

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	0.30 (dBm)
Maximum peak output power at antenna input terminal:	1.071519305 (mW)
Antenna gain(typical):	<u>0</u> (dBi)
Maximum antenna gain:	1 (numeric)
Time Averaging:	100 (%)
Prediction distance:	20 (cm)
Prediction frequency:	2441 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1 (mW/cm^2)

Power density at prediction frequency: 0.0002131719926 (mW/cm^2)

Margin of compliance: -36.7 (dB)

This equals 0.00213172 W/m2

Power listed is an EIRP number due to the fact that the antenna is integrated. Antenna gain is less than 3 dBi.