

:14550825H-C-R1 : 1 of 35

RADIO TEST REPORT

Test Report No.: 14550825H-C-R1

Customer	TandD Corporation
Description of EUT	Data Logger
Model Number of EUT	TR32B
FCC ID	SRD50140
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	April 7, 2023
Remarks	-

Representative Test Engineer Approved By C lida Takumi Nishida Engineer

Takumi Shimada Engineer

CERTIFICATE 5107.02

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. \boxtimes There is no testing item of "Non-accreditation".

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14550825H-C

This report is a revised version of 14550825H-C. 14550825H-C is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14550825H-C	December 21, 2022	-
(Original)			
1	14550825H-C-R1	April 7, 2023	Cover Page and Section 1: Customer Information
		-	
			-Correction of Company Name
			T&D Corporation \rightarrow TandD Corporation
1	14550825H-C-R1	April 7, 2023	Section 4.2: Configuration and Peripherals
			Description of EUT and Support Equipment
			-Correction of Manufacturer
			T&D Corporation \rightarrow TandD Corporation
1	14550825H-C-R1	April 7, 2023	Section 4.2: Configuration and Peripherals
			<radiated emission="" test=""></radiated>
			List of Cables Used
			-Correction of cable length for No.1: DC Cable
			$0.1 \text{ m} \rightarrow 0.3 \text{ m}$

Test Report No.	: 14550825H-C-R1		
Page	: 3 of 35		

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	РК	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

Reference: Abbreviations (Including words undescribed in this report)

CONTENTS

PAGE

SECTION 1: Customer Information	5
SECTION 2: Equipment Under Test (EUT)	5
SECTION 3: Test Specification, Procedures & Results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Antenna Terminal Conducted Tests	
APPENDIX 1: Test Data	
99 % Occupied Bandwidth and 6 dB Bandwidth	
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test Instruments	
APPENDIX 3: Photographs of Test Setup	
Radiated Spurious Emission	
Worst Case Position	
Antenna Terminal Conducted Tests	

Test Report No.	: 14550825H-C-R1
Page	: 5 of 35

SECTION 1: Customer Information

Company Name	TandD Corporation
Address	817-1 Shimadachi, Matsumoto, Nagano, 390-0852 Japan
Telephone Number	+81-263-40-0131
Contact Person	Shoji Kawayanagi

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Data Logger
Model Number	TR32B
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	August 30, 2022
Test Date	November 7 and December 14, 2022

2.2 Product Description

General Specification

Rating	DC 1.5 V
Clock frequency (ies) in the system	CPU: 16 MHz
	BLE: 24 MHz

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	1.6 dBi

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
Title	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-	FCC: Section 15.207	N/A	N/A	*1)
	2013				,
	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)		a)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Output Power	15.247	15.247(b)(3)		b)	
1	Meas Guidance v05r02			,	
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
-	15.247			c)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission	FCC: KDB 558074 D01	FCC: Section15.247(d)	9.1 dB	Complied	Conducted
Restricted Band	15.247		4960.0 MHz, AV, Vertical	d), e)	(below 30 MHz)/
Edges	Meas Guidance v05r02				Radiated
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			(above 30 MHz)
		RSS-Gen 8.9			*2)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) The test is not applicable since the EUT is a battery operated device.

*2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

c) Refer to APPENDIX 1 (data of Power Density)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth				a)	
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Measurement distance	Frequency range	Frequency range		
3 m	9 kHz to 30 MHz		3.2 dB	
10 m			3.0 dB	
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	5.0 dB	
	200 MHz to 1000 MHz	Horizontal	5.1 dB	
		Vertical	6.2 dB	
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	4.8 dB	
	200 MHz to 1000 MHz	Horizontal	5.0 dB	
		Vertical	5.0 dB	
3 m	1 GHz to 6 GHz		4.9 dB	
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 26.5 GHz	10 GHz to 26.5 GHz		
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		
10 m	1 GHz to 18 GHz		5.4 dB	

Radiated emission

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

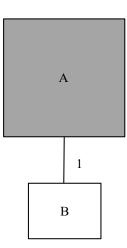
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**


Mode		Remarks*				
Bluetooth Low Energy (BLE) 1M-PHY Uncoded PHY (1M-PHY) Maximum Packet Size, PRBS9						
*Power of the EU	*Power of the EUT was set by the software as follows;					
Power Setting:	3 dBm					
Software:	TR32B_T_RD Version: 0.01					
(Date: November 7, 2022, Storage location: Driven by connected PC)						
*This setting of s	software is the worst case.					
Any conditions u	nder the normal use do not exceed the condition of setti	ng.				
In addition, end	users cannot change the settings of the output power of t	the product.				

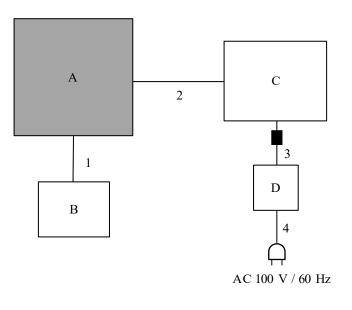
*The Details of Operating Mode(s)

Test Item	Operating Mode	Tested frequency		
Radiated Spurious Emission (Below 1 GHz)	Tx BLE, 1M-PHY *1)	2402 MHz		
Radiated Spurious Emission (Above 1 GHz),	Tx BLE, 1M-PHY	2402 MHz		
Maximum Peak Output Power,		2440 MHz		
Power Density,		2480 MHz		
6dB Bandwidth,				
99% Occupied Bandwidth,				
Conducted Spurious Emission				
*1) Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power				
during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no				
significant impact on the emissions in those frequen	icy bands.			

4.2 Configuration and Peripherals

<Radiated Emission Test>

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Temperature Logger	TR32B	5F47FFA9	TandD Corporation	EUT
В	Battery Box	-	-	-	-

List of Cables Used

No.	Name	Length (m)	Shield	Shield Re	
			Cable	Connector	
1	DC Cable	0.3	Unshielded	Unshielded	-

<Antenna Terminal Conducted Test>

: Standard Ferrite Core

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Temperature Logger	TR32B	5F47FFA9-1	TandD Corporation	EUT
В	Battery Box	-	-	-	-
С	Laptop PC	NJ3900E	14APE5058210	EPSON	-
D	AC adaptor	ADP-65JH CB	67IW38G00SD	DELTA	-
				ELECTRONICS, INC.	

Description of EUT and Support Equipment

List of Cables Used

No.	Name	Length (m)	Shield	Shield	
			Cable	Connector	
1	DC Cable	0.1	Unshielded	Unshielded	-
2	USB Cable	1.5	Shielded	Shielded	-
3	DC Cable	1.7	Unshielded	Unshielded	-
4	AC Cable	2.0	Unshielded	Unshielded	-

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

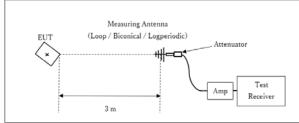
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

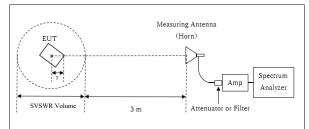
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn


In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

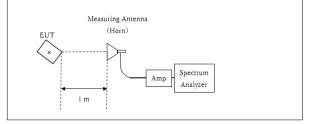
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Anal	yzer	Spectrum Analyzer
Detector	QP	PK	AV	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table


1 GHz to 10 GHz

r : Radius of an outer periphery of EUT

× : Center of turn table

10 GHz to 26.5 GHz

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

× : Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

Test Distance: 3 m

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument Used
				time			
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	1 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				
*2) Reference data *3) Section 11.10.2 M	plied as Worst-case measur fethod PKPSD (peak PSD) ange below 30MHz, RBW	of "ANSI C		ne noise con	ntents.		

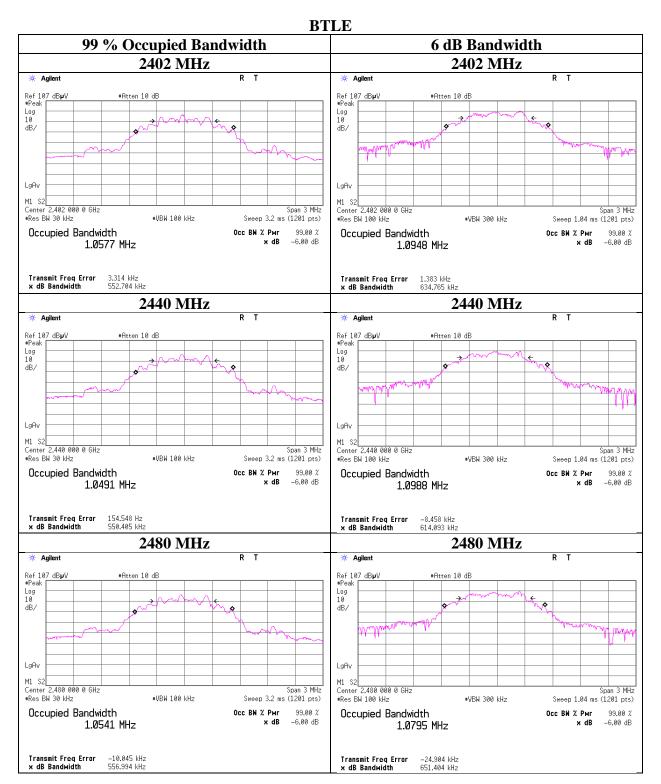
Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

(5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data	: APPENDIX
Test Result	: Pass


APPENDIX 1: Test Data

99 % Occupied Bandwidth and 6 dB Bandwidth

Test place Date Temperature / Humidity Engineer Mode Ise EMC Lab. No.7 Shielded Room November 7, 2022 23 deg. C / 37 % RH Takumi Nishida Tx

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BTLE	2402	1057.7	0.635	> 0.5000
	2440	1049.1	0.614	> 0.5000
	2480	1054.1	0.651	> 0.5000

: 14550825H-C-R1 : 16 of 35

99 % Occupied Bandwidth and 6 dB Bandwidth

: 14550825H-C-R1 : 17 of 35

Maximum Peak Output Power

Test place Ise EMC Lab. No.7 Shielded Room Date November 7, 2022 Temperature / Humidity 23 deg. C / 37 % RH Engineer Takumi Nishida Mode Tx BT LE

					Conducted Power						e.i.r.p. for	r RSS-24'	7	
Freq.	Reading	Cable	Atten.	Res	Result		lt Limit		Antenna	Result		Liı	nit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-8.95	0.70	9.79	1.54	1.43	30.00	1000	28.46	1.60	3.14	2.06	36.02	4000	32.88
2440	-9.12	0.70	9.79	1.37	1.37	30.00	1000	28.63	1.60	2.97	1.98	36.02	4000	33.05
2480	-9.34	0.70	9.79	1.15	1.30	30.00	1000	28.85	1.60	2.75	1.88	36.02	4000	33.27

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

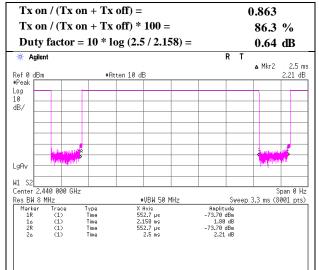
: 14550825H-C-R1 : 18 of 35

<u>Average Output Power</u> (Reference data for RF Exposure / SAR testing)

Test place	Ise EMC Lab. No.7 Shielded Room
Date	November 7, 2022
Temperature / Humidity	23 deg. C / 37 % RH
Engineer	Takumi Nishida
Mode	Tx BT LE

Γ	Freq.	Reading	Cable	Atten.	Re	sult	Duty	Re	esult
			Loss	Loss	(Time a	verage)	factor	(Burst pov	ver average)
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
	2402	-9.98	0.70	9.79	0.51	1.12	0.64	1.15	1.30
	2440	-10.17	0.70	9.79	0.32	1.08	0.64	0.96	1.25
	2480	-10.42	0.70	9.79	0.07	1.02	0.64	0.71	1.18

Sample Calculation:


Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

: 14550825H-C-R1 : 19 of 35

Burst rate confirmation

Test place	Ise EMC Lab. No.7 Shielded Room
Date	November 7, 2022
Temperature / Humidity	23 deg. C / 37 % RH
Engineer	Takumi Nishida
Mode	Tx

BTLE

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

: 14550825H-C-R1 : 20 of 35

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	December 14, 2022
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Yuta Moriya
Mode	Tx BT LE 2402 MHz

	_	Reading	Reading	Ant.	_		Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	39.2	22.1	-	15.2	7.2	32.2	-	12.2	-	40.0	-	27.8	-	
Hori.	148.9	22.2	-	15.0	8.6	32.1	-	13.7	-	43.5	-	29.8	-	
Hori.	249.1	34.4	-	12.1	9.6	32.0	-	24.0	-	46.0	-	22.0	-	
Hori.	491.3	22.9	-	17.7	11.3	32.0	-	19.9	-	46.0	-	26.1	-	
Hori.	566.2	21.8	-	18.2	11.8	32.0	-	19.9	-	46.0	-	26.2	-	
Hori.	901.1	21.5	-	22.2	13.7	30.9	-	26.5	-	46.0	-	19.5	-	
Hori.	2390.0	55.8	39.4	27.8	5.8	32.9	0.6	56.5	40.8	73.9	53.9	17.4	13.1	*1)
Hori.	4804.0	42.5	35.4	31.5	7.3	32.0	0.6	49.4	42.9	73.9	53.9	24.6	11.0	
Hori.	7206.0	42.9	34.8	36.4	8.6	32.8	-	55.2	47.1	73.9	53.9	18.7	6.8	Floor noise
Hori.	9608.0	43.0	32.9	38.0	9.6	33.5	-	57.0	47.0	73.9	53.9	16.9	6.9	Floor noise
Vert.	39.3	22.2	-	15.1	7.2	32.2	-	12.3	-	40.0	-	27.7	-	
Vert.	148.4	22.3	-	14.9	8.6	32.1	-	13.8	-	43.5	-	29.7	-	
Vert.	249.1	27.3	-	12.1	9.6	32.0	-	16.9	-	46.0	-	29.1	-	
Vert.	491.3	25.1	-	17.7	11.3	32.0	-	22.1	-	46.0	-	23.9	-	
Vert.	566.2	21.7	-	18.2	11.8	32.0	-	19.8	-	46.0	-	26.3	-	
Vert.	901.2	21.3	-	22.2	13.7	30.9	-	26.3	-	46.0	-	19.7	-	
Vert.	2390.0	54.5	39.1	27.8	5.8	32.9	0.6	55.2	40.5	73.9	53.9	18.7	13.4	*1)
Vert.	4804.0	42.6	34.6	31.5	7.3	32.0	0.6	49.5	42.1	73.9	53.9	24.4	11.8	
Vert.	7206.0	42.7	34.2	36.4	8.6	32.8	-	55.0	46.5	73.9	53.9	18.9	7.4	Floor noise
Vert.	9608.0	42.8	32.7	38.0	9.6	33.5	-	56.9	46.7	73.9	53.9	17.1	7.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

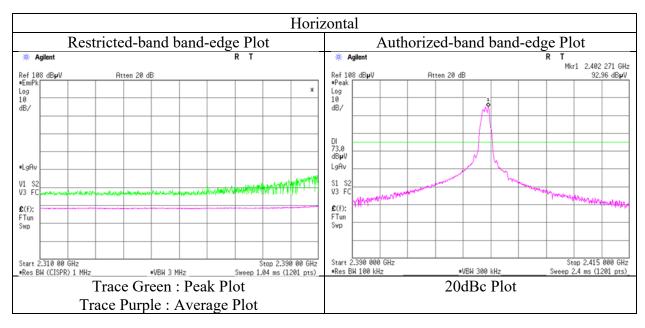
*1) Not Out of Band emission(Leakage Power)

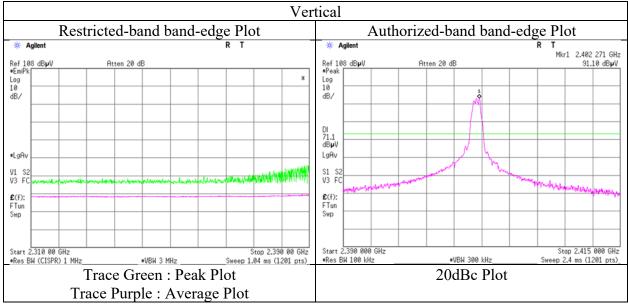
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	93.0	27.8	5.8	32.9	93.7	-	-	Carrier
Hori.	2400.0	53.6	27.8	5.8	32.9	54.3	73.7	19.4	
Vert.	2402.0	91.1	27.8	5.8	32.9	91.8	-	-	Carrier
Vert.	2400.0	53.2	27.8	5.8	32.9	53.9	71.8	17.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:


1 GHz - 10 GHz 10 GHz - 26.5 GHz


20log (4 m / 3.0 m) = 2.5 dB 20log (1.0 m / 3.0 m) = -9.5 dB

: 14550825H-C-R1 : 21 of 35

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateDecember 14, 2022Temperature / Humidity22 deg. C / 35 % RHEngineerYuta MoriyaModeTx BT LE 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14550825H-C-R1 : 22 of 35

Radiated Spurious Emission

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	December 14, 2022
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Yuta Moriya
Mode	Tx BT LE 2440 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	42.6	35.4	31.6	8.1	32.0	0.6	50.3	43.8	73.9	53.9	23.6	10.1	
Hori.	7320.0	41.6	34.0	36.5	9.5	32.8	-	54.8	47.2	73.9	53.9	19.1	6.7	Floor noise
Hori.	9760.0	41.4	33.5	38.3	10.3	33.6	-	56.4	48.5	73.9	53.9	17.6	5.4	Floor noise
Vert.	4880.0	42.9	35.3	31.6	8.1	32.0	0.6	50.7	43.7	73.9	53.9	23.2	10.2	
Vert.	7320.0	41.9	34.0	36.5	9.5	32.8	-	55.1	47.3	73.9	53.9	18.8	6.7	Floor noise
Vert.	9760.0	41.6	33.7	38.3	10.3	33.6	-	56.6	48.7	73.9	53.9	17.3	5.2	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 26.5 GHz $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

: 14550825H-C-R1 : 23 of 35

Radiated Spurious Emission

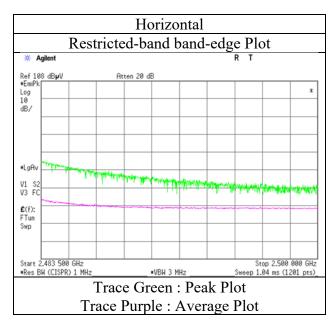
Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.3
Date	December 14, 2022
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Yuta Moriya
Mode	Tx BT LE 2480 MHz

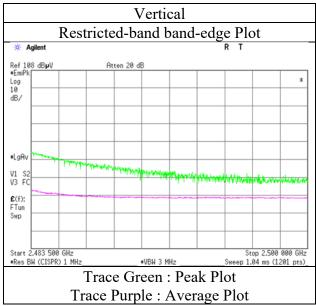
Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	63.2	41.5	27.7	5.9	32.9	0.6	64.0	42.9	73.9	53.9	10.0	11.1	*1)
Hori.	4960.0	44.2	36.9	31.7	7.4	31.9	0.6	51.3	44.7	73.9	53.9	22.6	9.2	
Hori.	7440.0	42.0	33.8	36.7	8.7	32.9	-	54.5	46.3	73.9	53.9	19.4	7.6	Floor noise
Hori.	9920.0	41.0	32.0	38.4	9.7	33.7	-	55.4	46.5	73.9	53.9	18.5	7.5	Floor noise
Vert.	2483.5	62.2	40.0	27.7	5.9	32.9	0.6	62.9	41.3	73.9	53.9	11.0	12.6	*1)
Vert.	4960.0	44.2	37.0	31.7	7.4	31.9	0.6	51.4	44.8	73.9	53.9	22.5	9.1	
Vert.	7440.0	42.0	33.8	36.7	8.7	32.9	-	54.6	46.4	73.9	53.9	19.4	7.5	Floor noise
Vert.	9920.0	41.6	32.1	38.4	9.7	33.7	-	56.1	46.6	73.9	53.9	17.8	7.3	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

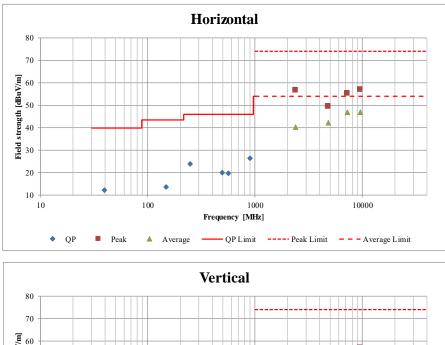

*QP detector was used up to 1GHz.

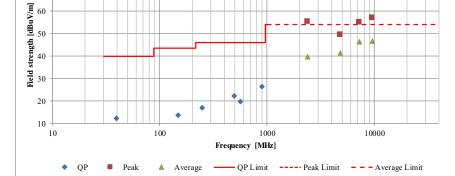

*1) Not Out of Band emission(Leakage Power)

Distance factor: 1 GHz - 10 GHz 20log (4 m / 3.0 m) = 2.5 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateDecember 14, 2022Temperature / Humidity22 deg. C / 35 % RHEngineerYuta MoriyaModeTx BT LE 2480 MHz




* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

Test Report No.	: 14550825H-C-R1
Page	: 25 of 35

<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.3DateDecember 14, 2022Temperature / Humidity22 deg. C / 35 % RHEngineerYuta MoriyaModeTx BT LE 2402 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14550825H-C-R1 : 26 of 35

Conducted Spurious Emission

Test place	Ise EMC Lab. No.7 Shielded Room
Date	November 7, 2022
Temperature / Humidity	23 deg. C / 37 % RH
Engineer	Takumi Nishida
Mode	Tx BTLE 2402MHz

			9	kHz	z - 1:	50 k	Hz							15	0 kF	Iz -	30 N	ЛHz	1		
₩ A	gilent							RΤ			¥ A	gilent							RΤ		
										9.24 kHz											797 kHz
Ref -5	0 dBm		•At	ten 10 d	B				-10	1.55 dBm	Ref -5	0 dBm		•At	ten 10 d	B				-91	L.90 dBm
Peak Log											Peak Log										
10											10										
dB/									DC	Coupled	dB/									DC	Coupled
												1									
												Nilson alert	Harry			4		all some	nganah Wikad	نقر سأقذ و	a contrat
LgAv 🌡	;										LgAv			desident and	and the second sec	and an and a second	in a start of the	ALCONO.	aliteration of the second second	a Minda Manu	en anna
S1 S2	WWW.	Darweit			1						S1 S2										
M3 FS		vite and de	all a little	that the loss	NUMAHI M	My today	with	N. Johnah	the state of the s	Westwish	M3 FS						-	-	-		
				P						11											
£(f):											£(f):										
f<50k FFT											FTun										
FFI											Swp										
										1											
Start 9	.00 kHz		1	1		1			Stop 15	50.00 kHz	Start 1	50 kHz								Stop 30	.000 MHz
	W 200 Hz				VBW 620	Hz		Sweep 2.		201 pts)_		W 9.1 kH	z			•VBW 27	kHz		Sweep 34		

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.24	-101.6	0.70	9.7	2.0	1	-89.2	300	6.0	-27.9	48.2	76.1	
797.00	-91.9	0.72	9.7	2.0	1	-79.5	30	6.0	1.8	29.5	27.7	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

$$\label{eq:expansion} \begin{split} EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N) \\ N: \ Number \ of \ output \end{split}$$

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

: 14550825H-C-R1 : 27 of 35

Conducted Spurious Emission

Test place	Ise EMC Lab. No.7 Shielded Room
Date	November 7, 2022
Temperature / Humidity	23 deg. C / 37 % RH
Engineer	Takumi Nishida
Mode	Tx BTLE 2440MHz

			9	kHz	z - 1:	50 k	Hz							15	0 kF	Iz -	30 N	/Hz			
¥ A	gilent							RΤ			¥ A	gilent							RΤ		
	-									11.58 kHz		-									2.986 MHz
Ref -5	0 dBm		•At	ten 10 d	B				-10	0.95 dBm	Ref -5	0 dBm		•At	ten 10 d	B				-9	1.62 dBm
Peak Log											Peak Log										
10											10	<u> </u>									
dB/									DC	Coupled	dB/									DO	Coupled
												<u> </u>	<u> </u>								
												Shart Salar	والمرور حاريا	ويتعواوانهم	ليستنبه	h Luiula e	ultan.	and be	سيلتك	1.1.1.1	
LgAv	\$										LgAv		A. 44.4	and the second	an sheet da	and have	AND ADDRESS	ann neolad	an an indian	MAN MAN	www.www.
S1 S2	(Tupipine a	North				. I.					S1 S2										
\$1 \$2 M3 FS		ust which	A CONTRACTOR	h Alight	With Mary !!	W Parte in	a Mithia	mph the	hand	WWWW	M3 FS	<u> </u>									
110 110						1. 4.	.		M		110 1 0										
£(f):											£(f):										
f<50k											FTun										
FFT											Sжр										
												<u> </u>									
•										1											
Start 9	1.00 kHz							1	Stop 19	50.00 kHz	Start 1	.50 kHz			1	1			1	Stop 30	.000 MHz
	W 200 Hz				VBW 620	Hz		Sweep 2.		201 pts)		W 9.1 kH	z			VBW 27	kHz	:	Sweep 34		201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.58	-101.0	0.70	9.7	2.0	1	-88.6	300	6.0	-27.3	46.3	73.6	
2986.00	-91.6	0.74	9.7	2.0	1	-79.2	30	6.0	2.1	29.5	27.5	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

$$\label{eq:expansion} \begin{split} EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N) \\ N: \ Number \ of \ output \end{split}$$

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

: 14550825H-C-R1 : 28 of 35

Conducted Spurious Emission

Test place	Ise EMC Lab. No.7 Shielded Room
Date	November 7, 2022
Temperature / Humidity	23 deg. C / 37 % RH
Engineer	Takumi Nishida
Mode	Tx BTLE 2480MHz

			9	kHz	z - 14	50 k	Hz							15	0 kF	Iz -	30 N	/Hz			
¥ A	gilent							RΤ			∦ A	gilent							RΤ		
	-								Mkr1	16.28 kHz		-								Mkr1 1	.021 MHz
	50 dBm	_	•At	ten 10 d	B				-10	2.18 dBm	Ref -5	0 dBm		•At	ten 10 d	B				-94	0.93 dBm
Peak Log											Peak Log										
10	<u> </u>										10										
dB/									D	Coupled	dB/									DC	Coupled
	\vdash									\vdash											
												1									
												Winner	. August	e-l-n-my	and an	. Idea			1	and also	
LgAv	1										LgAv		-Harrison	Law Alexand	And a start of the start of	M. MANINA	MAN MARKAN	a the state of the	and the second second	enter and	and in the last
A1 A2	Million .	4.11.									01 00										
\$1 \$2 M3 FS	41.44	au M ilith	-Weight	dentered	ALL ALL AND	MANA AN	tonse della	with its	This site of	National y	S1 S2 M3 FS				-		-				
HJ FJ	Ί	· ·		r	p	1	վ ա.թ.	Course.	. .	1	110 1 0										
£(f):											£(f):										
f<50k											FTun										
FFT											Swp										
										1											
Start 3	9.00 kHz								Stop 1	50.00 kHz	Start 1	50 kHz		1	1	1	1		1	Stop 30	.000 MHz
	3W 200 Hz				•VBW 620	Hz		Sweep 2		201 pts)_		W 9.1 kH	z			•VBW 27	kHz	5	Энеер 34		201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
16.28	-102.2	0.70	9.7	2.0	1	-89.8	300	6.0	-28.5	43.3	71.8	
1021.00	-90.9	0.72	9.7	2.0	1	-78.5	30	6.0	2.7	27.4	24.7	

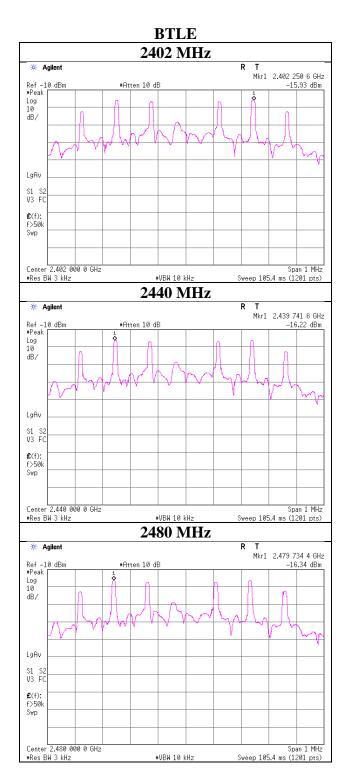
E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

$$\label{eq:expansion} \begin{split} EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N) \\ N: \ Number \ of \ output \end{split}$$

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

Power Density

Test place	Ise EMC Lab. No.7 Shielded Room
Date	November 7, 2022
Temperature / Humidity	23 deg. C / 37 % RH
Engineer	Takumi Nishida
Mode	Tx


BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-15.93	2.06	9.79	-4.08	8.00	12.08
2440.00	-16.22	2.07	9.79	-4.36	8.00	12.36
2480.00	-16.34	2.08	9.79	-4.47	8.00	12.47

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss$

Power Density

APPENDIX 2: Test Instruments

Test Equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
AT	MOS-34	141572	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	3401	01/10/2022	12
AT	MMM-16			HIOKI E.E. CORPORATION	3805	70900532	01/16/2022	12
AT	MPM-16	141812	Power Meter	Keysight Technologies Inc	8990B	MY51000271	08/05/2022	12
AT	MPSE-22	141842	Power sensor	Keysight Technologies Inc	N1923A	MY54070003	08/05/2022	12
AT	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/10/2022	12
AT	MCC-64	141327	Coaxial Cable	UL Japan	-	-	02/28/2022	12
AT	MCC-67	141329	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28635/2	04/01/2022	12
AT	MAT-26	141244	Attenuator(10dB)	Weinschel - API Technologies Corp	WA8-10-34	A198	02/25/2022	12
AT	MAT-92	141421	Attenuator	Weinschel Associates	WA56-10	56100308	05/12/2022	12
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/23/2022	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/10/2022	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/16/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/13/2022	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+ BBA9106	VHA 91031302	08/26/2022	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	09/27/2022	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-191	08/26/2022	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/25/2022	12
RE	MTR-08	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	07/29/2022	12
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	557	05/20/2022	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/17/2022	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/15/2022	12
RE	MHA-16	16 141513 Horn Antenna 15-40GHz		Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170306	07/05/2022	12
RE	MHF-25			UL Japan	HPF SELECTOR	001	09/07/2022	12
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/31/2022	12

Test Report No.	: 14550825H-C-R1		
Page	: 32 of 35		

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: AT: Antenna Terminal Conducted RE: Radiated Emission