HAC TEST REPORT **Applicant** ZTE Corporation FCC ID SRQ-A2023PG **Product** 5G NR Multi model smart phone Model ZTE A2023PG **Report No.** R2203A0249-H2V1 Issue Date June 1, 2022 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **ANSI C63.19-2011**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Land D. A. A. Prepared by: Fangying Wei Approved by: Guangchang Fan Guangchang Fan TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 ## **Table of Contents** | 1 | Tes | t Laboratory | | |----|-------|---|----| | | 1.1 | Notes of the Test Report | | | | 1.2. | Test facility | 4 | | | 1.2 | Testing Location | 4 | | | 1.3 | Laboratory Environment | 5 | | 2 | Sta | tement of Compliance | 6 | | 3 | Des | scription of Equipment under Test | 7 | | 4 | Tes | t Specification and Operational Conditions | 10 | | | 4.1 | Test Specification | 10 | | 5 | Tes | t Information | 11 | | | 5.1 | Operational Conditions during Test | 11 | | | 5.1.1 | General Description of Test Procedures | 11 | | | 5.2 | T-Coil Measurements System Configuration | 11 | | | 5.2.1 | T-coil Measurement Set-up | 11 | | | 5.2.2 | AM1D Probe | 14 | | | 5.2.3 | Audio Magnetic Measurement Instrument (AMMI) | 15 | | | 5.2.4 | Helmholtz Calibration Coil (AMCC) | 16 | | | 5.2.5 | Test Arch Phantom & Phone Positioner | 16 | | | 5.3 | T-Coil measurement points and reference plane | 17 | | | 5.4 | T-Coil Test Procedueres | 18 | | 6 | T-C | Coil Performance Requirements | 20 | | | 6.1 | T-Coil coupling field intensity | 20 | | | 6.2 | Frequency response | 20 | | | 6.3 | Signal quality | 21 | | 7 | T-C | Coil testing for WCDMA | 22 | | 8 | T-C | Coil testing for VoLTE | 23 | | 9 | T-C | Coil testing for VoWIFI | 25 | | 1 | 0 Sur | mmary Test Results | 27 | | 1 | 1 Me | asurement Uncertainty | 34 | | 1: | 2 Mai | in Test Instruments | 35 | | Α | NNEX | A: Test Layout | 36 | | | | B: Graph Results | | | | | C: Probe Calibration Certificate | | | | | D: DAE4 Calibration Certificat | | | | | E: The EUT Appearances | | | | | F: Test Setup Photos | | | Version Revision description | | Issue Date | | |--------------------------------|---------------------|--------------|--| | Rev.0 Initial issue of report. | | May 13, 2022 | | | Rev.1 | Update information. | June 1, 2022 | | Note: This revised report (Report No. R2203A0249-H2V1) supersedes and replaces the previously issued report (Report No. R2203A0249-H2). Please discard or destroy the previously issued report and dispose of it accordingly. 1 Test Laboratory 1.1 Notes of the Test Report This report shall not be reproduced in full or partial, without the written approval of **TA technology** (**shanghai**) **co.**, **Ltd**). The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test facility FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. 1.2 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Fan Guangchang Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: fanguangchang@ta-shanghai.com ## 1.3 Laboratory Environment | Temperature | Min. = 18°C, Max. = 28 °C | |------------------------------------|---| | Relative humidity | Min. = 0%, Max. = 80% | | Ground system resistance | < 0.5 Ω | | Ambient naise is shocked and found | Lyon, low and in compliance with requirement of standards | Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards. ## 2 Statement of Compliance Table 2.1: T-Coil signal quality categories of each tested Mode | Band | Category | |----------------------------|----------| | GSM 850 | Т3 | | GSM 1900 | T4 | | WCDMA Band II | T4 | | WCDMA Band IV | T4 | | WCDMA Band V | T4 | | LTE FDD 2 | T4 | | LTE FDD 4 | T4 | | LTE FDD 5 | T4 | | LTE FDD 7 | T4 | | LTE FDD 12 | T4 | | LTE FDD 17 | T4 | | LTE FDD 28 | T4 | | LTE TDD 38 | T4 | | LTE TDD 40 | T4 | | LTE TDD 41 | T4 | | LTE FDD 66 | T4 | | Wi-Fi 2.4G 802.11b | T4 | | Wi-Fi 2.4G 802.11g | T4 | | Wi-Fi 2.4G 802.11n | T4 | | Wi-Fi 5G 802.11a (U-NII-1) | T4 | | Wi-Fi 5G 802.11a (U-NII-3) | T4 | ## The Total T-Coil rating is T3 Date of Testing: April 3, 2022 ~ April 10, 2022 Date of Sample Receiving: March 17, 2022 ## Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. # 3 Description of Equipment under Test ## **Client Information** | Applicant | ZTE Corporation | | | |----------------------|--|--|--| | Amplicant address | ZTE Plaza, #55 Keji Road South, Hi-Tech Industrial Park, Nanshan | | | | Applicant address | District, Shenzhen, China | | | | Manufacturer | ZTE Corporation | | | | Manufacturer address | ZTE Plaza, #55 Keji Road South, Hi-Tech Industrial Park, Nanshan | | | | wanuracturer address | District, Shenzhen, China | | | ## **General Technologies** | Device Type: | Portable Device | | | | | |------------------|---|-------------|--|--|--| | EUT Stage | Production Unit | | | | | | Model | ZTE A2023PG | | | | | | SN: | 327324440042 | | | | | | Hardware Version | ZTE A2023PGHW1.0 | | | | | | Software Version | MyOS12.0.2_A2023PG_GLB | | | | | | Antenna Type | Internal Antenna | | | | | | | GSM 850: 4 | | | | | | | GSM 1900: 1 | | | | | | Power Class: | WCDMA Band II/IV/V: 3 | | | | | | | LTE FDD 2/4/5/7/12/17/28/66: 3 | | | | | | | LTE FDD 38/40/41: 3 | | | | | | | GSM 850: level 5 | | | | | | | GSM 1900: level 0 | | | | | | Power Level | WCDMA Band II/IV/V: All up bits | | | | | | | LTE FDD 2/4/5/7/12/17/28/66: m | nax power | | | | | | | | | | | | Test Modulation: | (GSM)GMSK; (WCDMA) QPSK,16QAM; (LTE) QPSK, 16QAM, 6 | | | | | | | Mode | Tx (MHz) | | | | | | GSM 850 | 824 ~ 849 | | | | | | GSM 1900 | 1850 ~ 1910 | | | | | | WCDMA Band II | 1850 ~ 1910 | | | | | | WCDMA Band IV | 1710 ~ 1755 | | | | | Operating | WCDMA Band V | 824 ~ 849 | | | | | Frequency | LTE FDD 2 | 1850 ~ 1910 | | | | | Range(s): | LTE FDD 4 | 1710 ~ 1755 | | | | | | LTE FDD 5 | 824 ~ 849 | | | | | | LTE FDD 7 | 2500 ~ 2570 | | | | | | LTE FDD 12 | 699 ~ 716 | | | | | | LTE FDD 17 | 704 ~ 716 | | | | | | LTE FDD 28 | 703 ~ 748 | | | | Report No.: R2203A0249-H2V1 LTE TDD 38 2570 ~ 2620 LTE TDD 40 2300 ~2400 LTE TDD 41 2496 ~2690 LTE FDD 66 1710 ~ 1780 Wi-Fi 2.4G 2412 ~ 2462 Wi-Fi 5G U-NII-1 5150 ~ 5250 Wi-Fi 5G U-NII-3 5725 ~ 5850 Bluetooth 2402 ~2480 **Accessory Equipment** Manufacturer: Zhuhai Cosmx Battery Co., Ltd. Battery Model: Li3949T44P8h806459 Note: The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. | Air-
Interface | Band
(MHz) | Туре | ANSI
C63.19
tested | Simultaneous
Transmissions | Voice over Digital Transport OTT Capability | Name of
Voice
Service | Power
Reduction | | | | | | |-------------------|----------------|------|--------------------------|-------------------------------|---|-----------------------------|--------------------|--|--|--|--|--| | | 850 | VO | | Yes | N/A | | | | | | | | | GSM | 1900 | | | BT or Wi-Fi | _ | # | No | | | | | | | | GPRS/EGPRS | DT | No | | No | | | | | | | | | | Band II | | | | | | | | | | | | | WCDMA | Band IV | VO | Yes | Yes | N/A | # | No | | | | | | | VVODIVI/ (| Band V | | | BT or Wi-Fi | | π | | | | | | | | | HSPA | DT | No | | No | | | | | | | | | | Band 2 | VD | | | No | Yes## | No | | | | | | | | Band 4 | | | Yes
Yes
BT or Wi-Fi | | | | | | | | | | | Band 5 | | | | | | | | | | | | | | Band 7 | | | | | | | | | | | | | | Band 12 | | | | | | | | | | | | | LTE | Band 17 | | Yes | | | | | | | | | | | | Band 28 | | | | DI OI VVI-II | | | | | | | | | | Band 38 | | | | | | | | | | | | | | Band 40 | | | ı | | | | | | | | | | | Band 41 | | | | | | | | | | | | | | Band 66 | | | | | | | | | | | | | | | | | Yes | | | No | | | | | | | | 2450 | VD | Yes | GSM, WCDMA, | N/A | VoWi-Fi | | | | | | | | Wi-Fi | | | | LTE, | | | | | | | | | | V V I-1 1 | 5200 (U-NII-1) | VD | Yes | Yes
GSM, WCDMA, | N/A | VoWi-Fi | No | | | | | | | | | | | LTE, | | | | | | | | | | | 5800 (U-NII-3) | VD | Yes | Yes
GSM, WCDMA,
LTE, | N/A | VoWi-Fi | No | |-------------------|----------------|----|-----|----------------------------|-----|---------|----| | Bluetooth
(BT) | 2450 | DT | No | Yes
GSM, WCDMA,
LTE, | N/A | NA | No | VO= legacy Cellular Voice Service from Table 7.1 in 7.4.2.1 of ANSI C63.19-2011 VD= IP voice service over digital transport. DT= Digital Transport only (no voice) #: Ref Lev in accordance with 7.4.2.1 of ANSI C63.19-2011 ##: Ref Lev in accordance with the July 2012
VoLTE interpretation. # 4 Test Specification and Operational Conditions ## 4.1 Test Specification The tests documented in this report were performed in accordance with the following: FCC CFR47 Part 20.19 ANSI C63.19-2011 KDB 285076 D01 HAC Guidance v05r01 KDB 285076 D02 T-Coil Testing v03r01 ## 5 Test Information ## 5.1 Operational Conditions during Test #### 5.1.1 General Description of Test Procedures The phone was tested in all normal configurations for the ear use. The EUT is mounted in the device holder equivalent as for classic dosimeter measurements. The acoustic output of the EUT shall coincide with the center point of the area formed by the dielectric wire and the middle bar of the arch's top frame The EUT shall be moved vertically upwards until it touches the frame. The fine adjustment is possible by sliding the complete. EUT holder on the yellow base plate of the Test Arch phantom. During the test, the EUT is selected on T-Coil mode, the LCD backlight is turn off and volume is adjusted to maximum level. A communication link is set up with a System Simulator (SS) by RF cable, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to Ch Middle respectively in the case of Band. T-Coil configurations is measured using System Simulator (SS) of CMU200/ CMW 500, at the same time the EUT shall be operated at its maximum RF output power setting. ## 5.2 T-Coil Measurements System Configuration #### 5.2.1 T-coil Measurement Set-up These measurements are performed using the DASY5 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. Cell controller systems contain the power supply, robot controller, teach pendant (Joystick) and remote control, and are used to drive the robot motors. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification; signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. Figure 1 T-Coil Test Measurement Set-up The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. Figure 2 T-Coil Test Measurement Set-up #### 5.2.2 AM1D Probe The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards). ## Specification | frequency range | 0.1 - 20 kHz (RF sensitivity <-100 dB, fully RF shielded) | | | | |-----------------|--|--|--|--| | sensitivity | <-50 dB A/m @ 1 kHz | | | | | pre-amplifier | 40 dB, symmetric | | | | | dimensions | tip diameter / length: 6 / 290 mm, sensor according to ANSI-C63.19 | | | | Figure 3 AM1D Probe ## 5.2.3 Audio Magnetic Measurement Instrument (AMMI) The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface. Figure 4 AMMI front panel ## Port description: | Audio Out | BNC, audio signal to the base station simulator, for >5000hm load | | | |-----------|---|--|--| | Coil Out | BNC, test and calibration signal to the AMCC (top connector), for 500hm | | | | Con Out | load | | | | Coil In | XLR, monitor signal from the AMCC BNO connector, 600 Ohm | | | | Probe In | XLR, probe signal and phantom supply to the probe Lemo connector | | | Figure 5 AMMI rear side | Sampling rate | 48 kHz / 24 bit | |------------------------|---| | Dynamic range | 85 dB | | Test signal generation | User selectable and predefined (vis PC) | | Calibration | Auto-calibration / full system calibration using AMCC with monitor output | | Dimensions | 482 x 65 x 270 mm | ## 5.2.4 Helmholtz Calibration Coil (AMCC) The Audio Magnetic Calibration coil is a Helmholtz Coil designed for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted by a series resistor to approximately 50Ohm, and a shunt resistor of 10Ohm permits monitoring the current with a scale of 1:10 Figure 6 AMCC #### Port description: | Signal | Connector | Resistance | |--------------|-----------|---| | Coil In | BNC | Typically 50Ohm | | Coil Monitor | BNO | 100hm±1% (100mV corresponding to 1 A/m) | #### Specification: | Dimensions | 370 x 370 x 196 mm, according to ANSI-C63.19 | |------------|--| |------------|--| #### 5.2.5 Test Arch Phantom & Phone Positioner The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$). The Device reference point is set for the EUT at 6.3 mm, the Grid reference point is on the upper surface at the origin of the coordinates, and the "user point \Height Check 0.5 mm" is 0.5mm above the center, allowing verication of the gap of 0.5mm while the probe is positioned there. The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field <±0.5 dB. Figure 7 T-coil Phantom & Device Holder ## 5.3 T-Coil measurement points and reference plane The following figure illustrates the standard probe orientations. Position 1 is the perpendicular orientation of the probe coil; orientation 2 is the transverse orientation. The space between the measurement positions is not fixed. It is recommended that a scan of the WD be performed for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil. - 1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the EUT handset, which, in normal handset use, rest against the ear. - 2) The measurement plane is parallel to, and 10 mm in front of, the reference plane. - 3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section (or the center of the hole array); or may be centered on a secondary inductive source. The actual location of the measurement point shall be noted in the test report as the measurement reference point. - 4) The measurement points may be located where the axial and radial field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near the acoustic output of the EUT and shall be located in the same half of the phone as the EUT receiver. In a EUT handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide. 5) The relative spacing of each measurement orientation is not fixed. The axial and two radial orientations should be chosen to select the optimal position. - 6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. - 7) The actual location of the measurement point shall be noted in test reports and designated as the measurement reference point. Figure 8 Axis and planes for EUT audio frequency magnetic field measurements #### 5.4 T-Coil Test Procedueres ## The following illustrate a typical test scan over a wireless communications device: - 1) Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch. - 2) Set the reference drive level of signal voice defined in C63.19 per 7.4.2.1. - 3) The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at
least 10dB below the limit of C63.19 per 8.3.2. - 4) The EUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe. - 5) The EUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The EUT audio output was positioned tangent (as physically possible) to the measurement plane. - 6) The EUT's RF emission field was eliminated from T-coil results by using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility. - 7) Determined the optimal measurement locations for the EUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 7.4.4.2. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan. - 8) All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of there samples. - 9) At an optimal point measurement, the SNR (ABM1/ABM2) was calculated for axial, radial transverse and radial longitudinal orientation, and the frequency response was measured in axial axis. - 10) Corrected for the frequency response after the EUT measurement since the DASY5 system had known the spectrum of the input signal by using a reference job. - 11) In SEMCAD postprocessing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report. ## 6 T-Coil Performance Requirements In order to be rated for T-Coil use, a EUT shall meet the requirements for signal level and signal quality contained in this part. ## 6.1 T-Coil coupling field intensity When measured as specified in ANSI C63.19, the T-Coil signal shall be \geq -18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations. ## 6.2 Frequency response The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in this sub-clause, over the frequency range 300 Hz to 3000 Hz. The following figures provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings. NOTE-Frequency response is between 300 Hz and 3000 Hz. Figure 9 Magnetic field frequency response for EUTs with a field ≤ −15 dB (A/m) at 1 kHz NOTE—Frequency response is between 300 Hz and 3000 Hz. Figure 10 Magnetic field frequency response for EUTs with a field that exceeds –15 dB(A/m) at 1 kHz ## 6.3 Signal quality This part provides the signal quality requirement for the intended T-Coil signal from a EUT. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels. The worst signal quality of the twoT-Coil signal measurements shall be used to determine the T-Coil mode category per Table 1 Table 1: T-Coil signal quality categories | Category | Telephone parameters WD signal quality [(signal + noise) – to – noise ratio in decibels] | |-------------|---| | Category T1 | 0 dB to 10 dB | | Category T2 | 10 dB to 20 dB | | Category T3 | 20 dB to 30 dB | | Category T4 | > 30 dB | # 7 T-Coil testing for WCDMA ## 1. Codec investigation An investigation was performed to determine the audio codec to be used for testing by SNR comparison. The AMR 23.85kbps setting was used for the testing as the worst-case codec. | Codec Investigation - WCDMA | | | | | | | | | | | | |-----------------------------|---------------|---------|----------|-----------|------------|---------|-------------|---------|---------|--|--| | | AMR -NB(kbps) | | | AN | IR -WB(kbp | s) | | | | | | | Codec Setting | AMR | AMR | AMR | AMR | AMR | AMR | Orientation | Band | Channel | | | | | 12.2kbps | 7.4kbps | 4.75kbps | 23.85kbps | 15.85kbps | 6.6kbps | | | | | | | ABM1 (dBA/m) | 1.57 | 1.07 | 1.09 | 3.06 | 3.07 | 0.16 | | Band II | | | | | ABM2 (dBA/m) | -50.42 | -50.52 | -50.32 | -46.9 | -47.83 | -46.19 | ₹ (Aviol): | | 9400 | | | | Frequency Response | Pass | Pass | Pass | Pass | Pass | Pass | z (Axial): | | 9400 | | | | Signal Quality (dB) | 51.99 | 51.59 | 51.41 | 49.96 | 50.9 | 50.43 | | | | | | ## 2. Air Interface Investigation Using the worst case codec to test low/middle/high channels in each band. ## 8 T-Coil testing for VoLTE ## I. Test setup for VoLTE over IMS T-coil Testing #### 1. Test setup The general test setup used for VoLTE over IMS is shown below. The call box used when performing VoLTE over IMS T-coil measurement is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server. ## 2. Audio level setting According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the nomal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection. ## II. DUT configuration for VoLTE over IMS T-coil Testing 1.Codec investigation An investigation was performed to determine the audio codec to be used for testing. For LTE-FDD, the NB AMR 4.75 kbps; For LTE-TDD, the WB AMR 12.2kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. | | AMR Codec Investigation - VoLTE over IMS | | | | | | | | | | | | | |---------------------|--|-----------|-----------|-----------|---------|-----------|-------------|-----------------|----------|--|--|--|--| | Codes Setting | WB AMR | WB AMR | WB AMR | NB AMR | NB AMR | NB AMR | Orientation | Band | Channel | | | | | | Codec Setting | 23.85kbps | 15.85kbps | 6.60 kbps | 12.2 kbps | 7.4kbps | 4.75 kbps | Orientation | /BW | Chamilei | | | | | | ABM1 (dBA/m) | 5.33 | 5.45 | 5.24 | 5.32 | 5.41 | 8.09 | | Band2/
20MHz | | | | | | | ABM2 (dBA/m) | -42.88 | -42.77 | -42.72 | -42.76 | -43.03 | -38.52 | z (Axial): | | 18900 | | | | | | Frequency Response | pass | pass | pass | pass | pass | pass | Z (Axidi). | | 10900 | | | | | | Signal Quality (dB) | 48.21 | 48.22 | 47.96 | 48.08 | 48.44 | 46.61 | | | | | | | | | | EVS Codec Investigation - VoLTE over IMS | | | | | | | | | | | | |---|--|--------|--------|------------|--------|-------|--|--|--|--|--|--| | Codec Setting 24.4kbps 9.60 kbps 5.9 kbps Orientation Band /BW Char | | | | | | | | | | | | | | ABM1 (dBA/m) | 6.33 | 5.78 | 6.88 | | | | | | | | | | | ABM2 (dBA/m) | -42.3 | -43.01 | -42.33 | = (Asial): | Band2/ | 40000 | | | | | | | | Frequency Response | pass | pass | pass | z (Axial): | 20MHz | 18900 | | | | | | | | Signal Quality (dB) | 48.63 | 48.79 | 49.21 | | | | | | | | | | | | AMR Codec Investigation - VoLTE over IMS | | | | | | | | | | | | | | |---------------------|--|-----------|-----------|-----------|---------|-----------|-------------|------------------|----------|--|--|--|--|--| | Codec Setting | WB AMR | WB AMR | WB AMR | NB AMR | NB AMR | NB AMR | Orientation | Band | Channel | | | | | | | | 23.85kbps | 15.85kbps | 6.60 kbps | 12.2 kbps | 7.4kbps | 4.75 kbps | | /BW | Chamilei | | | | | | | ABM1 (dBA/m) | 4.23 | 6.62 | 6.73 | 3.77 | 4.26 | 6.57 | | Band41/
20MHz | | | | | | | | ABM2 (dBA/m) | -32.78 | -30.26 | -30.35 | -32.97 | -33.11 | -30.61 | ₹ (Aviol): | | 40620 | | | | | | | Frequency Response | pass | pass | pass | pass | pass | pass | z (Axial): | | 40020 | | | | | | | Signal Quality (dB) | 37.01 | 36.88 | 37.08 | 36.74 | 37.37 | 37.18 | | | | | | | | | | | EVS Codec Investigation - VoLTE over IMS | | | | | | | | | | | | |---------------------|--|----------|---------|-------------|------------------|-------|--|--|--|--|--|--| | Codec Setting | Orientation | Band /BW | Channel | | | | | | | | | | | ABM1 (dBA/m) | 3.77 | 5.54 | 6.02 | | | | | | | | | | | ABM2 (dBA/m) | -34.33 | -32.02 | -30.96 | = (Assial): | Band41/
20MHz | 40000 | | | | | | | | Frequency Response | pass | pass | pass | z (Axial): | | 40620 | | | | | | | | Signal Quality (dB) | 38.1 | 37.56 | 36.98 | | | | | | | | | | ## 2.Air Interface Investigation LTE B2 at 20MHz is the worst case for the Axial and Radial probe orientation for FDD. LTE B41 at 20MHz is the worst case for the Axial and Radial probe orientation for TDD. 9 T-Coil testing for VoWIFI #### I. Test setup for VoWIFI over IMS T-coil Testing #### 1. Test setup The general test setup used for VoWIFI over IMS, or CMRS WIFI calling, is shown below. The call box used when performing VoWIFI over IMS T-coil measurement is a CMW500. The Data
Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server. ## 2. Audio level setting According to the KDB285076 D02, regarding the appropriate audio levels to be used for WIFI over IMS T-coil testing, -20dBm0 shall be used for the normal speech input level. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection. ## II. DUT configuration for VoWIFI over IMS T-coil Testing 1. Radio configuration investigation Investigate the lowest and highest data rates and modulation to determine worst radio configuration to be used for testing by SNR comparison. #### 2. Codec investigation For a voice service/air interface, investigate the variations of codec configurations (WB, NB bit rate) and document the parameters (ABM1, ABM2, S+N/N, frequency response) for that voice service. It is only necessary to document this for one channel/band; the following worst investigation codec would be remarked to be used for the testing for the handset. | | AMR Codec Investigation - VoWIFI over IMS | | | | | | | | | | | | |---------------------|---|---------------------|---------------------|------------------------|-------------------|---------------------|-------------|-------------|---------|--|--|--| | Codec Setting | WB AMR
23.85kbps | WB AMR
15.85kbps | WB AMR
6.60 kbps | NB AMR
12.2
kbps | NB AMR
7.4kbps | NB AMR
4.75 kbps | Orientation | Band
/BW | Channel | | | | | ABM1 (dBA/m) | 7.6 | 7.66 | 7.36 | 7.47 | 6.64 | 6.67 | | | | | | | | ABM2 (dBA/m) | -41 | -41.57 | -41.74 | -42.07 | -42.5 | -42.02 | 2.4GHz | 802.11b | 6 | | | | | Frequency Response | pass | pass | pass | pass | pass | pass | 2.46П2 | | 0 | | | | | Signal Quality (dB) | 48.6 | 49.23 | 49.1 | 49.54 | 49.14 | 48.69 | | | | | | | | Codec Setting | WB AMR
23.85kbps | WB AMR
15.85kbps | WB AMR
6.60 kbps | NB AMR
12.2
kbps | NB AMR
7.4kbps | NB AMR
4.75 kbps | Orientation | Band
/BW | Channel | | | | | ABM1 (dBA/m) | 7.68 | 7.07 | 10.13 | 7.11 | 9.77 | 6.94 | | | | | | | | ABM2 (dBA/m) | -39.54 | -39.87 | -36.25 | -41.05 | -36.37 | -41.07 | 5GHz | 802.11a | 36 | | | | | Frequency Response | pass | pass | pass | pass | pass | pass | JGHZ | 002.11a | 30 | | | | | Signal Quality (dB) | 47.22 | 46.94 | 46.38 | 48.16 | 46.14 | 48.01 | | | | | | | #### 3. Air Interface Investigation a. Use the worst-case codec test and document a limited set of bands/channel/bandwidths. Observe the effect of changing the band and bandwidth to ensure that there are no unexpected variations. Using the knowledge of the observed variations, it is necessary to report only a set band/channel/bandwidth for each orientation for a voice service/air interface and the following worst configure would be remarked to be used for the testing for the handset. - b. Select WLAN 2.4GHz and WLAN 5GHz one frequency band to do measurement at the worst SNR position was additionally performed with varying the BWs/Modulations/data rate to verify the variation to find out worst configuration , the observed variation is very little to be within 1.5 dB which is much less than the margin from the rating threshold. - c. According to the ANSI C63.19 2011 section 7.3.2, test middle channel of each frequency band for HAC testing for each orientation to determine worst HAC T-Coil rating. ## 10 Summary Test Results | | Air Interface Investigation | | | | | | | | | | | | | |-------------|-------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|----------------------|----------|--|--|--|--|--| | Mode | Channel
/Frenqucy
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frenqucy
Response | Category | | | | | | | | 120/024 2 | y (Radial): | -5.03 | -33.08 | 28.05 | 1 | 1 | Т3 | | | | | | | GSM 850 | 128/824.2 | z (Axial): | 6.11 | -17.35 | 23.46 | 1.37 | pass | Т3 | | | | | | | Voice Coder | 100/936 6 | y (Radial): | -5.07 | -33.19 | 28.12 | 1 | 1 | Т3 | | | | | | | Speechcodec | 190/836.6 | z (Axial): | 5.98 | -17.32 | 23.30 | 1.45 | pass | Т3 | | | | | | | Low | 251/848.8 | y (Radial): | -5.04 | -31.20 | 26.16 | 1 | 1 | Т3 | | | | | | | | 251/848.8 | z (Axial): | 6.09 | -15.09 | 21.18 | 1.78 | pass | Т3 | | | | | | | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | Plot
No. | |-----------------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------|-------------| | GSM 850 | | y (Radial): | -5.04 | -31.20 | 26.16 | 1 | / | Т3 | 1 | | Voice Coder
Speechcodec
Low | 251/848.8 | z (Axial): | 6.09 | -15.09 | 21.18 | 1.78 | pass | Т3 | 2 | | PCS 1900 | | y (Radial): | -4.05 | -38.35 | 34.30 | 1 | 1 | T4 | 3 | | Voice Coder
Speechcodec
Low | 810/1909.8 | z (Axial): | 6.95 | -23.62 | 30.57 | 1.41 | pass | T4 | 4 | #### Note: ^{1.} The LCD backlight is turn off and volume is adjusted to maximum level during T-Coil testing. Signal strength measurement scan plots are presented in Annex B. Channel Probe ABM1 ABM2 ABM SNR Freq. Resp. **Frenqucy** Mode /Frenqucy Category Orientation [dB (A/m)] [dB (A/m)] (dB) Diff(dB) Response (MHz) y (Radial): -47.45 45.56 -1.89 1 1 T4 WCDMA B2 9262/1852.4 z (Axial): 3.06 -48.08 51.14 0.64 **Pass** T4 Voice Coder -1.75 -48.02 46.27 / T4 y (Radial): Speechcodec 9400/1880 3.06 -46.90 0.72 T4 z (Axial): 49.96 **Pass** Low y (Radial): -1.81 -47.73 45.92 / / T4 AMR 23.85kbps 9538/1907.6 0.60 z (Axial): 3.25 -47.48 50.73 Pass T4 | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq. Resp.
Diff(dB) | Frequency
Response | T-Rating | Plot
No. | |-----------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|-------------------------|-----------------------|----------|-------------| | WCDMA B2 | | y (Radial): | -1.75 | -48.02 | 46.27 | 1 | 1 | T4 | 5 | | Voice Coder | 9400/1880 | | | | | | | | | | Speechcodec Low | 3400/1000 | z (Axial): | 3.06 | -46.90 | 49.96 | 0.72 | Pass | T4 | 6 | | AMR 23.85kbps | | , , | | | | | | | | | WCDMA B4 | | y (Radial): | -0.72 | -46.47 | 45.75 | 1 | 1 | T4 | 7 | | Voice Coder | 1413/1732.6 | | | | | | | | | | Speechcodec Low | 1413/1/32.0 | z (Axial): | 3.31 | -48.30 | 51.61 | 0.71 | Pass | T4 | 8 | | AMR 23.85kbps | | (- / | | | | | | | | | WCDMA B5 | | y (Radial): | -0.77 | -46.78 | 46.01 | 1 | 1 | T4 | 9 | | Voice Coder | 4400/000 0 | , , | | | | | | | | | Speechcodec Low | 4183/836.6 | z (Axial): | 3.24 | -47.48 | 50.72 | 0.68 | Pass | T4 | 10 | | AMR 23.85kbps | | () | | | | | | | | ## Note: ^{1.} The LCD backlight is turn off and volume is adjusted to maximum level during T-Coil testing. ^{2.} Signal strength measurement scan plots are presented in Annex B. | | Air Interface Investigation | | | | | | | | | | | | | | |---------------|-----------------------------|--------------------|-------------|-----------------------|-----------------------|--------------------------------|---|------------------------|----------|--|--|--|--|--| | Mode | Channel | Bandwidth
(MHz) | Orientation | ABM1
[dB
(A/m)] | ABM2
[dB
(A/m)] | Ambient
Noise
[dB (A/m)] | Frequency
Response Variation
(dB) | Signal
Quality (dB) | T-Rating | | | | | | | | | 20 | | 8.09 | -38.52 | -58.31 | 1.09 | 46.61 | T4 | | | | | | | | | 15 | z (Axial): | 7.54 | -40.15 | -58.31 | 1.21 | 47.69 | T4 | | | | | | | | | 10 | | 7.69 | -40.55 | -58.31 | 1.08 | 48.24 | T4 | | | | | | | 1.TE EDD D0 | | 5 | | 6.84 | -41.26 | -58.31 | 1.06 | 48.10 | T4 | | | | | | | LTE FDD B2 | | 3 | | 6.05 | -41.81 | -58.31 | 1.37 | 47.86 | T4 | | | | | | | Voice NB | 10000 | 1.4 | | 2.56 | -46.22 | -58.31 | 0.96 | 48.78 | T4 | | | | | | | AMR
Codec: | 18900 | 20 | | -4.2 | -48.42 | -58.87 | 1 | 44.22 | T4 | | | | | | | 4.75kbit/s | | 15 | | -4.58 | -49.7 | -58.87 | 1 | 45.12 | T4 | | | | | | | 4.7 JKDIU3 | | 10 | v (Dadial): | -3.49 | -48.78 | -58.87 | 1 | 45.29 | T4 | | | | | | | | | 5 | y (Radial): | -2.69 | -48.05 | -58.87 | 1 | 45.36 | T4 | | | | | | | | | 3 | | -3.48 | -49.49 | -58.87 | 1 | 46.01 | T4 | | | | | | | | | 1.4 | | -2.18 | -47.38 | -58.87 | 1 | 45.20 | T4 | | | | | | | Mode | Channel | Bandwidth
(MHz) | Modulation | RB Size | RB Offset | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | Signal Quality
(dB) | |--------------|---------|--------------------|------------|---------|-----------------------|--------------------|--------------------|------------------------| | | | | | 1 | 0 | 8.09 | -38.52 | 46.61 | | | | | | 1 | 50 | 7.21 | -40.68 | 47.89 | | | | | | 1 | 99 | 6.53 | -41.48 | 48.01 | | | | | QPSK | 50 | 0 | 6.31 | -45.55 | 51.86 | | | | | | 50 | 25 5.85 -44.47 | -44.47 | 50.32 | | | LTE FDD B2 | | | | 50 | 50 | 7.15 | -42.73 | 49.88 | | Voice NB AMR | 10000 | 20 | | 100 | 0 | 5.96 | -45.46 | 51.42 | | Codec: | 18900 | 20 | | 1 | 0 | 5.67 | -42.70 | 48.37 | | 4.75kbit/s | | | | 1 | 50 | 6.32 | -41.37 | 47.69 | | | | | | 1 | 99 | 5.85 | -46.45 | 52.30 | | | | | 16QAM | 50 | 0 | 5.65 | -45.86 | 51.51 | | | | | | 50 | 25 | 7.13 | -44.04 | 51.17 | | | | | | 50 | 50 | 6.55 | -45.58 | 52.13 | | | | | | 100 | 0 | 5.85 | -45.88 | 51.73 | | Mode | Channel | Probe | ABM1 | ABM2 | ABM SNR | Freq. Resp. | Frequency | T-Rating | |-------------------|----------------|-------------|------------|------------|---------|-------------|-----------|------------| | Wiode | /Frenqucy(MHz) |
Orientation | [dB (A/m)] | [dB (A/m)] | (dB) | Diff(dB) | Response | 1-ixatilig | | | 18700/1860 | y (Radial): | -1.97 | -46.81 | 44.84 | 1 | 1 | T4 | | | (QPSK_20M_1R | = (Assial): | F. C.4 | 44.45 | 40.70 | 4.70 | | T4 | | | B_0offset) | z (Axial): | 5.64 | -44.15 | 49.79 | 1.72 | pass | 14 | | LTE FDD B2 | 18900/1880 | y (Radial): | -0.95 | -47.01 | 46.06 | 1 | / | T4 | | Voice NB AMR | (QPSK_20M_1R | | 9.00 | 20.52 | 46.64 | 1.05 | 200 | Τ4 | | Codec: 4.75kbit/s | B_0offset) | z (Axial): | 8.09 | -38.52 | 46.61 | 1.25 | pass | T4 | | | 19100/1900 | y (Radial): | -1.58 | -46.31 | 44.73 | 1 | / | T4 | | | (QPSK_20M_1R | = (Assigl): | 4.04 | 45.44 | 50.05 | 4.46 | | Τ4 | | | B_0offset) | z (Axial): | 4.91 | -45.14 | 50.05 | 1.46 | pass | T4 | | LTE FDD B2 | 18900/1880 | y (Radial): | -1.11 | -44.84 | 43.73 | 1 | / | T4 | | Voice NB AMR | (QPSK_20M_1R | | 0.40 | 20.12 | 46 FF | 1.05 | 200 | Τ4 | | Codec: 4.75kbit/s | B_0offset) | z (Axial): | 8.42 | -38.13 | 46.55 | 1.95 | pass | T4 | | Band | Channel
/Frequency (MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq.
Resp.
Diff(dB) | Frequency
Response | T-Rating | Plot
No. | |-----------------------------------|-----------------------------|----------------------|--------------------|--------------------|-----------------|----------------------------|-----------------------|----------|-------------| | LTE FDD B2 | 18900/1880 | y (Radial): | -0.95 | -47.01 | 46.06 | 1 | / | T4 | 11 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_1RB
_0offset) | z (Axial): | 8.09 | -38.52 | 46.61 | 1.25 | pass | T4 | 12 | | LTE FDD B4 | 20175/1732.5 | y (Radial): | -1.16 | -44.21 | 43.05 | 1 | / | T4 | 13 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_1RB
_0offset) | z (Axial): | 8.65 | -36.23 | 44.88 | 2.00 | pass | T4 | 14 | | LTE FDD B5 | 20525/836.5 | y (Radial): | -0.29 | -45.56 | 45.27 | 1 | / | T4 | 15 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_10M_1RB
_0offset) | z (Axial): | 2.99 | -44.65 | 47.64 | 1.35 | pass | T4 | 16 | | LTE FDD B7 | 21100/2535 | y (Radial): | -1.45 | -44.45 | 43.00 | 1 | / | T4 | 17 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_1RB
_0offset) | z (Axial): | 5.40 | -41.00 | 46.40 | 1.85 | pass | T4 | 18 | | LTE FDD B12 | 23095/707.5 | y (Radial): | -0.50 | -45.80 | 45.30 | 1 | / | T4 | 19 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_10M_1RB
_0offset) | z (Axial): | 3.44 | -44.96 | 48.40 | 1.51 | pass | T4 | 20 | | LTE FDD B17 | 23790/710 | y (Radial): | -0.82 | -45.41 | 44.59 | 1 | / | T4 | 21 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_10M_1RB
_0offset) | z (Axial): | 3.91 | -44.79 | 48.70 | 1.45 | pass | T4 | 22 | | LTE FDD B28 | 27460/728 | y (Radial): | -1.07 | -46.74 | 45.67 | 1 | 1 | T4 | 23 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_1RB
_0offset) | z (Axial): | 5.45 | -44.86 | 50.31 | 0.93 | pass | T4 | 24 | | LTE FDD B66 | 132322/1745 | y (Radial): | -0.51 | -44.05 | 43.54 | 1 | / | T4 | 25 | | Voice NB AMR
Codec: 4.75kbit/s | (QPSK_20M_1RB
_0offset) | z (Axial): | 3.59 | -41.43 | 45.02 | 0.89 | pass | T4 | 26 | Note: 1. The LCD backlight is turn off and volume is adjusted to maximum level during T-Coil testing. 2. Signal strength measurement scan plots are presented in Annex B. | | | | | Air Interf | ace Inves | tigation | | | | |---------------------|---------|--------------------|-----------------|-----------------------|-----------------------|--------------------------------|-----------------------------------|------------------------|----------| | Mode | Channel | Bandwidth
(MHz) | Orientatio
n | ABM1
[dB
(A/m)] | ABM2
[dB
(A/m)] | Ambient
Noise
[dB (A/m)] | Frequency Response Variation (dB) | Signal
Quality (dB) | T-Rating | | | | 20 | | 3.77 | -32.97 | -58.31 | 1.45 | 36.74 | T4 | | LTE TOO D 44 | | 15 | z (Axial): | 4.82 | -32.55 | -58.31 | 1.54 | 37.37 | T4 | | LTE TDD B41 | | 10 | | 6.51 | -30.53 | -58.31 | 1.25 | 37.04 | T4 | | Voice WB
AMR | 40620 | 5 | | 6.79 | -31.23 | -58.31 | 1.35 | 38.02 | T4 | | | 40620 | 20 | | -4.75 | -41.86 | -58.87 | 1 | 37.11 | T4 | | Codec: 12.2
kbps | | 15 | v (Dadial): | -4.55 | -42.07 | -58.87 | 1 | 37.52 | T4 | | | | 10 | y (Radial): | -5.64 | -42.38 | -58.87 | 1.25 | 36.74 | T4 | | | | 5 | | -5.18 | -43.32 | -58.87 | 1 | 38.14 | T4 | | Mode | Channel | Bandwidth
(MHz) | Modulation | RB Size | RB Offset | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | Signal Quality
(dB) | |------------------|---------|--------------------|------------|---------|--|--------------------|--------------------|------------------------| | | | | | 1 | 0 | 3.77 | -32.97 | 36.74 | | | | | | 1 | 50 | 3.65 | -33.37 | 37.02 | | | | | | 1 | 99 | 4.25 | -33.40 | 37.65 | | | | | QPSK | 50 | 0 | 4.40 | -32.85 | 37.25 | | | | | | 50 | 25 | 3.88 | -33.67 | 37.55 | | LTE TDD B41 | | | | 50 | 50 | 4.36 | -32.62 | 36.98 | | Voice WB AMR | 40620 | 20 | | 100 | 0 | 4.32 | -32.50 | 36.82 | | Codec: 12.2 kbps | 40020 | 20 | | 1 | 0 | 4.34 | -32.98 | 37.32 | | Codec. 12.2 kbps | | | | 1 | 50 | 3.98 | -33.84 | 37.82 | | | | | | 1 | RB Offset [dB (A/m)] 0 3.77 50 3.65 99 4.25 0 4.40 25 3.88 50 4.36 0 4.32 0 4.34 | -32.99 | 38.01 | | | | | | 16QAM | 50 | 0 | 4.39 | -32.71 | 37.1 | | | | | | 50 | 25 | 3.85 | -33.36 | 37.21 | | | | | | 50 | 50 | 3.99 | -33.40 | 37.39 | | | | | | 100 | 0 | 4.40 | -33.46 | 37.86 | | Mode | Channel | Probe | ABM1 | ABM2 | ABM SNR | Freq. Resp. | Frequency | T-Rating | |------------------|----------------|-------------|------------|------------|---------|-------------|-----------|------------| | Mode | /Frenqucy(MHz) | Orientation | [dB (A/m)] | [dB (A/m)] | (dB) | Diff(dB) | Response | 1-Itatilig | | | 39750/2506 | y (Radial): | -1.48 | -38.53 | 37.05 | 1 | / | T4 | | | (QPSK_20M_1R | = (Assial): | 0.00 | 20.40 | 37.18 | 4 74 | | T4 | | | B_0offset) | z (Axial): | 8.69 | -28.49 | 37.18 | 1.71 | pass | 14 | | LTE TDD B41 | 40620/2593 | y (Radial): | -4.75 | -41.86 | 37.11 | 1 | / | T4 | | Voice WB AMR | (QPSK_20M_1R | ¬ (Aviol): | 3.77 | -32.97 | 20.74 | 1.50 | 200 | T4 | | Codec: 12.2 kbps | B_0offset) | z (Axial): | 3.77 | -32.97 | 36.74 | 1.52 | pass | 14 | | | 41490/2680 | y (Radial): | -1.52 | -38.51 | 36.99 | 1 | 1 | T4 | | | (QPSK_20M_1R | - (A: -1). | 0.04 | 00.00 | 07.40 | 0.04 | | T.4 | | | B_0offset) | z (Axial): | 8.61 | -28.88 | 37.49 | 0.61 | pass | T4 | Report No.: R2203A0249-H2V1 LTE TDD B41 40620/2593 y (Radial): -1.51 -38.49 36.98 T4 Voice WB AMR (QPSK_20M_1R z (Axial): 4.34 -31.98 36.32 1.76 pass T4 Codec: 12.2 kbps B_0offset) | Band | Channel
/Frequency (MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq.
Resp.
Diff(dB) | Frequency
Response | T-Rating | Plot
No. | |--------------------|-----------------------------|----------------------|--------------------|--------------------|-----------------|----------------------------|-----------------------|----------|-------------| | LTE TDD B38 | 38000/2595 | y (Radial): | -2.10 | -39.57 | 37.47 | 1 | 1 | T4 | 27 | | Voice NB AMR | (QPSK_20M_1RB | | | | | | | | | | Codec: 12.20kbit/s | _0offset) | z (Axial): | 7.34 | -30.73 | 38.07 | 1.81 | pass | T4 | 28 | | LTE TDD B40 | 39150/2350 | y (Radial): | -2.85 | -38.75 | 35.90 | / | / | T4 | 29 | | Voice NB AMR | (QPSK_20M_1RB | | | | | | | | | | Codec: 12.20kbit/s | _0offset) | z (Axial): | 7.24 | -29.15 | 36.39 | 2.00 | pass | T4 | 30 | | LTE TDD B41 | 40620/2593 | y (Radial): | -4.75 | -41.86 | 37.11 | / | / | T4 | 31 | | Voice WB AMR | (QPSK_20M_1RB | • , , | | | | | | | | | Codec: 12.2 kbps | _0offset) | z (Axial): | 3.77 | -32.97 | 36.74 | 1.52 | pass | T4 | 32 | ## Note: - 1. The LCD backlight is turn off and volume is adjusted to maximum level during T-Coil testing. - 2. Signal strength measurement scan plots are presented in Annex B. | | | 802.11b Radio config | uration investigatior | 1 | | | | | | | | |--|---------|----------------------|-----------------------|----------------|---------------------|--|--|--|--|--|--| | Mode | Channel | Data Rate [Mbps] | ABM1 [dB(A/m)] | ABM2 [dB(A/m)] | Signal Quality [dB] | | | | | | | | 802.11b | 6 | 1 | 7.60 | -41.00 | 48.60 | | | | | | | | 802.11b | 6 | 11 | 7.25 | -39.80 | 47.05 | | | | | | | | | | 802.11g Radio config | uration investigation | 1 | | | | | | | | | Mode | Channel | Data Rate [Mbps] | ABM1 [dB(A/m)] | ABM2 [dB(A/m)] | Signal Quality [dB] | | | | | | | | 802.11g | 6 | 6 | 5.47 | -41.96 | 47.43 | | | | | | | | 802.11g | 6 | 54 | 6.91 | -41.70 | 48.61 | | | | | | | | 802.11n HT20 Radio configuration investigation | | | | | | | | | | | | | Mode | Channel | Data Rate [Mbps] | ABM1 [dB(A/m)] | ABM2 [dB(A/m)] | Signal Quality [dB] | | | | | | | | 802.11n HT20 | 6 | MCS0 | 7.48 | -45.13 | 52.61 | | | | | | | | 802.11n HT20 | 6 | MCS7 | 7.48 | -44.25 | 51.73 | | | | | | | | 802.11n HT20 | 36 | MCS0 | 6.26 | -41.70 | 47.96 | | | | | | | | 802.11n HT20 | 36 | MCS7 | 9.58 | -38.09 | 47.67 | | | | | | | | | 802 | 2.11n HT40 Radio cor | figuration investigat | ion | | | | | | | | | Mode | Channel | Data Rate [Mbps] | ABM1 [dB(A/m)] | ABM2 [dB(A/m)] | Signal Quality [dB] | | | | | | | | 802.11n HT40 | 6 | MCS0 | 5.87 | -42.45 | 48.32 | | | | | | | | 802.11n HT40 | 6 | MCS7 | 6.11 | -41.44 | 47.55 | | | | | | | | 802.11n HT40 | 38 | MCS0 | 4.83 | -41.68 | 46.51 | | | | | | | | 802.11n HT40 | 38 | MCS7 | 7.25 | -40.87 | 48.12 | | | | | | | | 802.11a Radio configuration investigation | | | | | | | | | | | | | Mode | Channel | Data Rate [Mbps] | ABM1 [dB(A/m)] | ABM2 [dB(A/m)] | Signal Quality [dB] | | | | | | | | 802.11a | 36 | 6 | 6.65 | -41.61 | 48.26 | | | | | | | HAC Test Report Report
No.: R2203A0249-H2V1 802.11a 36 54 7.13 -42.11 49.24 | | Air Interface Investigation | | | | | | | | | | | | |---------|-----------------------------|----------------------|--------------------|--------------------|-----------------|-------|----------------------|----------|--|--|--|--| | Mode | Channel
/Frenqucy (MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | | Frenqucy
Response | Category | | | | | | 802.11b | 6/2437 | y (Radial): | -4.05 | -48.18 | 44.13 | 1 | / | T4 | | | | | | 802.110 | (BW:20M_Rate:11M) | z (Axial): | 7.60 | -41.00 | 48.60 | 1.22 | pass | T4 | | | | | | 802.11a | 36/5180 | y (Radial): | -4.65 | -47.87 | 43.22 | 1 | / | T4 | | | | | | 002.11a | (BW:20M_Rate:6M) | z (Axial): | 9.77 | -36.37 | 46.14 | -3.81 | pass | T4 | | | | | | Band | Channel
/Frequency
(MHz) | Probe
Orientation | ABM1
[dB (A/m)] | ABM2
[dB (A/m)] | ABM SNR
(dB) | Freq.
Resp.
Diff(dB) | Frequency
Response | T-Rating | Plot
No. | |-----------------------------------|--------------------------------|----------------------|--------------------|--------------------|-----------------|----------------------------|-----------------------|----------|-------------| | Wi-Fi2.4G: 802.11b | 6/2437 | y (Radial): | -4.05 | -48.18 | 44.13 | 1 | / | T4 | 33 | | Voice WB AMR
23.85kbps | (BW:20M_Ra
te:11M) | z (Axial): | 7.60 | -41.00 | 48.60 | 1.22 | pass | T4 | 34 | | Wi-Fi2.4G: 802.11g | 6/2437 | y (Radial): | -5.01 | -48.81 | 43.80 | 1 | / | T4 | 35 | | Voice WB AMR
23.85kbps | (BW:20M_Ra
te:6M) | z (Axial): | 10.70 | -37.57 | 48.27 | 2.00 | pass | T4 | 36 | | Wi-Fi2.4G: 802.11n | 6/2437 | y (Radial): | -0.40 | -46.58 | 46.18 | 1 | / | T4 | 37 | | Voice WB AMR
23.85kbps | (BW:20M_Ra
te:MCS0) | z (Axial): | 6.68 | -41.66 | 48.34 | 0.83 | pass | T4 | 38 | | Wi-Fi5G: 802.11a | 36/5180 | y (Radial): | -1.57 | -41.60 | 40.03 | 1 | / | T4 | 39 | | (U-NII-1)
Voice NB AMR 7.4kbps | (BW:20M_Ra
te:6M) | z (Axial): | 9.77 | -36.37 | 46.14 | 1.64 | pass | T4 | 40 | | Wi-Fi5G: 802.11a | 149/5745 | y (Radial): | -6.38 | -47.02 | 40.64 | 1 | / | T4 | 41 | | (U-NII-3)
Voice NB AMR 7.4kbps | (BW:20M_Ra
te:6M) | z (Axial): | 8.78 | -38.91 | 47.69 | 1.71 | pass | T4 | 42 | #### Note: ^{1.} The LCD backlight is turn off and volume is adjusted to maximum level during T-Coil testing. ^{2.} Signal strength measurement scan plots are presented in Annex B. # 11 Measurement Uncertainty ## Measurement uncertainty evaluation template for DUT HAC T-Coil test | Error source | Туре | Uncertainty Value ai | Prob.
Dist. | k | ABM1c _i | ABM2c _i | Std. Unc. | Std. Unc. | Degree of freedom | |--------------------------------------|------------|----------------------|----------------|-------|--------------------|--------------------|-----------|-----------|------------------------------------| | Probe Sensitivity | | (%) | | | | | (± %) | (± %) | V _{eff} or v _i | | Reference Level | В | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | ∞ | | | | | | | | | | | | | AMCC Geometry | В | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | ∞ | | AMCC Current | В | 0.6 | R | 1.732 | 1 | 1 | 0.3 | 0.3 | ∞ | | Probe Positioning during Calibration | В | 0.1 | R | 1.732 | 1 | 1 | 0.1 | 0.1 | ∞ | | Noise Contribution | В | 0.7 | R | 1.732 | 0.0143 | 1 | 0.0 | 0.4 | ∞ | | Frequency Slope | В | 5.9 | R | 1.732 | 0.1 | 1 | 0.3 | 3.4 | ∞ | | Probe System | | • | | • | • | • | | • | • | | Repeatability / Drift | В | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity / Dynamic
Range | В | 0.6 | R | 1.732 | 1 | 1 | 0.3 | 0.3 | ∞ | | Acoustic Noise | В | 1.0 | R | 1.732 | 0.1 | 1 | 0.1 | 0.6 | ∞ | | Probe Angle | В | 2.3 | R | 1.732 | 1 | 1 | 1.3 | 1.3 | ∞ | | Spectral Processing | В | 0.9 | R | 1.732 | 1 | 1 | 0.5 | 0.5 | ∞ | | Integration Time | В | 0.6 | N | 1 | 1 | 5 | 0.6 | 3.0 | ∞ | | Field Distribution | В | 0.2 | R | 1.732 | 1 | 1 | 0.1 | 0.1 | ∞ | | Test Signal | | • | | • | • | • | | • | • | | Ref.Signal Spectral
Response | В | 0.6 | R | 1.732 | 0 | 1 | 0.0 | 0.3 | ∞ | | Positioning | | | | | | | | | | | Probe Positioning | В | 1.9 | R | 1.732 | 1 | 1 | 1.1 | 1.1 | ∞ | | Phantom Thickness | В | 0.9 | R | 1.732 | 1 | 1 | 0.5 | 0.5 | ∞ | | EUT Positioning | В | 1.9 | R | 1.732 | 1 | 1 | 1.1 | 1.1 | ∞ | | External Contribution | ns | | | | • | | | | | | RF Interference | В | 0.0 | R | 1.732 | 1 | 0.3 | 0.0 | 0.0 | ∞ | | Test Signal Variation | В | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | ∞ | | Combined Std. Uncert | ainty (ABM | 1 Field) | | | | | 4.0 | 6.1 | | | Expanded Std. Uncert | ainty | | | | | | 8.0 | 12.2 | | # **12 Main Test Instruments** | Name | Manufacturer | Туре | Serial Number | Last Cal. | Cal. Due
Date | |---|---------------|------------------|---------------|------------|------------------| | Audio Magnetic 1D
Field Probe | SPEAG | AM1DV3 | 3082 | 2022-02-23 | 2023-02-22 | | DAE | SPEAG | DAE4 | 1648 | 2021-05-17 | 2022-05-16 | | Universal Radio
Communication Tester | R&S | CMW 500 | 146734 | 2021-05-15 | 2022-05-14 | | Audio Magnetic
Calibration Coil | SPEAG | AMCC | 1101 | 1 | 1 | | Hygrothermograph | Anymetr | NT-311 | 20150731 | 2021-05-18 | 2022-05-17 | | HAC Phantom | SPEAG | SD HAC P01
BB | 1117 | 1 | 1 | | DAC | Sound Devices | USBPre 2 | HB1420183010 | / | / | | Software for Test | Speag | DASY5 | 1 | / | 1 | *****END OF REPORT ***** Report No.: R2203A0249-H2V1 # **ANNEX A: Test Layout** Picture 1: HAC T-Coil System Layout # **ANNEX B: Graph Results** #### Plot 1 T-Coil GSM 850 Y transversal Date: 2022/4/5 Communication System: UID 0, GSM (0); Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 26.16 dB ABM1 comp = -5.04 dBA/m BWC Factor = 0.16 dB Location: 0, -4.2, 3.7 mm Plot 2 T-Coil GSM 850 Z Axial Date: 2022/4/5 Communication System: UID 0, GSM (0); Frequency: 848.8 MHz; Duty Cycle: 1:8.30042 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 21.18 dB ABM1 comp = 6.09 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm ### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm **Cursor:** Diff = 1.78 dB BWC Factor = 10.81 dB Location: 8.3, -8.3, 3.7 mm ## Plot 3 T-Coil GSM 1900 Y transversal Date: 2022/4/5 Communication System: UID 0, GSM (0); Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 34.30 dB ABM1 comp = -4.05 dBA/m BWC Factor = 0.16 dB Location: 0, -4.2, 3.7 mm ## Plot 4 T-Coil GSM 1900 Z Axial Date: 2022/4/5 Communication System: UID 0, GSM (0); Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 30.57 dB ABM1 comp = 6.95 dBA/m
BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm #### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.41 dB BWC Factor = 10.81 dB Location: 8.3, -8.3, 3.7 mm ## Plot 5 T-Coil WCDMA Band II Y transversal Date: 2022/4/4 Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section **DASY5** Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 46.27 dB ABM1 comp = -1.75 dBA/m BWC Factor = 0.16 dB Location: 4.2, -4.2, 3.7 mm ### Plot 6 T-Coil WCDMA Band II Z Axial Date: 2022/4/4 Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section **DASY5** Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 49.96 dB ABM1 comp = 3.06 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm #### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 0.72 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm ## Plot 7 T-Coil WCDMA Band IV Y transversal Date: 2022/4/4 Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section **DASY5** Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 45.75 dB ABM1 comp = -0.72 dBA/m BWC Factor = 0.16 dB Location: 4.2, -20.8, 3.7 mm #### Plot 8 T-Coil WCDMA Band IV Z Axial Date: 2022/4/4 Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section **DASY5** Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 51.61 dB ABM1 comp = 3.31 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm ### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 0.71 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm ## Plot 9 T-Coil WCDMA Band V Y transversal Date: 2022/4/4 Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section **DASY5** Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 46.01 dB ABM1 comp = -0.77 dBA/m BWC Factor = 0.16 dB DWC ractor = 0.10 db Location: 4.2, -20.8, 3.7 mm 0.829 #### Plot 10 T-Coil WCDMA Band V Z Axial Date: 2022/4/4 Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 50.72 dB ABM1 comp = 3.24 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm #### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 0.68 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm ### Plot 11 T-Coil LTE Band 2 Y Axial Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1880 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 46.06 dB ABM1 comp = -0.95 dBA/m BWC Factor = 0.16 dB Location: 4.2, -16.7, 3.7 mm Plot 12 T-Coil LTE Band 2 Z Axial Date: 2022/4/2 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1880 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 46.61 dB ABM1 comp = 8.09 dBA/m BWC Factor = 0.16
dB Location: 8.3, -12.5, 3.7 mm #### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.25 dB BWC Factor = 10.81 dB Location: 8.3, -12.5, 3.7 mm ## Plot 13 T-Coil LTE Band 4 Y transversal Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 43.05 dB ABM1 comp = -1.16 dBA/m BWC Factor = 0.16 dB Location: 4.2, -16.7, 3.7 mm #### Plot 14 T-Coil LTE Band 4 Z Axial Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 44.88 dB ABM1 comp = 8.65 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm #### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 2.00 dB BWC Factor = 10.81 dB Location: 8.3, -8.3, 3.7 mm ## Plot 15 T-Coil LTE Band 5 Y transversal Date: 2022/4/3 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 844 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 45.27 dB ABM1 comp = -0.29 dBA/m BWC Factor = 0.16 dB Location: 4.2, -20.8, 3.7 mm 0.315 #### Plot 16 T-Coil LTE Band 5 Z Axial Date: 2022/4/3 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 844 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648: Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 47.64 dB ABM1 comp = 2.99 dBA/m BWC Factor = 0.16 dB Location: 4.2, -8.3, 3.7 mm #### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.35 dB BWC Factor = 10.81 dB Location: 4.2, -8.3, 3.7 mm ## Plot 17 T-Coil LTE Band 7 Y transversal Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2560 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## A2023PG LTE B7 HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 43.00 dB ABM1 comp = -1.45 dBA/m BWC Factor = 0.16 dB Location: 4.2, -16.7, 3.7 mm #### Plot 18 T-Coil LTE Band 7 Z Axial Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2560 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 46.40 dB ABM1 comp = 5.40 dBA/m BWC Factor = 0.16 dB Location: 4.2, -8.3, 3.7 mm Location: 4.2, -0.3, 3.7 min ### HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.85 dB BWC Factor = 10.81 dB Location: 4.2, -8.3, 3.7 mm # Plot 19 T-Coil LTE Band 12 Y transversal Date: 2022/4/5 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 45.30 dB ABM1 comp = -0.50 dBA/m BWC Factor = 0.16 dB Location: 4.2, -20.8, 3.7 mm ## Plot 20 T-Coil LTE Band 12 Z Axial Date: 2022/4/5 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 707.5 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav)
48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 48.40 dB ABM1 comp = 3.44 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.51 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm # Plot 21 T-Coil LTE Band 17 Y transversal Date: 2022/4/5 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 710 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 44.59 dB ABM1 comp = -0.82 dBA/m BWC Factor = 0.16 dB Location: 4.2, -20.8, 3.7 mm ## Plot 22 T-Coil LTE Band 17 Z Axial Date: 2022/4/5 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 710 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 48.70 dB ABM1 comp = 3.91 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.45 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm ## Plot 23 T-Coil LTE Band 28 Y transversal Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 738 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 45.67 dB ABM1 comp = -1.07 dBA/m BWC Factor = 0.16 dB Location: 4.2, -16.7, 3.7 mm 0.412 ## Plot 24 T-Coil LTE Band 28 Z Axial Date: 2022/4/3 Communication System: UID 10169 - CAE, LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 738 MHz; Duty Cycle: 1:3.73852 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 50.31 dB ABM1 comp = 5.45 dBA/m BWC Factor = 0.16 dB Location: 4.2, -8.3, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 0.93 dB BWC Factor = 10.81 dB Location: 4.2, -8.3, 3.7 mm ## Plot 25 T-Coil LTE Band 66 Y transversal Date: 2022/4/5 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 43.54 dB ABM1 comp = -0.51 dBA/m BWC Factor = 0.16 dB Location: 4.2, -20.8, 3.7 mm ## Plot 26 T-Coil LTE Band 66 Z Axial Date: 2022/4/5 Communication System: UID 10175 - CAG, LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK); Frequency: 1745 MHz; Duty Cycle: 1:3.73594 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 45.02 dB ABM1 comp = 3.59 dBA/m BWC Factor = 0.16 dB Location: 4.2, -8.3, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = $0.89 \, dB$ BWC Factor = 10.81 dB Location: 4.2, -8.3, 3.7 mm # Plot 27 T-Coil LTE Band 38 Y transversal Date: 2022/4/7 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2595 MHz; Duty Cycle: 1:8.33105 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 37.47 dB ABM1 comp = -2.10 dBA/m BWC Factor = 0.16 dB Location: 4.2, -4.2, 3.7 mm ## Plot 28 T-Coil LTE Band 38 Z Axial Date: 2022/4/7 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2595 MHz; Duty Cycle: 1:8.33105 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version
14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 38.07 dB ABM1 comp = 7.34 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.81 dB BWC Factor = 10.81 dB Location: 8.3, -8.3, 3.7 mm # Plot 29 T-Coil LTE Band 40 Y transversal Date: 2022/4/7 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2350 MHz; Duty Cycle: 1:8.33105 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 35.90 dB ABM1 comp = -2.85 dBA/m BWC Factor = 0.16 dB Location: 4.2, 0, 3.7 mm # Plot 30 T-Coil LTE Band 40 Z Axial Date: 2022/4/7 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2350 MHz; Duty Cycle: 1:8.33105 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 36.39 dB ABM1 comp = 7.24 dBA/m BWC Factor = 0.16 dB Location: 8.3, -8.3, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 2.00 dB BWC Factor = 10.81 dB Location: 8.3, -8.3, 3.7 mm # Plot 31 T-Coil LTE Band 41 Y transversal Date: 2022/4/6 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:8.33105 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 37.11 dB ABM1 comp = -4.75 dBA/m BWC Factor = 0.16 dB Location: 0, -4.2, 3.7 mm Plot 32 T-Coil LTE Band 41 Z Axial Date: 2022/4/6 Communication System: UID 10172 - CAG, LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK); Frequency: 2593 MHz; Duty Cycle: 1:8.33105 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648: Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 36.74 dB ABM1 comp = 3.77 dBA/m BWC Factor = 0.16 dB Location: 4.2, -8.3, 3.7 mm ## HAC_TCoil_WD_Emission/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.52 dB BWC Factor = 10.81 dB Location: 4.2, -8.3, 3.7 mm # Plot 33 T-Coil Wi-Fi 2.4G: 802.11b, 12.2kbps, Y transversal Date: 2022/4/10 Communication System: UID 10012 - CAB, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1.53886 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature:22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission-23.85kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 44.13 dB ABM1 comp = -4.05 dBA/m BWC Factor = 0.16 dB Location: 0, -4.2, 3.7 mm # Plot 34 T-Coil Wi-Fi 2.4G: 802.11b, 12.2k kbps, Z Axial Date: 2022/4/7 Communication System: UID 10012 - CAB, IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:1.53886 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission-23.85kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 48.60 dB ABM1 comp = 7.60 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm ## HAC_TCoil_WD_Emission-23.85kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.22 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm # Plot 35 T-Coil Wi-Fi 2.4G: 802.11g, 12.2kbps, Y transversal Date: 2022/4/10 Communication System: UID 10013 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:8.82673 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission-23.85kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ## **Cursor:** ABM1/ABM2 = 43.80 dB ABM1 comp = -5.01 dBA/m BWC Factor = 0.16 dB Location: 0, -4.2, 3.7 mm # Plot 36 T-Coil Wi-Fi 2.4G: 802.11g, 12.2kbps, Z Axial Date: 2022/4/10 Communication System: UID 10013 - CAB, IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps); Frequency: 2437 MHz; Duty Cycle: 1:8.82673 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil
Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # HAC_TCoil_WD_Emission-23.85kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 48.27 dB ABM1 comp = 10.07 dBA/m BWC Factor = 0.16 dB Location: 8.3, -12.5, 3.7 mm ## HAC_TCoil_WD_Emission-23.85kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 2.00 dB BWC Factor = 10.81 dB Location: 8.3, -12.5, 3.7 mm ## Plot 37 T-Coil Wi-Fi 2.4G: 802.11n, 12.2kbps, Y transversal Date: 2022/4/10 Communication System: UID 10591 - AAB, IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle); Frequency: 2437 MHz;Duty Cycle: 1:7.29122 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 22.3 ℃ Liquid Temperature: 21.5 ℃ Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission-23.85kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 46.18 dB ABM1 comp = -0.40 dBA/m BWC Factor = 0.16 dB Location: 4.2, -4.2, 3.7 mm ## Plot 38 T-Coil Wi-Fi 2.4G: 802.11n, 12.2kbps, Z Axial Date: 2022/4/10 Communication System: UID 10591 - AAB, IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle); Frequency: 2437 MHz;Duty Cycle: 1:7.29122 Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Ambient Temperature: 21.5 $^{\circ}$ C Liquid Temperature: 21.5 $^{\circ}$ C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission-23.85kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 48.34 dB ABM1 comp = 6.68 dBA/m BWC Factor = 0.16 dB Location: 4.2, -12.5, 3.7 mm ### HAC_TCoil_WD_Emission-23.85kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 0.83 dB BWC Factor = 10.81 dB Location: 4.2, -12.5, 3.7 mm ## Plot 39 T-Coil Wi-Fi 5G: 802.11a (U-NII-1), 12.2kbps, Y transversal Date: 2022/4/10 Communication System: UID 10064 - CAC, IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps); Frequency: 5180 MHz; Duty Cycle: 1:8.11335 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission-7.4kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 40.03 dB ABM1 comp = -1.57 dBA/m BWC Factor = 0.16 dB Location: 4.2, -20.8, 3.7 mm Report No.: R2203A0249-H2V1 ## Plot 40 T-Coil Wi-Fi 5G: 802.11a (U-NII-1), 12.2kbps, Z Axial Date: 2022/4/7 Communication System: UID 10064 - CAC, IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps); Frequency: 5180 MHz; Duty Cycle: 1:8.11335 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5°C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission-7.4kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 46.14 dB ABM1 comp = 9.77 dBA/m BWC Factor = 0.16 dB Location: 8.3, -12.5, 3.7 mm ### HAC_TCoil_WD_Emission-7.4kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.64 dB BWC Factor = 10.81 dB Location: 8.3, -12.5, 3.7 mm ## Plot 41 T-Coil Wi-Fi 5G: 802.11a (U-NII-3), 6kbps, Y transversal Date: 2022/4/10 Communication System: UID 10064 - CAC, IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps); Frequency: 5745 MHz; Duty Cycle: 1:8.11335 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission-7.4kbps/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm ### **Cursor:** ABM1/ABM2 = 40.64 dB ABM1 comp = -6.38 dBA/m BWC Factor = 0.16 dB Location: 0, -4.2, 3.7 mm ## Plot 42 T-Coil Wi-Fi 5G: 802.11a (U-NII-3), 6kbps, Z Axial Date: 2022/4/10 Communication System: UID 10064 - CAC, IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps); Frequency: 5745 MHz; Duty Cycle: 1:8.11335 Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: TCoil Section DASY5 Configuration: Sensor-Surface: 0mm (Mechanical Surface Detection) Probe: AM1DV3 - 3082; Calibrated: 2022/2/23 Electronics: DAE4 Sn1648; Calibrated: 2021/5/17 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### HAC_TCoil_WD_Emission-7.4kbps/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k voice 1kHz 1s.wav Output Gain: 33.76 Measure Window Start: 300ms Measure Window Length: 1000ms BWC applied: 0.16 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** ABM1/ABM2 = 47.69 dB ABM1 comp = 8.78 dBA/m BWC Factor = 0.16 dB Location: 8.3, -12.5, 3.7 mm ### HAC_TCoil_WD_Emission-7.4kbps/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav Output Gain: 66.12 Measure Window Start: 300ms Measure Window Length: 2000ms BWC applied: 10.81 dB Device Reference Point: 0, 0, -6.3 mm #### **Cursor:** Diff = 1.71 dB BWC Factor = 10.81 dB Location: 8.3, -12.5, 3.7 mm ## **ANNEX C: Probe Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client TA-SH (Auden) Certificate No: AM1DV3-3082_Feb22 | alibration procedure(s) | | 3082 | | |---|---|---|------------------------------| | | QA
CAL-24.v4
Calibration pro-
audio range | cedure for AM1D magnetic field prob | es and TMFS in the | | Calibration date: | February 23, 2 | 022 | | | The measurements and the uncerta | ainties with confidence | national standards, which realize the physical units of e probability are given on the following pages and a atory facility: environment temperature $(22 \pm 3)^{\circ}$ C a | are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Reference Probe AM1DV2 DAE4 | SN: 0810278
SN: 1008
SN: 781 | 31-Aug-21 (No. 31368)
28-Dec-21 (No. AM1DV2-1008_Dec21)
22-Dec-21 (No. DAE4-781_Dec21) | Aug-22
Dec-22
Dec-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | SN: 1050 | 01-Oct-13 (in house check Oct-20)
26-Sep-12 (in house check Oct-20) | Oct-23
Oct-23 | | AMCC
AMMI Audio Measuring Instrument | SN. 1002 | 120 00p 12 (III 10000 0100x 00x 25) | 100020 | | AMCC | | | | | AMCC AMMI Audio Measuring Instrument | Name | Function | Signature | | AMCC | | | | Certificate No: AM1DV3-3082_Feb22 Page 1 of 3 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### References [1] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. [2] ANSI-C63.19-2019 (ANSI-C63.19-2011) American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. [3] DASY5 manual, Chapter: Hearing Aid Compatibility (HAC) T-Coil Extension #### Description of the AM1D probe The AM1D Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1+2]. The probe includes a symmetric low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted nominally 35.3° above the measurement plane, using the connector rotation and sensor angle stated below. The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1+2] without additional shielding. #### Handling of the item The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in a DASY system, the probe must be operated with the special probe cup provided (larger diameter). #### Methods Applied and Interpretation of Parameters - Coordinate System: The AM1D probe is mounted in the DASY system for operation with a HAC Test Arch phantom with AMCC Helmholtz calibration coil according to [3], with the tip pointing to "southwest" orientation. - Functional Test: The functional test preceding calibration includes test of Noise level RF immunity (1kHz AM modulated signal). The shield of the probe cable must be well connected. Frequency response verification from 100 Hz to 10 kHz. - Connector Rotation: The connector at the end of the probe does not carry any signals and is used for fixation to the DAE only. The probe is operated in the center of the AMCC Helmholtz coil using a 1 kHz magnetic field signal. Its angle is determined from the two minima at nominally +120° and –120° rotation, so the sensor in the tip of the probe is aligned to the vertical plane in z-direction, corresponding to the field maximum in the AMCC Helmholtz calibration coil. - Sensor Angle: The sensor tilting in the vertical plane from the ideal vertical direction is determined from the two minima at nominally +120° and -120°. DASY system uses this angle to align the sensor for radial measurements to the x and y axis in the horizontal plane. - Sensitivity: With the probe sensor aligned to the z-field in the AMCC, the output of the probe is compared to the magnetic field in the AMCC at 1 kHz. The field in the AMCC Helmholtz coil is given by the geometry and the current through the coil, which is monitored on the precision shunt resistor of the coil. Certificate No: AM1DV3-3082_Feb22 Page 2 of 3 ### AM1D probe identification and configuration data | Item | AM1DV3 Audio Magnetic 1D Field Probe | | |-----------|--------------------------------------|--| | Type No | SP AM1 001 BA | | | Serial No | 3082 | | | Overall length | 296 mm | | |--------------------|------------------------------------|--| | Tip diameter | 6.0 mm (at the tip) | | | Sensor offset | 3.0 mm (centre of sensor from tip) | | | Internal Amplifier | 20 dB | | | Manufacturer / Origin | Schmid & Partner Engineering AG, Zurich, Switzerland | | |-----------------------|--|--| ### Calibration data | Connector rotation angle | (in DASY system) | 8.7 ° | +/- 3.6 ° (k=2) | |--------------------------|------------------|-------|-----------------| |--------------------------|------------------|-------|-----------------| Sensor angle (in DASY system) $$0.58$$ ° +/- 0.5 ° (k=2) The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: AM1DV3-3082_Feb22 Page 3 of 3 Report No.: R2203A0249-H2V1 ## ANNEX D: DAE4 Calibration Certificat Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates TA-SH (Auden) Client Accreditation No.: SCS 0108 Certificate No: DAE4-1648_May21 ### **CALIBRATION CERTIFICATE** Object DAE4 - SD 000 D04 BO - SN: 1648 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: May 17, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Keithley Multimeter Type 2001 SN: 0810278 07-Sep-20 (No:28647) Sep-21 ID# Secondary Standards Check Date (in house) Scheduled Check Auto DAE Calibration Unit SE UWS 053 AA 1001 07-Jan-21 (in house check) In house check: Jan-22 Calibrator Box V2.1 SE UMS 006 AA 1002 07-Jan-21 (in house check) In house check: Jan-22 Name Function Calibrated by: Eric Hainfeld Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: May 17, 2021 Certificate No: DAE4-1648_May21 Page 1 of 5 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information:
DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-1648_May21 Page 2 of 5 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 n V, full range = -1.....+3 m VDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | 7 | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.614 ± 0.02% (k=2) | 404.114 ± 0.02% (k=2) | 404 720 + 0.02% (k-2) | | Low Range | 3.97861 ± 1.50% (k=2) | 3.96109 ± 1.50% (k=2) | 3 96677 + 1 50% (k=2) | ## **Connector Angle** | Connection | | |---|--------------| | Connector Angle to be used in DASY system | 85.5 ° ± 1 ° | | | | Certificate No: DAE4-1648_May21 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) ### 1. DC Voltage Linearity | High Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------------|-----|--------------|-----------------|-----------| | Channel X + In | put | 200028.04 | -2.38 | -0.00 | | Channel X + Inj | out | 20005.54 | 0.45 | 0.00 | | Channel X - Inp | ut | -20003.97 | 1.16 | -0.01 | | Channel Y + Inj | out | 200029.27 | -1.40 | -0.00 | | Channel Y + Inj | out | 20003.19 | -1.81 | -0.01 | | Channel Y - Inp | ut | -20007.57 | -2.28 | 0.01 | | Channel Z + Inj | out | 200027.91 | -2.31 | -0.00 | | Channel Z + Inj | out | 20003.29 | -1.60 | -0.01 | | Channel Z - Inp | ut | -20006.93 | -1.60 | 0.01 | | Low Range | | Reading (μV) | Difference (μV) | Error (%) | |-----------|---------|--------------|-----------------|-----------| | Channel X | + Input | 2001.22 | -0.04 | -0.00 | | Channel X | + Input | 201.07 | -0.06 | -0.03 | | Channel X | - Input | -198.89 | -0.05 | 0.03 | | Channel Y | + Input | 2001.16 | 0.02 | 0.00 | | Channel Y | + Input | 199.98 | -1.02 | -0.51 | | Channel Y | - Input | -200.02 | -1.09 | 0.55 | | Channel Z | + Input | 2001.00 | -0.14 | -0.01 | | Channel Z | + Input | 199.91 | -1.16 | -0.58 | | Channel Z | - Input | -200.24 | -1.25 | 0.63 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -2.69 | -4.88 | | | - 200 | 5.12 | 3.63 | | Channel Y | 200 | 1.53 | 1.30 | | | - 200 | -2.71 | -3.54 | | Channel Z | 200 | 4.47 | 4.60 | | 100 | - 200 | -7.08 | -6.79 | ### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | -0.77 | -4.03 | | Channel Y | 200 | 5.85 | - | 1.12 | | Channel Z | 200 | 9.86 | 3.76 | • | Certificate No: DAE4-1648_May21 Page 4 of 5 ## 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16032 | 14241 | | Channel Y | 15926 | 16185 | | Channel Z | 16183 | 17314 | ## 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -0.43 | -1.44 | 1.89 | 0.42 | | Channel Y | -0.59 | -1.57 | 0.75 | 0.39 | | Channel Z | -0.66 | -1.93 | 0.34 | 0.36 | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | # **ANNEX E: The EUT Appearances** The EUT Appearance is submitted separately. AC Test Report Report No.: R2203A0249-H2V1 # **ANNEX F: Test Setup Photos** The Test Setup Photos is submitted separately.