

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Maximum neets autout neuron et antenne innut terminels	E 20 /	dD.ma\
Maximum peak output power at antenna input terminal:	<u>-5.20</u> (d	(ווופג
Maximum peak output power at antenna input terminal:	0.301995172 (r	nW)
Antenna gain(typical):	3 (0	dBi)
Maximum antenna gain:	1.995262315 (r	numeric)
Time Averaging:	100 (9	%)
Prediction distance:	20 (0	cm)
Prediction frequency:	2441 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:		mW/cm^2)

Power density at prediction frequency: 0.0001198754208 (mW/cm^2)

Margin of compliance: -39.2 (dB)