 |          |   |
|                         |                                                                                                                |             |          |   |



# **ANNEX N: The EUT Appearance**

The EUT Appearance are submitted separately.



# **ANNEX O: Test Setup Photos**

The Test Setup Photos are submitted separately.



# **ANNEX P: Product Change Description (Variant 1)**

The Product Change Description are submitted separately.



# **ANNEX Q: Product Change Description (Variant 2)**

The Product Change Description are submitted separately.