# **TEST REPORT**

For

# **Mobile Base Station**

In conformity with

# FCC CFR 47 Part15 (October 1, 2007) / RSS-210 Issue 7, RSS-Gen Issue 2

Model: RTR-500GSM

FCC ID/ IC Certification No.: SRD10010 / 5558A-10010

**Test Item: Mobile Base Station** 

Report No: RY0906Z22R1

Issue Date: 22 June, 2009

**Prepared** for

T&D CORPORATION 817-1 Shimadachi, Matsumoto, Nagano, Japan 390-0852

Prepared by

RF Technologies Ltd. 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results in this report apply only to the sample tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.



# **Table of contents**

| 1 G | General information                                            |  |
|-----|----------------------------------------------------------------|--|
| 1.1 | Product description                                            |  |
| 1.2 | Test(s) performed/ Summary of test result                      |  |
| 1.3 | Test facility                                                  |  |
| 1.4 | Measurement uncertainty                                        |  |
| 1.5 | Summary of test results                                        |  |
| 1.  | .5.1 Table of test summary                                     |  |
| 1.6 | Setup of equipment under test (EUT)                            |  |
| 1.  | .6.1 Test configuration of EUT                                 |  |
| 1.  | .6.2 Operating condition:                                      |  |
| 1.  | .6.3 Setup diagram of tested system:                           |  |
| 1.7 | Equipment modifications                                        |  |
| 1.8 | Deviation from the standard                                    |  |
| 2 T | est procedure and test data                                    |  |
| 2.1 | Occupied Bandwidth (6dB / 99%)                                 |  |
| 2.2 | Peak Output Power                                              |  |
| 2.3 | Power Spectral Density                                         |  |
| 2.4 | Conducted Spurious Emissions (Antenna Port)                    |  |
| 2.5 | Transmitter Radiated spurious emissions                        |  |
| 2.  | 5.1 Below 30 MHz                                               |  |
| 2.  | 5.2 Between 30 – 1000 MHz                                      |  |
| 2.  | 5.3 Above 1000 MHz                                             |  |
| 2.6 | Transmitter AC power line conducted emissions                  |  |
| 2.7 | Receiver Radiated spurious emissions                           |  |
| 2.  | .7.1 Between $30 - 1000 \text{ MHz}$                           |  |
| 2.  | 7.2 Above 1000 MHz                                             |  |
| 2.8 | Receiver AC power line conducted emissions                     |  |
| 2.9 | Maximum Permissible Exposure (Exposure of Humans to RF Fields) |  |
| 3 T | est setup photographs                                          |  |
| 3.1 | Definition of the EUT axis                                     |  |
| 3.2 | Antenna Port Measurements                                      |  |
| 3.3 | Radiated spurious emissions                                    |  |
| 3.4 | AC power line conducted emissions                              |  |
|     | ist of utilized test equipment/ calibration                    |  |
|     |                                                                |  |

# <u>History</u>

| Report No.  | Date          | Revisions     | Revised By |
|-------------|---------------|---------------|------------|
| RY0906Z22R1 | 22 June, 2009 | Initial Issue | K. Ohnishi |
|             |               |               |            |



# 1 General information

# 1.1 Product description

| Test item                      | : Mobile Base Station                                 |
|--------------------------------|-------------------------------------------------------|
| Manufacturer                   | : T&D CORPORATION                                     |
|                                |                                                       |
| Address                        | : 817-1 Shimadachi, Matsumoto, Nagano, Japan 390-0852 |
| Model                          | : RTR-500GSM                                          |
| FCC ID                         | : SRD10010                                            |
| IC Certification No            | : 5558A-10010                                         |
| Serial numbers                 | : 3E9E0001                                            |
| Fundamental Operated Frequency | :Tx/Rx Freq. (902 - 928 MHz)                          |
| Oscillator frequencies         | : 32.768 kHz, 9.83 MHz, 13.1072 MHz, 48 MHz           |
| Type of Modulation             | : FSK                                                 |
| Number of channels             | : 22ch (Manufacturer declared)                        |
| RF Output Power                | : 7.18dBm (measured at the antenna terminal)          |
| Antenna Gain                   | : 0 dBi (Manufacturer declared)                       |
| Antenna Type                   | : Dipole antenna                                      |
| Receipt date of EUT            | : 19 June, 2009                                       |
| Nominal power source voltages  | : AC 120V, 60Hz (Battery: DC 6.0V)                    |
|                                |                                                       |

#### 1.2 Test(s) performed/ Summary of test result

| Test specification(s) | : FCC CFR 47. Part 15 (October 1, 2007) / RSS-210 Issue 7, RSS-Gen Issue 2 |
|-----------------------|----------------------------------------------------------------------------|
| Test method(s)        | : ANSI C63.4: 2003                                                         |
| Test(s) started       | : 20 June, 2009                                                            |
| Test(s) completed     | : 21 June, 2009                                                            |
| Purpose of test(s)    | : Grant for Certification of FCC / IC                                      |
| Purpose of test(s)    | : Grant for Certification of FCC / IC                                      |

Summary of test result

: Complied

Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result.

The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer

K. Oh K.Ohnishi

EMC testing Department

T. Ikegami

Manager EMC testing Department

Reviewer



# 1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at RF Technologies Ltd., located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 1, 2007. The description of the test facilities has been filed under registration number 319924 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Voluntary Control Council for Interference by Information Technology Equipment (VCCI) Each registered facility number is as follows; Test site (Semi-Anechoic chamber 3m) R-2393 Test site (Shielded room) C-2617

Registered by Industry Canada (IC): The registered facility number is as follows; Test site No. 1 (Semi-Anechoic chamber 3m): 6974A

Accredited by **National Voluntary Laboratory Accreditation Program** (NVLAP) for the emission tests stated in the scope of the certificate under Certificate Number 200780-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.



NVLAP LAB CODE 200780-0

# 1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2003 "Uncertainty in EMC Measurements".

The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

Conducted emission:  $\pm 1.9 \text{ dB} (10 \text{ kHz} - 30 \text{ MHz})$ Radiated emission (9 kHz - 30MHz):  $\pm 2.8 \text{ dB}$ Radiated emission (30MHz - 1000MHz):  $\pm 5.7 \text{ dB}$ Radiated emission (above 1000MHz):  $\pm 5.8 \text{ dB}$ 



# 1.5 Summary of test results

### 1.5.1 Table of test summary

| Requirement of;                                                         | Section in FCC15       | Section in<br>RSS210/ RSS-<br>Gen | Result   | Section in<br>this<br>report |
|-------------------------------------------------------------------------|------------------------|-----------------------------------|----------|------------------------------|
| 1.5.1 Occupied Bandwidth (6dB/99%)                                      | 15.247(a)(2)           | A8.2(a)                           | Complied | 2.1                          |
| 1.5.2 Peak Output Power                                                 | 15.247(b)(3)           | A8.4(4)                           | Complied | 2.2                          |
| 1.5.3 Power spectral density                                            | 15.247(e)              | A8.2(b)                           | Complied | 2.3                          |
| 1.5.4 Conducted Spurious Emissions                                      | 15.247(d)              | A8.5                              | Complied | 2.4                          |
| 1.5.5 Transmitter Radiated Spurious Emissions                           | 15.205(b)/15.209       | 2.6                               | Complied | 2.5                          |
| 1.5.6 Transmitter AC Power Line<br>Conducted Emissions                  | 15.207                 | RSS-Gen<br>7.2.2                  | Complied | 2.6                          |
| 1.5.7 Receiver Radiated Spurious Emissions                              | 15.109                 | RSS-Gen 6                         | Complied | 2.7                          |
| 1.5.8 Receiver AC Power Line<br>Conducted Emissions                     | 15.107                 | RSS-Gen<br>7.2.2                  | Complied | 2.8                          |
| 1.5.9 Maximum Permissible Exposure<br>(Exposure of Humans to RF Fields) | 2.1091<br>1.1307(b)(1) | RSS-Gen 5.5/<br>RSS-102           | Complied | 2.9                          |

# **1.6** Setup of equipment under test (EUT)

### **1.6.1** Test configuration of EUT

#### Equipment(s) under test:

|   | Item                | Manufacturer               | Model No.  | Serial No. | Remarks         |
|---|---------------------|----------------------------|------------|------------|-----------------|
| А | Mobile Base Station | <b>T&amp;D CORPORATION</b> | RTR-500GSM | 3E9E0001   |                 |
| В | Alkaline Battery    | TOSHIBA                    | -          | -          | SIZE: AA (4pcs) |

#### Support Equipment(s):

|   | Item       | Manufacturer    | Model No. | Serial No. |
|---|------------|-----------------|-----------|------------|
| С | AC Adapter | T&D CORPORATION | AD-0605   | -          |

#### **Connected cable(s):**

| No. | Item           | Identification<br>(Manu.e.t.c) | Shielded | Ferrite<br>Core | Connector Type<br>Shielded | Length<br>(m) |
|-----|----------------|--------------------------------|----------|-----------------|----------------------------|---------------|
|     |                |                                | YES / NO | YES / NO        | YES / NO                   |               |
| 1   | DC power cable | T&D CORPORATION                | No       | No              | No                         | 1.85          |

#### **1.6.2 Operating condition:**

Operating mode:

- The EUT was tested under the following test mode prepared by the applicant:
  - (1-1) FSK modulation, Continuous transmission (902.9376MHz)
  - (1-2) FSK modulation, Continuous transmission (914.4576MHz)
  - (1-3) FSK modulation, Continuous transmission (927.1296MHz)
  - (2-1) Continuous receiving (902.9376MHz)
  - (2-2) Continuous receiving (914.4576MHz)
  - (2-3) Continuous receiving (927.1296MHz)



### **1.6.3** Setup diagram of tested system:



# 1.7 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

# **1.8** Deviation from the standard

No deviations from the standards described in clause 1.2.



# 2 Test procedure and test data

# 2.1 Occupied Bandwidth (6dB / 99%)

### Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.



#### **Test procedure**

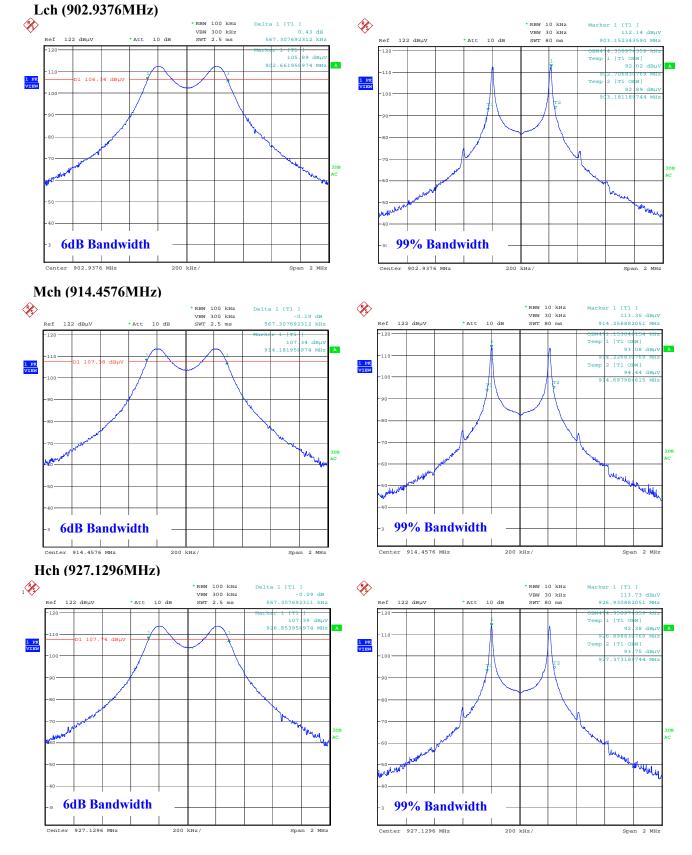
Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 13.1.7. The EUT antenna port connected to the spectrum analyzer. The RBW is set to 100 kHz. The VBW is set to 3 times of the RBW. The sweep time is coupled appropriate.

#### Limitation

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

### Test equipment used (refer to List of utilized test equipment)

| TR06 | CL21 |   |   |  |
|------|------|---|---|--|
| l    |      | 1 | 1 |  |


#### **Test results**

| Transmission Channel | Transmission | Bandwidth [kHz] |         |
|----------------------|--------------|-----------------|---------|
|                      | Frequency    | 6dB             | 99%     |
| Low (0ch)            | 902.9376     | 567.308         | 474.359 |
| Middle (10ch)        | 914.4576     | 567.308         | 471.154 |
| High (21ch)          | 927.1296     | 567.308         | 474.359 |



# **Test Data** Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa





# 2.2 Peak Output Power

#### Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.



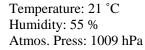
#### **Test procedure**

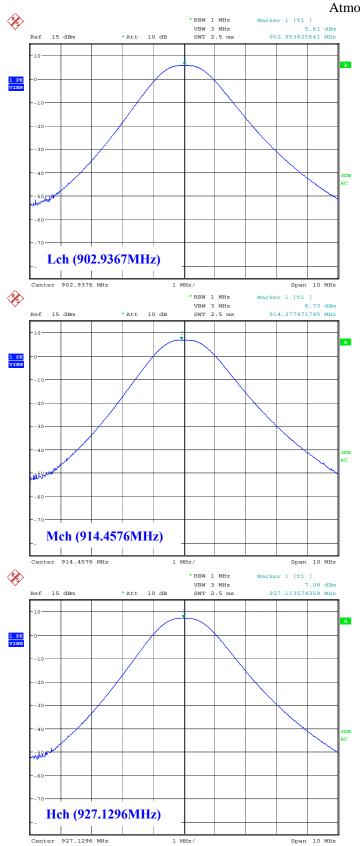
The EUT antenna port connected to the spectrum analyzer. The RBW is set to the greater than 6dB bandwidth. The VBW is set to three times of RBW. The sweep time is coupled appropriate. The span is set to cover the carrier output spectrum. The analyzer is set to MAX HOLD.

#### Limitation

For systems using digital modulation in the 902–928 MHz, 2400–2483.5MHz, and 5725–5850 MHz bands: 1 Watt.

#### Test equipment used (refer to List of utilized test equipment)


| TR06 CL21 |      |      |  |  |
|-----------|------|------|--|--|
|           | TR06 | CL21 |  |  |


#### Test results – comply with the limitation.

| Transmission Channel<br>(Frequency: MHz) | Cable loss (dB) | Output power (dBm)<br>[Reading] | Output power (dBm)<br>[Result] | Output power (mW)<br>[Result] |
|------------------------------------------|-----------------|---------------------------------|--------------------------------|-------------------------------|
| Low (902.9376)                           | 0.1             | 5.61                            | 5.71                           | 3.72                          |
| Middle (914.4576)                        | 0.1             | 6.73                            | 6.83                           | 4.82                          |
| High (927.1296)                          | 0.1             | 7.08                            | 7.18                           | 5.22                          |



# **Test Data** Tested Date: 21 June, 2009







# 2.3 **Power Spectral Density**

#### Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.



#### **Test procedure**

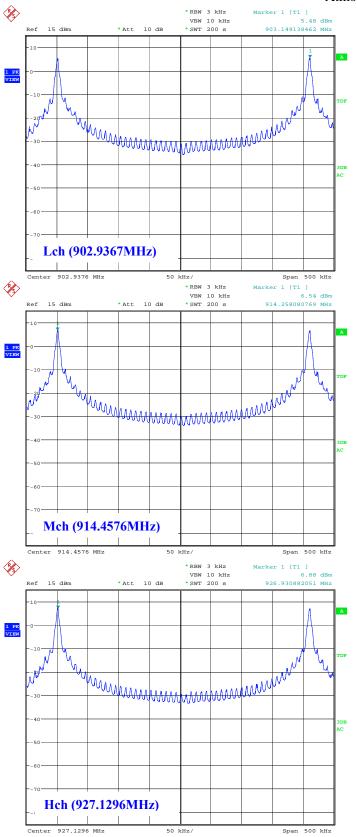
The EUT antenna port connected to the spectrum analyzer. The RBW is set to 3 kHz. The VBW is set to 10 kHz. The sweep time is set to (SPAN / 3 kHz) seconds. The span is set to cover the carrier output spectrum. The correction factor is set to the spectrum analyzer in order to correct of the connected cable loss.

#### Limitation

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### Test equipment used (refer to List of utilized test equipment)

| TR06 CL21 |  |
|-----------|--|


#### Test results – comply with the limitation.

| Transmission Channel (MHz) | Power Spectral Density (dBm) |
|----------------------------|------------------------------|
| Low (902.9376)             | 5.48                         |
| Middle (914.4576)          | 6.54                         |
| High (927.1296)            | 6.88                         |



### **Test Data** Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa






# 2.4 Conducted Spurious Emissions (Antenna Port)

#### Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.



#### **Test procedure**

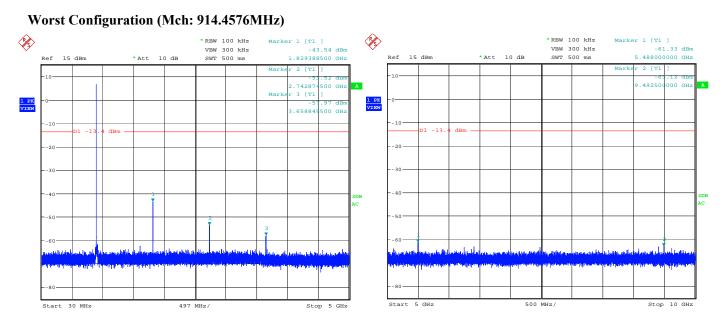
The EUT antenna port connected to the spectrum analyzer. The RBW is set to 100 kHz. The VBW is set to 300 kHz. The sweep time is set to the coupled. The spectrum is cheated from 30 MHz to 10 GHz.

#### Limitation

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

#### Test equipment used (refer to List of utilized test equipment)

|--|

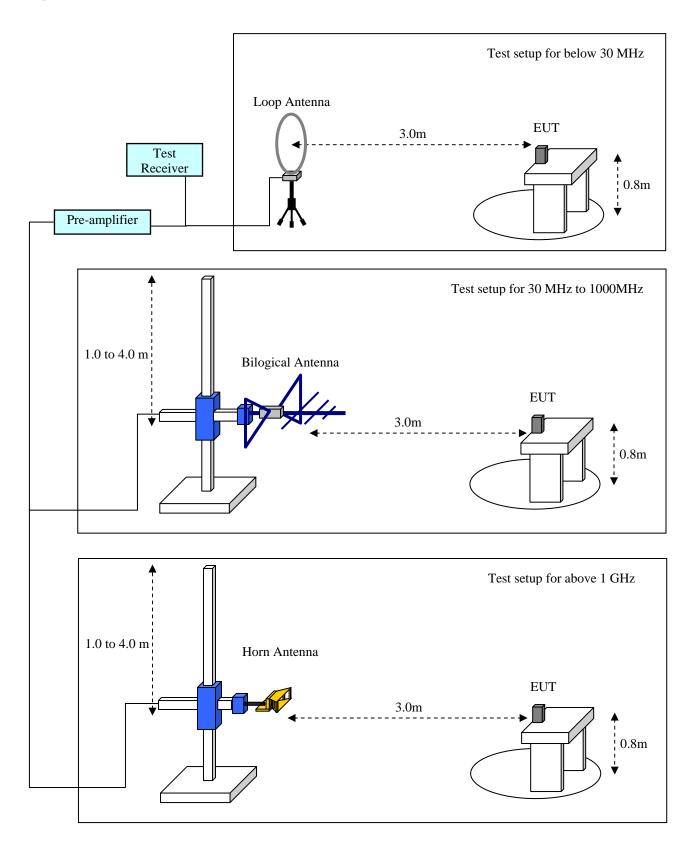

#### Test results – comply with the limitation.

There were no conducted spurious emissions with levels of more than 20 dB below the applicable limit.

#### **Test Data**

Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa






# 2.5 Transmitter Radiated spurious emissions

#### Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation", clause 8.2 and Annex H.3 "Radiated emission measurements setup".





### Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 8.2. The EUT is place on a non-conducted table which is 0.8m height from a ground plane and the measurement antenna to EUT distance is 3 meters. The turn table is rotated for 360 degrees to determine the maximum emission level. In the frequency range of 9 kHz to 30 MHz, a calibrated loop antenna was positioned with its plane vertical at the distance 3m from the EUT with an extrapolation of corrected distance factor and rotated about its vertical axis for maximum response at each azimuth about the EUT. For certain applications, the loop antenna also needs to be positioned horizontally. The center of the loop shall be 1 m above the ground.

In the frequency above 30 MHz, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

During this measurement, receive antenna is adjusted the direction to keep the EUT within the beamwidth of receive antenna.

EUT is placed at three different orientations (X, Y and Z axis) in order to find the worst orientation. The spectrum analyzer and receiver are set to the followings;

| Below 30 MHz:          | RBW=10 kHz, VBW= 30 kHz<br>Final measurement is carried out with a receiver RBW of 9 kHz (QP)     |
|------------------------|---------------------------------------------------------------------------------------------------|
| Between 30 - 1000 MHz: | RBW=100 kHz, VBW= 300 kHz<br>Final measurement is carried out with a receiver RBW of 120 kHz (QP) |
| Above 1000 MHz:        | Peak measurement- RBW=1 MHz, VBW= 1 MHz<br>Average measurement – RBW=1 MHz, VBW=10 Hz             |

#### Applicable rule and limitation

§15.205 restricted bands of operation

Except as shown in paragraph 15.205 (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| requeries bands fisied below | •                     |                 |               |
|------------------------------|-----------------------|-----------------|---------------|
| MHz                          | MHz                   | MHz             | GHz           |
| 0.090 - 0.110                | 16.42 - 16.423        | 399.9 - 410     | 4.5 - 5.15    |
| 0.490 - 0.510                | 16.69475 - 16.69525   | 608 - 614       | 5.35 - 5.46   |
| 2.1735 - 2.1905              | 16.80425 - 16.80475   | 960 - 1240      | 7.25 - 7.75   |
| 4.125 - 4.128                | 25.5 - 25.67          | 1300 - 1427     | 8.025 - 8.5   |
| 4.17725 - 4.17775            | 37.5 - 38.25          | 1435 - 1626.5   | 9.0 - 9.2     |
| 4.20725 - 4.20775            | 73 - 74.6             | 1645.5 - 1646.5 | 9.3 - 9.5     |
| 6.215 - 6.218                | 74.8 - 75.2           | 1660 - 1710     | 10.6 - 12.7   |
| 6.26775 - 6.26825            | 108 - 121.94          | 1718.8 - 1722.2 | 13.25 - 13.4  |
| 6.31175 - 6.31225            | 123 - 138             | 2200 - 2300     | 14.47 - 14.5  |
| 8.291 - 8.294                | 149.9 - 150.05        | 2310 - 2390     | 15.35 - 16.2  |
| 8.362 - 8.366                | 156.52475 - 156.52525 | 2483.5 - 2500   | 17.7 - 21.4   |
| 8.37625 - 8.38675            | 156.7 - 156.9         | 2690 - 2900     | 22.01 - 23.12 |
| 8.41425 - 8.41475            | 162.0125 - 167.17     | 3260 - 3267     | 23.6 - 24.0   |
| 12.29 - 12.293               | 167.72 - 173.2        | 3332 - 3339     | 31.2 - 31.8   |
| 12.51975 - 12.52025          | 240 - 285             | 3345.8 - 3358   | 36.43 - 36.5  |
| 12.57675 - 12.57725          | 322 - 335.4           | 3600 - 4400     | (1)           |

15.205(b) except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.



15.209(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

| Frequency     | Field Strength | Measurement Distance |
|---------------|----------------|----------------------|
| (MHz)         | (uV/m)         | (m)                  |
| 0.009 - 0.490 | 2400/F (kHz)   | 300                  |
| 0.490 - 1.705 | 24000/F (kHz)  | 30                   |
| 1.705 - 30.0  | 30             | 30                   |
| 30 - 88       | 100            | 3                    |
| 88 – 216      | 150            | 3                    |
| 216 - 960     | 200            | 3                    |
| Above 960     | 500            | 3                    |

In the emission table above, the tighter limit applies at the band edges.

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz.

Test results - Complied with requirement.

#### Test Data

#### 2.5.1 Below 30 MHz

#### Test equipment used (refer to List of utilized test equipment)

| Ī |
|---|
|---|

Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa

#### Result

#### There is no spurious emission with levels of more than 20 dB below the applicable limit



#### 2.5.2 Between 30 – 1000 MHz

#### Test equipment used (refer to List of utilized test equipment)

| [ | BA04 | CL11 | PR03 | CL23 | BRF3 | TR06 |
|---|------|------|------|------|------|------|
|---|------|------|------|------|------|------|

Tested Date: 21 June, 2009

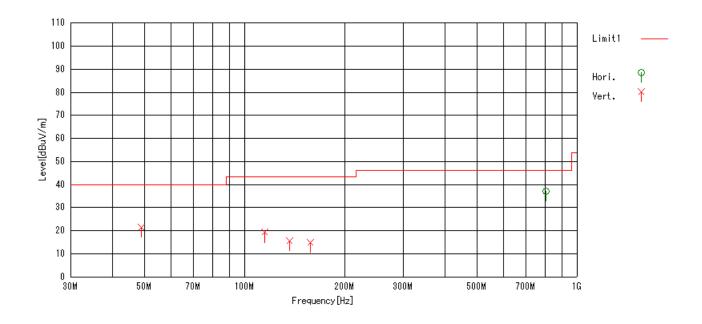
Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa

Operating mode: Continuous Communication (Lch: 902.9376MHz: Worst configuration) EUT position: X-plane (Maximum position) Measurement distance: 3 m

| No.  | Frequency | Reading | Factor | Loss | Gain | Result   | Limit    | Margin | Antenna      |
|------|-----------|---------|--------|------|------|----------|----------|--------|--------------|
| 110. | [MHz]     | [dBuV]  | [dB/m] | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | Polarization |
| 1    | 48.738    | 34.6    | 8.8    | 7.7  | 29.7 | 21.4     | 40.0     | 18.6   | Vert.        |
| 2    | 114.680   | 28.3    | 11.8   | 8.7  | 29.6 | 19.2     | 43.5     | 24.3   | Vert.        |
| 3    | 136.000   | 24.9    | 11.3   | 9.0  | 29.5 | 15.7     | 43.5     | 27.8   | Vert.        |
| 4    | 157.300   | 25.2    | 10.1   | 9.2  | 29.5 | 15.0     | 43.5     | 28.5   | Vert.        |
| 5    | 802.619   | 32.4    | 20.0   | 14.1 | 29.4 | 37.1     | 46.0     | 8.9    | Hori.        |

#### **Calculation method**

The Correction Factors and RESULT are calculated as followings.


Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT [dBuV/m] =READING [dBuV] + Correction Factor [dB/m]

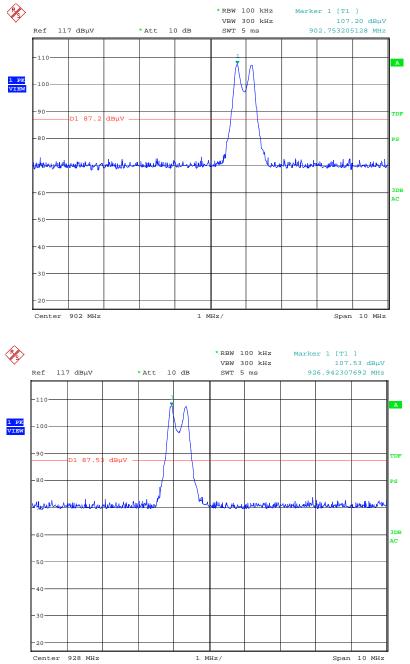
Sample calculation at 802.619 MHz horizontal result as follow:

Result [dBuV/m] = Reading + C.F = 32.4 + 20.0 + 14.1 - 29.4 = 37.1Margin = Limit - Result = 46.0 - 37.1 = 8.9 [dB]

#### Graphical express of test result (30MHz-1000MHz)






### 2.5.3 Above 1000 MHz

| Test equipment used (refer to List of utilized test equipment) |    |      |      |      |      |      |      |      |      |
|----------------------------------------------------------------|----|------|------|------|------|------|------|------|------|
| PR                                                             | 12 | CL21 | TR06 | CL23 | CL24 | HPF2 | BRF3 | DH01 | AC01 |

Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa

### Restricted Band Edge (Worst configuration: X plane, Horizontal)





#### Harmonics and Spurious Emission above 1000 MHz

Tested Date: 20 June, 2009

Temperature: 21 °C Humidity: 59 % Atmos. Press: 1015 hPa

Operating mode: Continuous Communication (Hch: 927.1296MHz: Worst configuration) EUT position: Z-plane (Maximum position) Measurement distance: 3 m

| No   | No. Frequency Reading [dBuV] |      | Frequency Reading [dBuV] C.F. |      | Result [c | Result [dBuV/m] Limit [d |      | imit [dBuV/m] Margi |      | n [dB] | Polarization  |
|------|------------------------------|------|-------------------------------|------|-----------|--------------------------|------|---------------------|------|--------|---------------|
| INO. | [MHz]                        | Peak | Ave.                          | [dB] | Peak      | Ave.                     | Peak | Ave.                | Peak | Ave.   | FOIAITZALIOII |
| 1    | 1854.268*                    | 50.5 | 41.7                          | -7.6 | 42.9      | -                        | 87.3 | -                   | 44.4 | -      | Vert.         |
| 2    | 1854.299*                    | 48.7 | 39.5                          | -7.6 | 41.1      | -                        | 87.3 | -                   | 46.2 | -      | Hori.         |
| 3    | 2781.761                     | 49.3 | 38.4                          | -4.4 | 44.9      | 34.0                     | 73.9 | 53.9                | 29.0 | 19.9   | Vert.         |
| 4    | 2781.921                     | 48.4 | 36.7                          | -4.4 | 44.0      | 32.3                     | 73.9 | 53.9                | 29.9 | 21.6   | Hori.         |
| 5    | 3709.302                     | 47.8 | 36.0                          | -2.1 | 45.7      | 33.9                     | 73.9 | 53.9                | 28.2 | 20.0   | Hori.         |
| 6    | 4634.603                     | 46.0 | 33.0                          | 0.7  | 46.7      | 33.7                     | 73.9 | 53.9                | 27.2 | 20.2   | Hori.         |
| 7    | 5561.567*                    | 49.6 | 38.2                          | 2.9  | 52.5      | -                        | 87.3 | -                   | 34.8 | -      | Vert.         |
| 8    | 5561.600*                    | 47.6 | 35.8                          | 2.9  | 50.5      | -                        | 87.3 | -                   | 36.8 | -      | Hori.         |
| 9    | 7418.576                     | 45.9 | 32.5                          | 5.8  | 51.7      | 38.3                     | 73.9 | 53.9                | 22.2 | 15.6   | Hori.         |

Note1: This frequency is not in the restriction band therefore this spurious emission shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power (15.247 (d)).

The radiated carrier level of each frequency is follows (RBW = 100 kHz); < 107.3 dBuV/m at 927.1296 MHz



# 2.6 Transmitter AC power line conducted emissions

#### Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation" and Annex H.1 "AC power line conducted emission measurements setup".

#### **Test procedure**

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 7, clause 13.1.3 and Annex H.2 "AC power line conducted emission measurements".

Exploratory measurements were used the spectrum analyzer to identify the frequency of the emission that has the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable positions, and with a typical system equipment configuration and arrangement.

Final ac power line conducted emission measurements were performed based on the exploratory tests.

The EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit are selected for the final measurement.

When the measurement value is grater than average limitation the average detection measurements were performed.

#### Applicable rule and limitation

#### §15.207 (a) AC power line conducted limits

| Frequency of Emission (MHz) | Conducted Limit (dBuV) |            |  |  |  |
|-----------------------------|------------------------|------------|--|--|--|
| Frequency of Emission (MHZ) | Quasi-peak             | Average    |  |  |  |
| 0.15-0.5                    | 66 to 56 *             | 56 to 46 * |  |  |  |
| 0.5-5                       | 56                     | 46         |  |  |  |
| 5-30                        | 60                     | 50         |  |  |  |

\* Decreases with the logarithm of the frequency.

The lower limit applies at the band edges.

#### Test equipment used (refer to List of utilized test equipment)

| TR06 PL06 | LN06 | CL11 |
|-----------|------|------|
|-----------|------|------|

Test results - Complied with requirement.



### **Test Data**

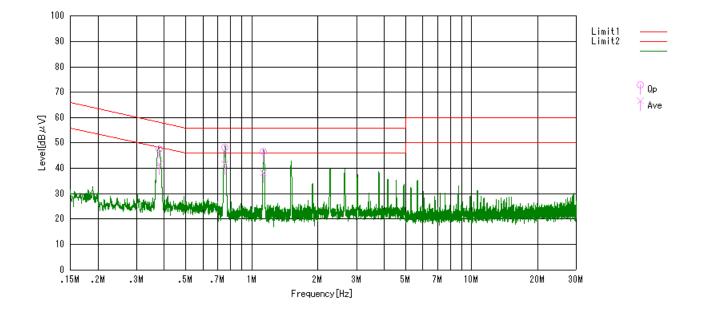
Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa

|     | Engagement         | Rea    | ding   | C.F.         | Res    | sult   | Liı    | nit    | Ma   | rgin |       |
|-----|--------------------|--------|--------|--------------|--------|--------|--------|--------|------|------|-------|
| No. | Frequency<br>[MHz] | QP     | AV     | С.г.<br>[dB] | QP     | AV     | QP     | AV     | QP   | AV   | PHASE |
|     |                    | [dBuV] | [dBuV] | [uD]         | [dBuV] | [dBuV] | [dBuV] | [dBuV] | [dB] | [dB] |       |
| 1   | 0.378              | 47.3   | 41.2   | 0.3          | 47.6   | 41.5   | 58.3   | 48.3   | 10.7 | 6.8  | Ν     |
| 2   | 0.380              | 46.2   | 42.2   | 0.3          | 46.5   | 42.5   | 58.3   | 48.3   | 11.8 | 5.8  | L     |
| 3   | 0.755              | 48.0   | 41.2   | 0.3          | 48.3   | 41.5   | 56.0   | 46.0   | 7.7  | 4.5  | Ν     |
| 4   | 0.755              | 47.3   | 41.1   | 0.3          | 47.6   | 41.4   | 56.0   | 46.0   | 8.4  | 4.6  | L     |
| 5   | 1.131              | 44.9   | 35.6   | 0.3          | 45.2   | 35.9   | 56.0   | 46.0   | 10.8 | 10.1 | L     |
| 6   | 1.132              | 46.3   | 37.9   | 0.3          | 46.6   | 38.2   | 56.0   | 46.0   | 9.4  | 7.8  | N     |

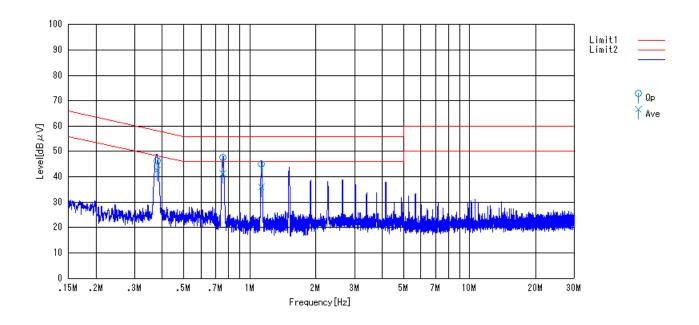
Operating mode: Continuous Communication (Lch: 902.9376MHz: Worst configuration)

The power line conducted emission voltage is calculated by adding the LISN factor and Cable loss attenuation from the measured reading. The calculation is as follows:


 $\begin{aligned} Result = Reading + C. F \\ where \quad C.F = LISN \ Factor + Cable \ Loss \ [dB] \end{aligned}$ 

Sample calculation at 0.755 MHz AV result as follow:

Result [dBuV] = Reading + C.F = 41.2 + 0.3 = 41.5 [dBuV] Margin = Limit - Result = 46.0 - 41.5 = 4.5 [dB]




# Graphical express of test result (0.15 MHz-30MHz)



# AC Power line conducted emission. (Phase N)

# AC Power line conducted emission. (Phase L)





# 2.7 Receiver Radiated spurious emissions

Test setup - Same as clause 2.5

#### **Test procedure - Same as clause 2.5**

#### Applicable rule and limitation at 3m

§15.109 radiated emission limitation

| ~ - |           |                      |                |                |
|-----|-----------|----------------------|----------------|----------------|
|     | Frequency | Measurement Distance | Field Strength | Field Strength |
|     | (MHz)     | (m)                  | (uV/m)         | (dBuV/m)       |
| ſ   | 30 - 88   | 3                    | 100            | 40.0           |
| Ī   | 88 - 216  | 3                    | 150            | 43.5           |
| Ī   | 216 - 960 | 3                    | 200            | 46.0           |
|     | Above 960 | 3                    | 500            | 53.9           |

In the emission table above, the tighter limit applies at the band edges.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector. Radiated emission limits in the above bands are based on measurements employing an average detector.

Test results - Complied with requirement.

#### 2.7.1 Between 30 – 1000 MHz

#### Test equipment used (refer to List of utilized test equipment)

| BA04 CL11 PR03 TR06 |
|---------------------|
|---------------------|

#### **Test Data**

Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa

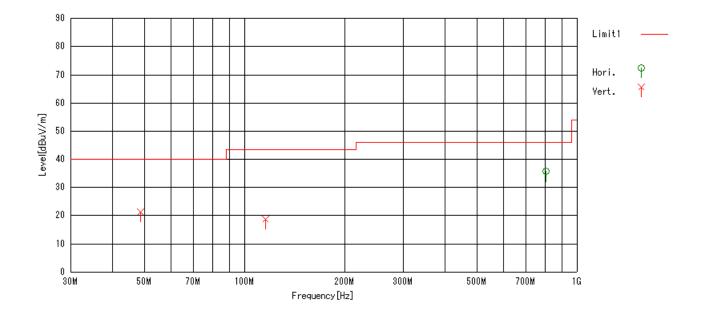
Operating mode: Continuous Receiving (Hch: 927.1296MHz: Worst configuration) EUT position: X-plane (Maximum position) Measurement distance: 3 m

| No. | Frequency<br>[MHz] | Reading<br>[dBuV] | Factor<br>[dB/m] | Loss<br>[dB] | Gain<br>[dB] | Result<br>[dBuV/m] | Limit<br>[dBuV/m] | Margin<br>[dB] | Antenna<br>Polarization |
|-----|--------------------|-------------------|------------------|--------------|--------------|--------------------|-------------------|----------------|-------------------------|
| 1   | 48.520             | 34.4              | 8.9              | 7.6          | 29.7         | 21.2               | 40.0              | 18.8           | Vert.                   |
| 2   | 115.500            | 28.0              | 11.9             | 8.5          | 29.6         | 18.8               | 43.5              | 24.7           | Vert.                   |
| 3   | 802.619            | 31.5              | 20.0             | 13.6         | 29.4         | 35.7               | 46.0              | 10.3           | Hori.                   |

#### **Calculation method**

The Correction Factors and RESULT are calculated as followings.

Correction Factor [dB/m] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]


RESULT [dBuV/m] =READING [dBuV] + Correction Factor [dB/m]

Sample calculation at 802.619 MHz horizontal result as follow:

Result [dBuV/m] = Reading + C.F = 31.5 + 20.0 + 13.6 - 29.4 = 35.7 Margin = Limit - Result = 46.0 - 35.7 = 10.3 [dB]



### Graphical express of test result (30MHz-1000MHz)



### 2.7.2 Above 1000 MHz

| Te | st equipment | used (refer t | to List of utili | ized test equi | pment) |  |
|----|--------------|---------------|------------------|----------------|--------|--|
|    | PR12         | TR06          | CL23             | CL24           | DH01   |  |

Tested Date: 20 June, 2009

Temperature: 21 °C Humidity: 59 % Atmos. Press: 1015 hPa

Operating mode: Continuous Receiving (Hch: 927.1296MHz: Worst configuration) EUT position: X-plane (Maximum position) Measurement distance: 3 m

There are no spurious emissions other than listed below;

| No. | Frequency | Reading | C.F.   | Result   | Limit    | Margin | Antenna      |
|-----|-----------|---------|--------|----------|----------|--------|--------------|
|     | [MHz]     | [dBuV]  | [dB/m] | [dBuV/m] | [dBuV/m] | [dB]   | Polarization |
| 1   | 1887.096  | 33.7    | -7.6   | 26.1     | 53.9     | 27.8   | Hori.        |

C. F. [dB/m] = FACTOR [dB/m] + LOSS [dB] - GAIN [dB]

#### **Calculation method**

The RESULT is calculated as followings.

RESULT [dBuV/m] = READING [dBuV] + C.F. [dB/m]





# 2.8 Receiver AC power line conducted emissions

Test setup - Same as clause 2.6

#### Test procedure - Same as clause 2.6

#### Applicable rule and limitation

§15.107 (a) AC power line conducted limits

| Frequency of Emission (MHz) | Conducted L | .imit (dBuV) |
|-----------------------------|-------------|--------------|
| Frequency of Emission (MHZ) | Quasi-peak  | Average      |
| 0.15-0.5                    | 66 to 56 *  | 56 to 46 *   |
| 0.5-5                       | 56          | 46           |
| 5-30                        | 60          | 50           |

\* Decreases with the logarithm of the frequency.

The lower limit applies at the band edges.

#### Test equipment used (refer to List of utilized test equipment)

| TR06 PI | L06 LN0 | 5 CL11 |
|---------|---------|--------|
|---------|---------|--------|

#### Test results - Complied with requirement.

#### **Test Data**

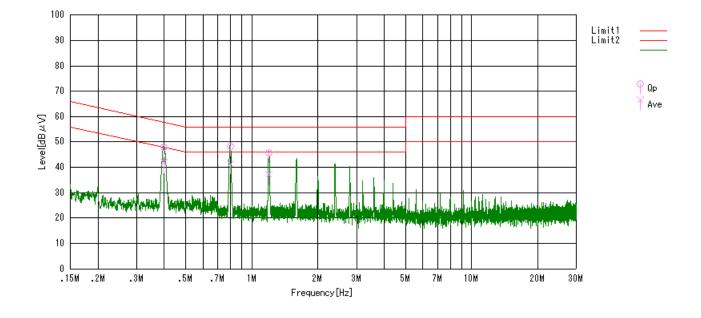
Tested Date: 21 June, 2009

Temperature: 21 °C Humidity: 55 % Atmos. Press: 1009 hPa

Operating mode: Continuous Receiving (Lch: 902.9376MHz: Worst configuration)

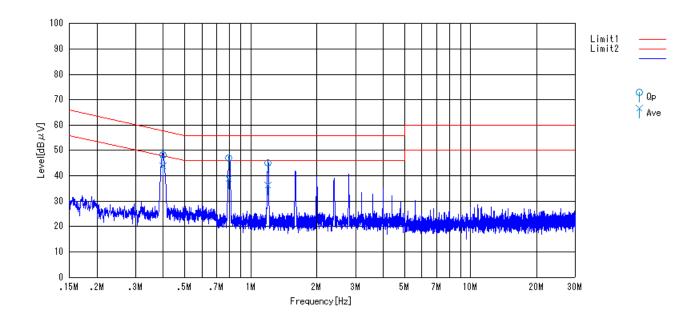
|     | Eroquanau          | Rea    | ding   | C.F. | Rea    | sult   | Liı    | mit    | Ma   | rgin |       |
|-----|--------------------|--------|--------|------|--------|--------|--------|--------|------|------|-------|
| No. | Frequency<br>[MHz] | QP     | AV     | (dB] | QP     | AV     | QP     | AV     | QP   | AV   | PHASE |
|     |                    | [dBuV] | [dBuV] | [սD] | [dBuV] | [dBuV] | [dBuV] | [dBuV] | [dB  | [dB] |       |
| 1   | 0.398              | 47.6   | 41.5   | 0.3  | 47.9   | 41.8   | 57.9   | 47.9   | 10.0 | 6.1  | Ν     |
| 2   | 0.399              | 48.1   | 43.5   | 0.3  | 48.4   | 43.8   | 57.9   | 47.9   | 9.5  | 4.1  | L     |
| 3   | 0.796              | 46.6   | 38.6   | 0.3  | 46.9   | 38.9   | 56.0   | 46.0   | 9.1  | 7.1  | L     |
| 4   | 0.797              | 48.0   | 41.1   | 0.3  | 48.3   | 41.4   | 56.0   | 46.0   | 7.7  | 4.6  | Ν     |
| 5   | 1.196              | 45.3   | 36.7   | 0.4  | 45.7   | 37.1   | 56.0   | 46.0   | 10.3 | 8.9  | Ν     |
| 6   | 1.196              | 44.8   | 35.9   | 0.4  | 45.2   | 36.3   | 56.0   | 46.0   | 10.8 | 9.7  | L     |

The power line conducted emission voltage is calculated by adding the LISN factor and Cable loss attenuation from the measured reading. The calculation is as follows:


Result = Reading + C. F where C.F = LISN Factor + Cable Loss [dB]

Sample calculation at 0.399 MHz AV result as follow:

Result [dBuV] = Reading + C.F = 43.5 + 0.3 = 43.8 [dBuV] Margin = Limit - Result = 47.9 - 43.8 = 4.1 [dB]




# Graphical express of test result (0.15 MHz-30MHz)



# AC Power line conducted emission. (Phase N)

# AC Power line conducted emission. (Phase L)





# 2.9 Maximum Permissible Exposure (Exposure of Humans to RF Fields)

### Limitation

15.247(i) systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See 1.1307(b) (1) of this Chapter.

1.1310 The criteria of "General Population/ Uncontrolled Exposure" listed in the below table shall be used to evaluated the environmental impact of human exposure to radio-frequency radiation as specified in 1.1307(b), except in the case of portable devices which shall be evaluated according to the previsions of 2.1093 of this chapter.

| Frequency<br>Range<br>(MHz) | Electric Field<br>Strength (E)<br>(V/m) | Magnetic Field<br>Strength (H)<br>(A/m) | Power Density<br>(S)<br>(mW/cm <sup>2</sup> ) | Averaging Time<br> E  <sup>2</sup> ,  H  <sup>2</sup> or S<br>(minutes) |
|-----------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|
| 0.3-1.34                    | 614                                     | 1.63                                    | (100)*                                        | 30                                                                      |
| 1.34-30                     | 824/f                                   | 2.19/f                                  | $(180/f^2)^*$                                 | 30                                                                      |
| 30-300                      | 27.5                                    | 0.073                                   | 0.2                                           | 30                                                                      |
| 300-1500                    |                                         |                                         | f/1500                                        | 30                                                                      |
| 1500-100,000                |                                         |                                         | 1.0                                           | 30                                                                      |

### Limits for General Population/Uncontrolled Exposure

f = frequency in MHz \*Plane-wave equivalent power density

NOTE 2: *General population/uncontrolled* exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

# The MPE distance calculations:

The Maximum Permissible Exposure (MPE) distance between the EUT's antenna and human body is calculated in accordance with FCC OET Bulletin 65 and Safety Code 6 of IC. The MPE distance where the exposure level reaches the permitted exposure level can be calculated as bellow;

 $\mathbf{S} = \mathbf{P} * \mathbf{G} / 4\pi \mathbf{R}^2$ 

Rearranging terms to calculate the MPE Distance

 $R = (P * G / 4\pi S)^{1/2}$ 

Where:

**R** = MPE Distance in cm

P = Power in dBm (5.22 mW (927.1296MHz), Refer to page 9 in this report)

```
G = Antenna Gain in numeric
```

- (1 = 0dBi, Max. Antenna Gain)
- S = Power Density Limit in mW/cm2

(0.62 mW/cm2, Max. permissible exposure limit above)

Then MPE Distance is 0.819 cm.

Test results - Complied with requirement.



# 4 List of utilized test equipment/ calibration

| RFT<br>ID No. | Kind of Equipment and<br>Precision | Manufacturer            | Model No.  | Serial Number | Calibration<br>Date | Calibrated<br>until |
|---------------|------------------------------------|-------------------------|------------|---------------|---------------------|---------------------|
| AC01          | Anechoic Chamber (1st test room)   | JSE                     | 203397C    | -             | 2008/07/04          | 2009/07/31          |
| BA04          | Bilogical Antenna                  | SCHAFFNER               | CA2855     | 2903          | 2009/01/06          | 2010/01/31          |
| CL11          | Antenna Cable for RE               | RFT                     | -          | -             | 2009/04/13          | 2010/04/30          |
| CL21          | RF Cable 0.5m                      | SUCOFLEX                | SF104PE    | 48772/4PE     | 2008/06/10          | 2009/06/30          |
| CL22          | RF Cable 2.0m                      | SUCOFLEX                | SF104      | 274755/4      | 2008/06/10          | 2009/06/30          |
| CL23          | RF Cable 0.5m                      | SUCOFLEX                | SF104PE    | 48773/4PE     | 2008/06/10          | 2009/06/30          |
| CL24          | RF Cable 5.0m                      | SUCOFLEX                | SF104PE    | 48775/4PE     | 2008/06/10          | 2009/06/30          |
| LN06          | LISN                               | Kyoritsu                | KNW-407    | 8-1773-3      | 2009/05/26          | 2010/05/31          |
| PL06          | Pulse Limiter                      | PMM                     | PL-01      | 0000J10109    | 2009/01/05          | 2010/01/31          |
| PR03          | Pre. Amplifier                     | Anritsu                 | MH648A     | M41984        | 2009/05/26          | 2010/05/31          |
| PR12          | Pre. Amplifier (1-26G)             | Agilent<br>Technologies | 8449B      | 3008A02513    | 2009/01/13          | 2010/01/31          |
| HPF2          | High Pass Filter (900MHz)          | M-City                  | HPF0900-01 | RF0003-01     | 2008/06/09          | 2009/06/30          |
| BRF3          | Band Reject Filter (GSM900)        | M-City                  | BRF0897-03 | RF0005        | 2009/04/08          | 2010/04/30          |
| TR06          | Test Receiver<br>(F/W : 3.93 SP2)  | Rohde & Schwarz         | ESU26      | 100002        | 2008/09/02          | 2009/09/01          |
| DH01          | DRG Horn Antenna                   | A.H. Systems            | SAS-571    | 785           | 2008/01/31          | 2010/01/29          |

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.