

RADIO TEST REPORT

Test Report No.: 14097084H-A-R1

Applicant	:	T&D Corporation
Type of EUT	:	Bluetooth® Thermo Recorder
Model Number of EUT	:	TR43A
FCC ID	:	SRD50130
Test regulation	:	FCC Part 15 Subpart C: 2021
Test result	:	Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual of
- It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable) 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in SECTION 1.
- 10. This report is a revised version of 14097084H-A. 14097084H-A is replaced with this report.

Date of test: December 1 to 8, 2021 **Representative test** engineer: Junki Nagatomi Engineer Approved by: Takumi Shimada Engineer

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation".

 \square

: 14097084H-A-R1 : 2 of 32 : January 13, 2022 : SRD50130

REVISION HISTORY

Original Test Report No.: 14097084H-A

Revision	Test report No.	Date	Page revised	Contents
-	14097084H-A	December 23, 2021	-	-
(Original)				
1	14097084H-A-	January 13, 2022	P.18	Deletion of sentence below the sample
	R1			calculation.
1	14097084H-A-	January 13, 2022	P.25	Correction of note for title from "Plot data,
	R1			Worst case" to "Plot data, Worst case
				mode for Maximum Peak Output Power")

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	LIMS	Laboratory Information Management System
AC	Alternating Current	MCS	Modulation and Coding Scheme
AFH	Adaptive Frequency Hopping	MRA	Mutual Recognition Arrangement
AM	Amplitude Modulation	N/A	Not Applicable
Amp, AMP	Amplifier	NIST	National Institute of Standards and Technology
ANSI	American National Standards Institute	NS	No signal detect.
Ant, ANT	Antenna	NSA	Normalized Site Attenuation
AP	Access Point	OBW	Occupied BandWidth
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	РК	Peak
BT LE	Bluetooth Low Energy	PN	Pseudo random Noise
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadrature Phase Shift Keying
CW	Continuous Wave	RBW	Resolution BandWidth
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RNSS	Radio Navigation Satellite Service
DSSS	Direct Sequence Spread Spectrum	RSS	Radio Standards Specifications
DUT	Device Under Test	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR, T/R	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
ETSI	European Telecommunications Standards Institute	Vert.	Vertical
EU	European Union	WLAN	Wireless LAN
EUT	Equipment Under Test		
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
IF ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISED	International Organization for Standardization		
JAB			
JAD	Japan Accreditation Board		

UL Japan, Inc. Ise EMC Lab.

LAN

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Local Area Network

: 14097084H-A-R1 : 4 of 32 : January 13, 2022 : SRD50130

CONTENTS

PAGE

SECTION 1: Customer information	5	
SECTION 2: Equipment under test (EUT)		
SECTION 3: Test specification, procedures & results		
SECTION 4: Operation of EUT during testing		
SECTION 5: Radiated Spurious Emission		
SECTION 6: Antenna Terminal Conducted Tests		
APPENDIX 1: Test data		
99 % Occupied Bandwidth and 6 dB Bandwidth		
Maximum Peak Output Power		
Average Output Power		
Radiated Spurious Emission		
Conducted Spurious Emission		
Power Density		
APPENDIX 2: Test instruments		
APPENDIX 3: Photographs of test setup		
Radiated Spurious Emission		
Worst Case Position		
Antenna Terminal Conducted Tests		

SECTION 1: Customer information

Company Name	:	T&D Corporation
Address	:	817-1 Shimadachi, Matsumoto, Nagano, 390-0852 Japan
Telephone Number	:	+81-263-40-0131
Contact Person	:	Kanato Kobayashi

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

ems.)
(

2.2 Product Description

Model: TR43A (referred to as the EUT in this report) is a Bluetooth® Thermo Recorder.

•

General Specification

Rating

DC 3.6 V

Radio Specification

Type of radio	Bluetooth Low Energy
Radio Type	Transceiver
Frequency of operation	2402 MHz - 2480 MHz
Type of modulation	GFSK
Channel spacing	2 MHz
Antenna type	Pattern Antenna
Antenna Gain	1.6 dBi
Clock frequency (Maximum)	24 MHz

Variant models

EUT has variant models: TR41A and TR42A The difference between EUT and variant model is the way the sensors are mounted. TR41A: Internal temperature sensor (1 ch) TR42A: External temperature sensor (1 ch) TR43A(EUT): External temperature and humidity sensor (1 ch)

These differences have no influence to radio specifications. The EMC characteristics is not degraded, and the electrical characteristics are considered to be identical.

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

: 14097084H-A-R1

: January 13, 2022

: 6 of 32

: SRD50130

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart C FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021
Title	:	FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013	FCC: Section 15.207	-	N/A	*1)
	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)		a)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Output Power	15.247	15.247(b)(3)		b)	
	Meas Guidance v05r02			- /	
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247			c)	
	Meas Guidance v05r02			- /	
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission	FCC: KDB 558074 D01	FCC: Section15.247(d)	3.0 dB	Complied#	Conducted
Restricted Band	15.247		2483.5 MHz, AV, Vert.	d), e)	
Edges	Meas Guidance v05r02		1		(below 30 MHz)/
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			Radiated
		RSS-Gen 8.9			(above 30 MHz)
		RSS-Gen 8.10			*2)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line

*2) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

b) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

c) Refer to APPENDIX 1 (data of Power Density)

d) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

e) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration. * In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth				a)	
a) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

<u>Antenna Terminal test</u>

Test Item	Uncertainty (+/-)	
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %	
Maximum Peak Output Power / Average Output Power	1.4 dB	
Carrier Frequency Separation	0.42 %	
Dwell time / Burst rate	0.10 %	
Conducted Spurious Emission	2.6 dB	

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	4.9 dB
	6 GHz to 18 GHz	5.2 dB
1 m	10 GHz to 26.5 GHz	5.5 dB
	26.5 GHz to 40 GHz	5.5 dB
10 m	1 GHz to 18 GHz	5.2 dB

. . .

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

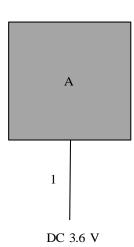
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**


Mode		Remarks*			
Bluetooth Low Ener	gy (BT LE)	Maximum Packet Size, PRBS9			
*The worst condition was determined based on the test result of Maximum Peak Output Power (Low Channel)					
*Power of the EUT	*Power of the EUT was set by the software as follows;				
Power settings:	Power settings: 3 dBm				
Software:	PSoC4 BLE Radio Examination	ver 1.0.0.0			
	(Date: November 30, 2018 Storag	ge location: Driven by connected PC)			
*This setting of soft	*This setting of software is the worst case.				
Any conditions under the normal use do not exceed the condition of setting.					
In addition, end user	rs cannot change the settings of the	e output power of the product.			

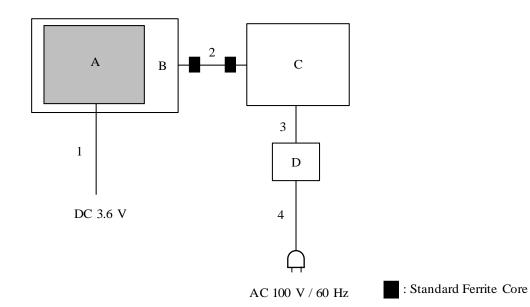
*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency		
Conducted Spurious Emission	Tx BT LE *1)	2402 MHz		
Radiated Spurious Emission (Below 1 GHz)				
Radiated Spurious Emission (Above 1 GHz)	Tx BT LE	2402 MHz		
Maximum Peak Output Power,		2440 MHz		
Power Density,		2480 MHz		
6dB Bandwidth,				
99% Occupied Bandwidth,				
Conducted Spurious Emission				
*1) Conducted Spurious emission and Radiated Spurious Emission (Below 1 GHz) were limited to the channel				
that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the				
operating frequency had no significant impact of	on the emissions in those frequency bands.			

4.2 Configuration and peripherals

Radiated Emission

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.


Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Thermo Recorder	TR43A	5244001F	T&D Corporation	EUT

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	2.5	Unshielded	Unshielded	-

Antenna Terminal Conducted Tests

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Deser	escription of Do 1 and Support equipment						
No.	Item	Model number	Serial number	Manufacturer	Remarks		
А	Thermo Recorder	TR43A	5244001F	T&D Corporation	EUT		
В	Communication Port	TR-50U2	-	T&D Corporation	-		
С	Laptop PC	HP 630	5CB1232RJN	hp	-		
D	AC Adaptor	PPP009D	WBGSV0AAR0NG3I	hp	-		

Description of EUT and Support equipment

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.0	Unshielded	Unshielded	-
2	USB Cable	1.5	Shielded	Shielded	-
3	DC Cable	1.8	Unshielded	Unshielded	-
4	AC Cable	1.0	Unshielded	Unshielded	-

SECTION 5: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency 30 MHz to 200 MHz		200 MHz to 1 GHz	Above 1 GHz	
Antenna Type	Biconical	Logperiodic	Horn	

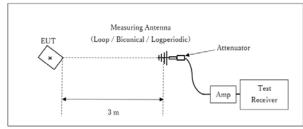
In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the
restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	РК
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	<u>11.12.2.5.1</u>	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
		<u>11.12.2.5.2</u>		
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

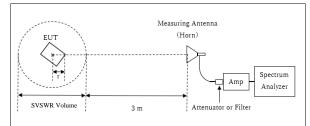
*1) Average Power Measurement was performed based on ANSI C63.10-2013.

: 14097084H-A-R1

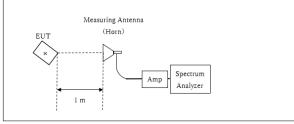

: January 13, 2022

: 13 of 32

: SRD50130


Figure 1: Test Setup

Below 1 GHz


 \mathbf{x} : Center of turn table

1 GHz - 10 GHz

r : Radius of an outer periphery of EUT × : Center of turn table

10 GHz - 26.5 GHz

Test Distance: 3 m

Distance Factor: $20 \text{ x} \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 4.0 m

SVSWR Volume : 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

Distance Factor: 20 x log (1.0 m / 3.0 m) = -9.5 dB*Test Distance: 1 m

× : Center of turn table

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range	: 30 MHz - 26.5 GHz
Test data	: APPENDIX
Test result	: Pass

SECTION 6: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				
*1) Peak hold was app	1) Peak hold was applied as Worst-case measurement.						

*2) Reference data

*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart.

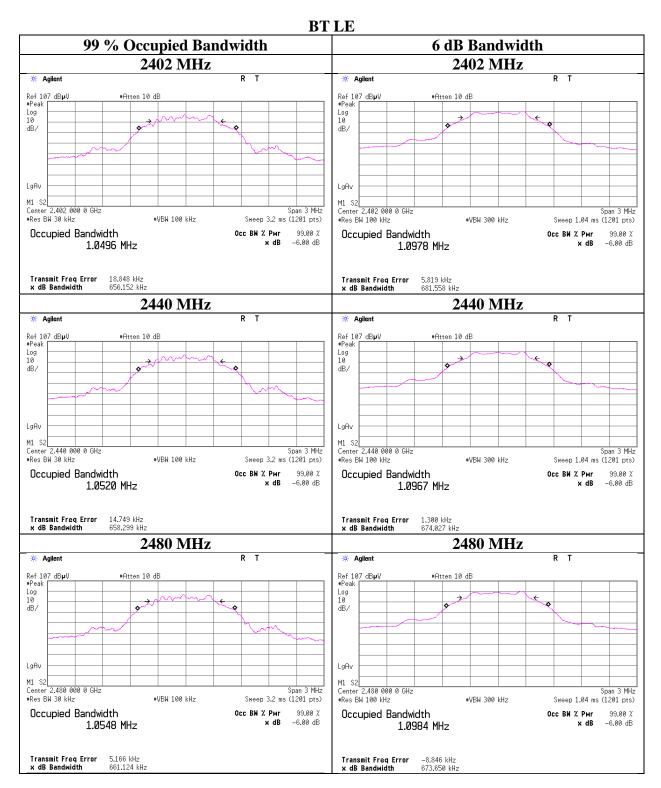
(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

*5) The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 – 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data	: APPENDIX
Test result	: Pass

APPENDIX 1: Test data


99 % Occupied Bandwidth and 6 dB Bandwidth

Report No.	14097084H
Test place	Ise EMC Lab. No.7 Shielded Room
Date	December 1, 2021
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Takafumi Noguchi
Mode	Tx BT LE

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for	
		Bandwidth		6 dB Bandwidth	
	[MHz]	[kHz]	[MHz]	[MHz]	
	2402	1049.6	0.682	> 0.5000	
BT LE	2440	1052.0	0.674	> 0.5000	
	2480	1054.8	0.674	> 0.5000	

Test report No.	: 14097084H-A-R1
Page	: 16 of 32
Issued date	: January 13, 2022
ISED certification number	: SRD50130

Maximum Peak Output Power

Report No.	14097084H
Test place	Ise EMC Lab. No.7 Shielded Room
Date	December 1, 2021
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Takafumi Noguchi
Mode	Tx BT LE

				Conducted Power					e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Re	sult	Limit		Margin	Antenna	Result		Liı	nit	Margin
_	_	Loss	Loss						Gain					_
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-9.88	2.06	9.81	1.99	1.58	30.00	1000	28.01	1.60	3.59	2.29	36.02	4000	32.43
2440	-9.97	2.07	9.81	1.91	1.55	30.00	1000	28.09	1.60	3.51	2.24	36.02	4000	32.51
2480	-10.15	2.09	9.81	1.75	1.50	30.00	1000	28.25	1.60	3.35	2.16	36.02	4000	32.67

Sample Calculation: Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

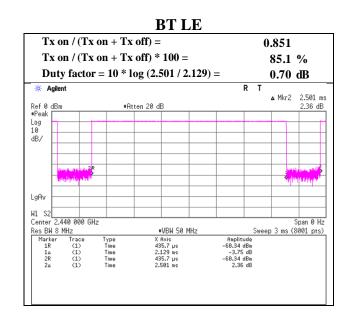
e.i.r.p. Result = Conducted Power Result + Antenna Gain

: 14097084H-A-R1 : 18 of 32 : January 13, 2022 : SRD50130

<u>Average Output Power</u> (Reference data for RF Exposure)

Report No.	14097084H
Test place	Ise EMC Lab. No.7 Shielded Room
Date	December 1, 2021
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Takafumi Noguchi
Mode	Tx BT LE

Freq.	Reading	Cable	Atten.	Re	sult	Duty	Result		
		Loss	Loss	(Time a	verage)	factor	(Burst power average)		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
2402	-10.86	2.06	9.81	1.01	1.26	0.70	1.71	1.48	
2440	-10.97	2.07	9.81	0.91	1.23	0.70	1.61	1.45	
2480	-11.16	2.09	9.81	0.74	1.19	0.70	1.44	1.39	


Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

: 14097084H-A-R1 : 19 of 32 : January 13, 2022 : SRD50130

Burst rate confirmation

Report No.	14097084H
Test place	Ise EMC Lab. No.7 Shielded Room
Date	December 1, 2021
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Takafumi Noguchi
Mode	Tx BT LE

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Radiated Spurious Emission

Report No. Test place	14097084H Ise EMC Lab.	
Semi Anechoic Chamber Date	No.4 December 7, 2021	No.4 December 8, 2021
Temperature / Humidity Engineer	18 deg. C / 55% RH Junki Nagatomi (1 GHz - 18 GHz)	18 deg. C / 54% RH Junki Nagatomi (18 GHz - 26.5 GHz) (Below 1 GHz)

Mode

Tx BT LE 2402 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	45.4	21.9	-	12.9	7.4	32.0	-	10.1	-	40.0	-	29.9	-	
Hori.	80.4	21.8	-	6.9	7.8	32.0	-	4.5	-	40.0	-	35.5	-	
Hori.	177.9	22.0	-	16.2	8.7	31.9	-	14.9	-	43.5	-	28.6	-	
Hori.	398.1	21.9	-	15.9	10.2	31.9	-	16.1	-	46.0	-	30.0	-	
Hori.	643.7	21.7	-	19.4	11.4	32.1	-	20.4	-	46.0	-	25.7	-	
Hori.	980.5	21.5	-	22.3	12.7	30.8	-	25.7	-	54.0	-	28.3	-	
Hori.	2390.0	58.2	36.9	27.8	5.6	31.7	0.7	59.9	39.2	73.9	53.9	14.1	14.7	*1)
Hori.	4804.0	42.0	33.6	31.6	7.9	30.9	0.7	50.6	43.0	73.9	53.9	23.3	10.9	
Hori.	9608.0	40.8	32.1	38.0	10.0	32.3	-	56.6	47.9	73.9	53.9	17.3	6.1	Floor noise
Vert.	45.4	21.9	-	12.9	7.4	32.0	-	10.1	-	40.0	-	29.9	-	
Vert.	80.4	21.8	-	6.9	7.8	32.0	-	4.5	-	40.0	-	35.5	-	
Vert.	177.9	22.0	-	16.2	8.7	31.9	-	14.9	-	43.5	-	28.6	-	
Vert.	398.1	21.9	-	15.9	10.2	31.9	-	16.1	-	46.0	-	30.0	-	
Vert.	643.7	21.7	-	19.4	11.4	32.1	-	20.4	-	46.0	-	25.7	-	
Vert.	980.5	21.5	-	22.3	12.7	30.8	-	25.7	-	54.0	-	28.3	-	
Vert.	2390.0	58.0	39.6	27.8	5.6	31.7	0.7	59.6	41.9	73.9	53.9	14.3	12.0	*1)
Vert.	4804.0	41.8	35.9	31.6	7.9	30.9	0.7	50.5	45.2	73.9	53.9	23.5	8.7	
Vert.	9608.0	41.9	32.1	38.0	10.0	32.3	-	57.7	47.9	73.9	53.9	16.2	6.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

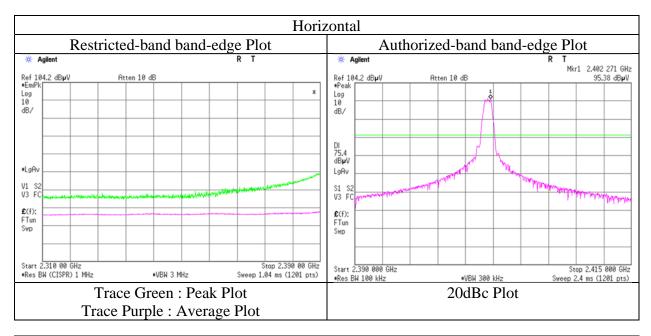
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

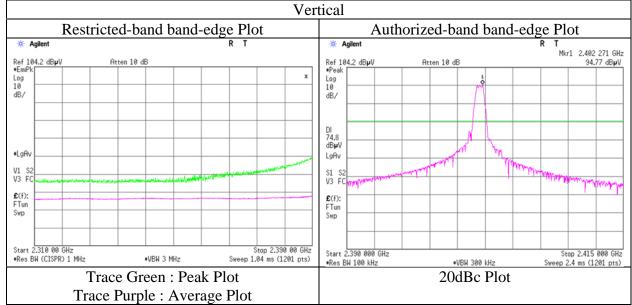
*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	95.4	27.8	5.6	31.7	97.0	-	-	Carrier
Hori.	2400.0	58.7	27.8	5.6	31.7	60.3	77.0	16.7	
Hori.	7206.0	37.2	36.2	9.0	31.9	50.4	77.0	26.6	
Vert.	2402.0	94.8	27.8	5.6	31.7	96.4	-	-	Carrier
Vert.	2400.0	58.0	27.8	5.6	31.7	59.6	76.4	16.8	
Vert.	7206.0	37.0	36.2	9.0	31.9	50.2	76.4	26.2	


Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


: 14097084H-A-R1 : 21 of 32 : January 13, 2022 : SRD50130

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No.1409Test placeIse ESemi Anechoic ChamberNo.4DateDeccTemperature / Humidity18 dEngineerJunk(1 GModeTx E

14097084H Ise EMC Lab. No.4 December 7, 2021 18 deg. C / 55% RH Junki Nagatomi (1 GHz - 10 GHz) Tx BT LE 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

: 14097084H-A-R1 : 22 of 32 : January 13, 2022 : SRD50130

Radiated Spurious Emission

14097084H	
Ise EMC Lab.	
No.4	No.4
December 7, 2021	December 8, 2021
18 deg. C / 55% RH	18 deg. C / 54% RH
Junki Nagatomi	Junki Nagatomi
(1 GHz - 18 GHz)	(18 GHz - 26.5 GHz)
Tx BT LE 2440 MHz	
	Ise EMC Lab. No.4 December 7, 2021 18 deg. C / 55% RH Junki Nagatomi (1 GHz - 18 GHz)

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	41.6	33.5	31.6	7.9	30.9	0.7	50.3	42.9	73.9	53.9	23.6	11.0	
Hori.	7320.0	43.2	35.5	36.3	9.0	32.0	0.7	56.5	49.4	73.9	53.9	17.4	4.5	
Hori.	9760.0	42.8	31.7	38.4	10.0	32.3	-	58.9	47.8	73.9	53.9	15.0	6.1	Floor noise
Vert.	4880.0	43.4	35.6	31.6	7.9	30.9	0.7	52.1	45.0	73.9	53.9	21.8	8.9	
Vert.	7320.0	44.5	34.9	36.3	9.0	32.0	0.7	57.8	48.8	73.9	53.9	16.1	5.1	
Vert.	9760.0	42.5	31.8	38.4	10.0	32.3	-	58.6	47.9	73.9	53.9	15.3	6.0	Floor noise

Result (QP / PK) = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Attenuator + Filter + Distance factor (above 1 GHz)) - Cable + Distance factor (above 1 GHz)) - Cable + Distance factor + Distance f

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Dut$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

Distance factor:	1 GHz - 10 GHz	$20\log (4 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$
	10 GHz - 26.5 GHz	20log~(1.0~m/3.0~m)=~-9.5~dB

: 14097084H-A-R1 : 23 of 32 : January 13, 2022 : SRD50130

Radiated Spurious Emission

Report No.	14097084H	
Test place	Ise EMC Lab.	
Semi Anechoic Chamber	No.4	No.4
Date	December 7, 2021	December 8, 2021
Temperature / Humidity	18 deg. C / 55% RH	18 deg. C / 54% RH
Engineer	Junki Nagatomi	Junki Nagatomi
	(1 GHz - 18 GHz)	(18 GHz - 26.5 GHz)
Mode	Tx BT LE 2480 MHz	

	_	Reading	Reading	Ant.	_		Duty	Result	Result	Limit	Limit	Margin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	67.9	45.0	27.7	5.7	31.7	0.7	69.5	47.3	73.9	53.9	4.4	6.6	*1)
Hori.	4960.0	41.2	33.1	31.7	7.9	30.8	0.7	50.1	42.6	73.9	53.9	23.8	11.3	
Hori.	7440.0	43.5	35.6	36.5	9.0	32.1	0.7	57.0	49.8	73.9	53.9	17.0	4.1	
Hori.	9920.0	42.0	31.6	38.6	10.1	32.4	-	58.2	47.8	73.9	53.9	15.7	6.1	Floor noise
Vert.	2483.5	67.8	48.5	27.7	5.7	31.7	0.7	69.5	50.9	73.9	53.9	4.4	3.0	*1)
Vert.	4960.0	43.9	35.5	31.7	7.9	30.8	0.7	52.7	45.0	73.9	53.9	21.2	8.9	
Vert.	7440.0	43.4	35.5	36.5	9.0	32.1	0.7	56.8	49.7	73.9	53.9	17.1	4.2	
Vert.	9920.0	42.0	31.7	38.6	10.1	32.4	-	58.2	47.9	73.9	53.9	15.7	6.0	Floor noise

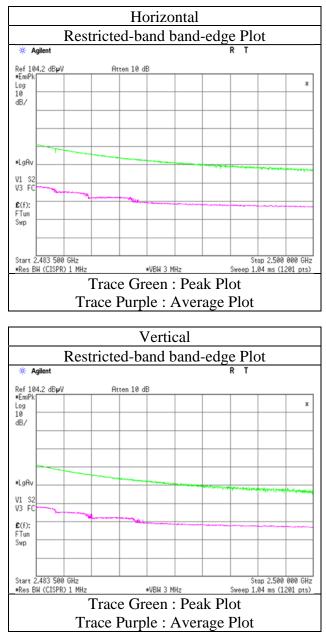
Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor \ (Av) = Reading + Ant \ (Av) =$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)


: 14097084H-A-R1 : 24 of 32 : January 13, 2022 : SRD50130

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

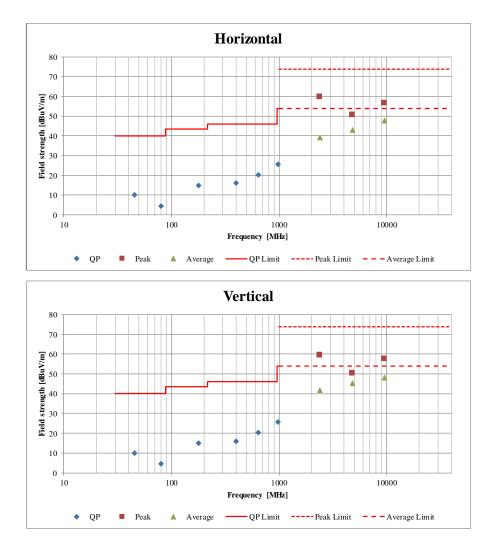
Report No. Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer

Mode

14097084H Ise EMC Lab. No.4 December 7, 2021 18 deg. C / 55% RH Junki Nagatomi (1 GHz - 10 GHz) Tx BT LE 2480 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124


Test report No.: 14097084H-A-R1Page: 25 of 32Issued date: January 13, 2022ISED certification number: SRD50130

<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)

Report No. Test place	14097084H Ise EMC Lab.	
Semi Anechoic Chamber	No.4	No.4
Date	December 7, 2021	December 8, 2021
Temperature / Humidity	18 deg. C / 55% RH	18 deg. C / 54% RH
Engineer	Junki Nagatomi	Junki Nagatomi
	(1 GHz - 18 GHz)	(18 GHz - 26.5 GHz)
		(Below 1 GHz)

Mode

Tx BT LE 2402 MHz

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14097084H-A-R1 : 26 of 32 : January 13, 2022 : SRD50130

Conducted Spurious Emission

Report No.	14097084H
Test place	Ise EMC Lab. No.7 Shielded Room
Date	December 1, 2021
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Takafumi Noguchi
Mode	Tx BT LE 2402 MHz

	9 kHz - 150 kHz	Z		150 kHz - 30 N	1Hz
🔆 Agilent		RT	🔆 Agilent		RT
Ref — 50 dBm Peak	#Atten 10 dB	Mkr1 10.06 kHz _95.32 dBm	Ref -50 dBm Peak	#Atten 10 dB	Mkr1 225 kHz -87.37 dBm
Log 10 dB/			Log 10 dB/		
4			1	weite neftstertuitelikeljungsderdinker surregtedinungsdertuiter	
LgAv S1 S2 M3 FS	the advertised of the contract	White Assessment and provide the second strategies and	LgAv \$1 \$2 M3 F\$		
£(f): f<50k FFT			£(f): FTun Swp		
Start 9.00 kHz		Stop 150.00 kHz	Start 150 kHz		Stop 30.000 MHz
#Res BW 200 H			*Res BW 9.1 kHz	#VBW 27 kHz	Sweep 344.8 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.06	-95.3	0.70	9.8	2.0	1	-82.8	300	6.0	-21.5	47.5	69.0	
225.00	-87.4	0.70	9.8	2.0	1	-74.8	300	6.0	-13.6	20.5	34.1	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

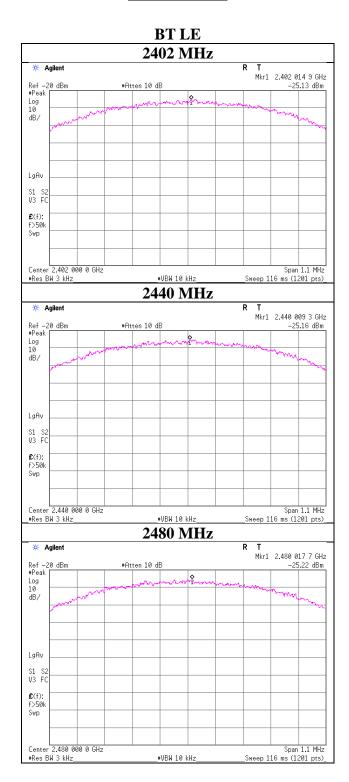
 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10 \ * \ log \ (N)$

N: Number of output

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

: 14097084H-A-R1 : 27 of 32 : January 13, 2022 : SRD50130

Power Density


Report No.	14097084H
Test place	Ise EMC Lab. No.7 Shielded Room
Date	December 1, 2021
Temperature / Humidity	22 deg. C / 41 % RH
Engineer	Takafumi Noguchi
Mode	Tx BT LE

Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	dBm / 3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-25.13	2.06	9.81	-13.26	8.00	21.26
2440	-25.16	2.07	9.81	-13.28	8.00	21.28
2480	-25.22	2.09	9.81	-13.32	8.00	21.32

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

Power Density

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID		Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-04	142011	AC4_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/25/2020	24
RE	MOS-15	141562	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0010	01/15/2021	12
RE	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/07/2021	12
RE	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-04- SVSWR	142017	AC4_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/12/2021	24
RE	MHA-21	141508	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	557	05/10/2021	12
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m) / 1608S264(5 m)	09/30/2021	12
RE	MPA-12	141581	MicroWave System Amplifier	Keysight Technologies Inc	83017A	00650	10/07/2021	12
RE	MHF-26	141296	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	002	09/30/2021	12
RE	MSA-16	141903	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46186390	12/18/2020	12
RE	MHA-17	141506	Horn Antenna 15-40GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9170	BBHA9170307	07/20/2021	12
RE	MAT-34	141331	Attenuator(6dB)	TME	UFA-01	-	02/02/2021	12
RE	MBA-05	141425	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+ BBA9106	VHA 91031302	08/28/2021	12
RE	MCC-50	141397	Coaxial Cable	UL Japan	-	-	11/03/2021	12
RE	MLA-23	141267	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess-Elektronik OHG	VUSLP9111B	9111B-192	08/28/2021	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2021	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/05/2021	12
AT	MOS-34	141572	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	3401	01/15/2021	12
AT	MMM-16	141360	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	70900532	01/07/2021	12
AT	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/10/2021	12
AT	MPM-13	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/14/2020	12
AT	MPSE-18	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/14/2020	12
AT	MCC-67	141329	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28635/2	04/12/2021	12
AT	MAT-92	141421	Attenuator	Weinschel Associates	WA56-10	56100308	05/14/2021	12
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/09/2021	12
AT	MTW-07	141953	Torque wrench	Huber+Suhner	74 Z-0-0-21	60855	03/22/2021	36

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission AT: Antenna Terminal Conducted

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124