

849 NW State Road 45 Newberry, FL 32669 USA Ph: 888.472.2424 or 352.472.5500 Fax: 352.472.2030 Email: <u>info@timcoengr.com</u> Website: <u>www.timcoengr.com</u>

TEST REPORT

PER FCC PART 15.249 & IC RSS-210

UNLICENSED INTENTIONAL RADIATOR

Applicant	T AND D US, LLC	
Address	PO BOX 321 Saratoga Springs, New York 12866 USA	
FCC ID	SRDRTR6X	
IC Label	IC: 5558A-RTR6X	
Model Number	RTR-61	
Product Description	Wireless Core Temperatrue Data Logger	
Date Sample Received	10/17/2007	
Date Tested	10/31/2007	
Tested By	Richard Block	
Approved By	Mario de Aranzeta	
Report Number	3376AUT7TestReport.pdf	
Test Results	PASS FAIL	

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENT

ATTESTATION	3
REPORT SUMMARY	4
TEST ENVIRONMENT AND TEST SETUP	4
DUT SPECIFICATION	5
EMC EQUIPMENT LIST	6
TEST PROCEDURES	6
RADIATION INTERFERENCE	7
OCCUPIED BANDWIDTH	
BAND EDGE COMPLIANCE	11
POWER LINE CONDUCTED INTERFERENCE	13

ATTESTATION

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

Summary

The device under test does:

- fulfill the general approval requirements as identified in this test report
 - not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, Fl 32669

Authorized Signatory Name: Mario de Aranzeta

Mario de Aranzeta C.E.T. Compliance Engineer/ Lab. Supervisor

Date: November 7, 2007

REPORT SUMMARY

Disclaimer	The test results relate only to the items tested.			
Purpose of Test	To show the DUT in compliance with FCC CFR 47, Part 15.249 and Industry Canada RSS-210 Issue 7 requirements for 900 MHz low power radio.			
Test Standards	FCC CFR 47 Part 15.249 IC RSS-210 ANSI C63.4: 2003			
Related Approval(s)/Report(s)	3376CUT7TestReport.pdf			

TEST ENVIRONMENT AND TEST SETUP

Test Facility	RF output power and radiated emission were conducted by Timco Engineering Inc. located at 849 NW State Road 45, Newberry, FL 32669 USA
Laboratory Test Condition	Temperature: 26°C Relative humidity: 50%.
Deviation from the standards	No deviation
Modification to the DUT	No modification.
Test Exercise (e.g. software description, test signal, etc.)	The DUT was placed in continuous transmitting mode of operation.
System Setup	Stand alone device.

DUT SPECIFICATION

DUT Description	WIRELESS CORE TEMPERATRUE DATA LOGGER				
FCC ID	SRDRTR6X				
Model Number	RTR-61				
Operating Frequency	TX: 902.3 – 927.1 MHz RX: Same			ne	
No. of Channels	21				
Modulations	FM				
DUT Power Source	110–120Vac/50– 60Hz				
	DC Power				
	Battery Operated Exclusively				
Test Item	PrototypePre- ProductionProduction			Production	
Type of Equipment	Fixed Mobile Portable			Portable	
Antenna Connector	FCC Rules require that the antenna connector be unique.				

EMC EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/20/07	3/19/10
3-Meter OATS	TEI	N/A	N/A	Listed 1/11/06	1/10/09
Antenna: Biconnical	Eaton	94455-1	1057	CAL 12/12/05	12/12/07
Antenna: Biconnical	Eaton	94455-1	1096	CAL 10/11/06	10/11/08
Antenna: Biconnical	Electro- Metrics	BIA-25	1171	CAL 7/18/07	7/18/09
Analyzer Blue Tower Quasi-Peak Adapter	HP	85650A	2811A01279	CAL 5/17/07	5/17/09
Analyzer Blue Tower RF Preselector	HP	85685A	2926A00983	CAL 5/17/07	5/17/09
Analyzer Blue Tower Spectrum Analyzer	HP	8568B	2928A04729 2848A18049	CAL 5/17/07	5/17/09
LISN	Electro- Metrics	ANS-25/2	2604	CAL 10/5/06	10/5/08
LISN	Electro- Metrics	EM-7820	2682	CAL 7/23/07	7/23/09
Antenna: Log-Periodic	Eaton	96005	1243	CAL 12/14/05	12/14/07

TEST PROCEDURES

Radiation Interference: ANSI C63.4-2003 using a spectrum analyzer, a preselector, a quasi-peak adapter, and an appropriate antenna. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz with an appropriate sweep speed and the video bandwidth was 300 kHz up to 1 GHz and 1 MHz with a video BW of 3 MHz above 1 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The spectrum was searched to at least the tenth (10) harmonic of the fundamental.

Formula Of Conversion Factors: The field strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the preselector was accounted for in the spectrum analyzer meter reading.

Example:			
Freq (MHz)	Meter Reading	+ ACF	+ CL = FS
33	20 dBuV	+ 10.36 dB	+ 0.5 = 30.86 dBuV/m @ 3m

Power Line Conducted Interference: The procedure used was ANSI C63.4-2003 using a 50uH LISN. Both lines were observed. The bandwidth of the spectrum analyzer was 10kHz with an appropriate sweep speed. The spectrum was scanned from 0.15 to 30 MHz.

Occupied Bandwidth: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was printed. The vertical scale is set to -10 dBm per division.

ANSI C63.4-2003 Measurement Procedures: The DUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The DUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

RADIATION INTERFERENCE

Rules Part No.: 15.249, 15.209, RSS-210

Requirements:

Frequency	Limits
Pa	rt 15.209
9 to 490 kHz	2400/F (kHz) µV/m @ 300 meters
490 to 1705 kHz	24000/F (kHz) µV/m @ 30 meters
1705 kHz to 30 MHz	29.54 dBµV/m @ 30 meters
30 - 88	40.0 dBµV/m @ 3 meters
80 - 216	43.5 dBµV/m @ 3 meters
216 - 960	46.0 dBµV/m @ 3 meters
Above 960	54.0 dBµV/m @ 3 meters
Pa	rt 15.249
Fundamental 902 – 928 MHz	94.0 dBµV/m @ 3 meters
Fundamental 2.4 – 2.4835	94.0 dBµV/m @ 3 meters
MHz	
Harmonics	54.0 dBµV/m @ 3 meters

Test Data:

TΧ Tuned Correction Emission Meter Ant. Coax Field Margin Note Reading Frequency Frequency Polarity Factor Strength dB Loss dBuV dBuV/m MHz MHz V/H dB dB/m 902.3 902.28 55.0 23.35 83.17 Η 4.82 10.83 902.28 V 22.92 90.14 902.3 62.4 4.82 3.86 902.3 1,804.90 18.9 Η 1.60 30.34 50.84 3.16 902.3 21.4 30.34 53.34 1,804.90 V 1.60 0.66 902.3 2,706.80 16.4 Η 1.98 32.68 51.06 2.94 2.14902.3 2,706.80 17.2V 1.98 32.68 51.86 902.3 14.0 V 2.28 49.47 4.53 3,609.10 33.19 15.5 902.3 50.97 3,609.10 Η 2.2833.19 3.03 902.3 12.8 V 33.90 4,511.40 2.5549.25 4.75 902.3 4,511.40 Η 50.05 3.95 13.6 2.5533.90 902.3 5,413.60 V 2.87 34.50 47.77 6.23 10.4 902.3 5,413.60 12.2Η 2.8734.50 49.57 4.43 902.3 6,315.90 9.8 Η 3.16 35.55 48.51 5.49 902.3 V 6,315.90 10.0 3.16 35.55 48.71 5.29

[Continued]

Tuned	Emission	Meter	Ant.	Coax	Correction	Field	Margin	Note
Frequency	Frequency	Reading	Polarity	Loss	Factor	Strength	dB	
MHz	MHz	dBuV	V/H	dB	dB/m	dBuV/m		
902.3	7,218.20	9.8	V	3.37	35.56	48.73	5.27	
902.3	7,218.20	11.2	Η	3.37	35.56	50.13	3.87	
902.3	8,120.50	10.1	V	3.62	35.72	49.44	4.56	
902.3	8,120.50	10.9	Н	3.62	35.72	50.24	3.76	
902.3	9,022.80	10.7	Н	3.80	36.02	50.52	3.48	
902.3	9,022.80	11.1	V	3.80	36.02	50.92	3.08	
915.3	915.26	53.6	Н	4.34	23.66	81.60	12.40	
915.3	915.26	60.2	V	4.34	23.21	87.75	6.25	
<mark>915.3</mark>	1,830.50	<mark>17.5</mark>	V	1.62	<mark>30.54</mark>	<mark>49.69</mark>	<mark>4.31</mark>	AV
915.3	1,830.50	21.0	H	1.62	30.54	53.16	0.84	
<mark>915.3</mark>	<mark>1,830.50</mark>	<mark>23.6</mark>	V	1.62	<mark>30.54</mark>	<mark>55.76</mark>	<mark>-1.76</mark>	PK
915.3	2,745.70	18.4	V	2.00	32.70	53.10	0.90	
915.3	2,745.70	19.3	Н	2.00	32.70	54.00	0.00	
915.3	3,661.00	13.7	V	2.30	33.23	49.23	4.77	
915.3	3,661.00	15.5	Н	2.30	33.23	51.03	2.97	
915.3	4,576.20	12.5	V	2.57	33.92	48.99	5.01	
915.3	4,576.20	13.6	Н	2.57	33.92	50.09	3.91	
915.3	5,491.50	10.2	Н	2.90	34.59	47.69	6.31	
915.3	5,491.50	10.8	V	2.90	34.59	48.29	5.71	
915.3	6,406.70	9.7	V	3.18	35.63	48.51	5.49	
915.3	6,406.70	10.7	Н	3.18	35.63	49.51	4.49	
915.3	7,322.00	10.2	V	3.40	35.54	49.14	4.86	
915.3	7,322.00	10.4	Н	3.40	35.54	49.34	4.66	
915.3	8,237.30	11.2	Н	3.65	35.75	50.60	3.40	
915.3	8,237.30	11.4	V	3.65	35.75	50.80	3.20	
915.3	9,152.50	11.2	V	3.82	36.15	51.17	2.83	
915.3	9,152.50	11.3	Н	3.82	36.15	51.27	2.73	
927.1	927.05	54.4	Н	3.90	24.43	82.73	11.27	
927.1	927.05	60.6	V	3.90	24.32	88.82	5.18	
<mark>927.1</mark>	1,854.10	<mark>19.7</mark>	V	<mark>1.63</mark>	<mark>30.73</mark>	<mark>52.02</mark>	<mark>1.98</mark>	AV
927.1	1,854.10	21.1	H	1.63	30.73	53.46	0.54	
<mark>927.1</mark>	1,854.10	<mark>25.3</mark>	V	<mark>1.63</mark>	<mark>30.73</mark>	<mark>57.66</mark>	<mark>-3.66</mark>	PK
927.1	2,781.10	19.2	H	2.01	32.71	53.92	0.08	
927.1	2,781.10	18.6	V	2.01	32.71	53.32	0.68	
927.1	3,708.20	15.4	V	2.31	33.27	50.98	3.02	
927.1	3,708.20	17.4	Н	2.31	33.27	52.98	1.02	

[Continued]

Tuned	Emission	Meter	Ant.	Coax	Correction	Field	Margin	Note
Frequency	Frequency	Reading	Polarity	Loss	Factor	Strength	dB	
MHz	MHz	dBuV	V/H	dB	dB/m	dBuV/m		
927.1	4,635.20	12.3	V	2.59	33.93	48.82	5.18	
927.1	4,635.20	12.4	Н	2.59	33.93	48.92	5.08	
927.1	5,562.30	9.2	Н	2.92	34.69	46.81	7.19	
927.1	5,562.30	9.8	V	2.92	34.69	47.41	6.59	
927.1	6,489.30	9.7	Н	3.20	35.69	48.59	5.41	
927.1	6,489.30	10.0	V	3.20	35.69	48.89	5.11	
927.1	7,416.40	10.4	V	3.42	35.52	49.34	4.66	
927.1	7,416.40	10.6	Н	3.42	35.52	49.54	4.46	
927.1	8,343.40	10.8	V	3.67	35.77	50.24	3.76	
927.1	8,343.40	10.9	Н	3.67	35.77	50.34	3.66	
927.1	9,270.50	10.5	V	3.83	36.27	50.60	3.40	
927.1	9,270.50	11.1	Н	3.83	36.27	51.20	2.80	

OCCUPIED BANDWIDTH

Rules Part No.: 15.249 (d), RSS-210

Requirements: The field strength of any emissions appearing outside the bandedges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to the general limits of 15.249.

Test Data:

BAND EDGE COMPLIANCE

Rules Part No.: 15.249 (d), RSS-210

Requirements: 54 dBuV/m

Test Data:

Lower Bandedge

90.1 - 41.4 = 48.7 dBuV/m LIMIT = 54 dBuV/m

APPLICANT: T AND D US, LLC FCC ID: SRDRTR6X, IC: 5558A-RTR6X REPORT: T\T&D_SRD\3376AT7\3376AT7TestReport Page 11 of 14

Upper Bandedge

88.8 – 51.3 = 37.5 dBuV/m LIMIT = 54 dBuV/m

APPLICANT: T AND D US, LLC FCC ID: SRDRTR6X, IC: 5558A-RTR6X REPORT: T\T&D_SRD\3376AT7\3376AT7TestReport Page 12 of 14

POWER LINE CONDUCTED INTERFERENCE

Rules Part No.: 15.207

Requirements:

Frequency (MHz)	Quasi Peak Limits (dBuv)	Average Limits (dBuV)		
0.15 – 0.5	66 – 56 *	56 – 46 *		
0.5 – 5.0	56	46		
5.0 – 30	50			
* Decrease with logarithm of frequency				

Test Data: The attached graphs represent the emissions read for power line conducted for this device. Both lines were observed.

N/A Battery powered DUT.