
The handheld Reader operates by sending out energy in the 2.44 Ghz band then having that energy reflected off of another sensor antenna labeled as 210.

This signal is transmitted and received through 2 half wave patch antennas printed on a circuit board that is soldered to the main digital signal processor and cannot be removed by the end customer. The antennas themselves have 2.809 dBi of gain.

Reader 800-0000 block diagram Figure 1.

Every time a sensor is read the current carrier frequency is picked from the table below and then the carrier is turned on for 360ms. This process is repeated at 3 other channels then the unit is turned off for 330 ms before the process can be repeated on the next 4 channels. This leads to a total hop time of $76^*.36 + 19^*.33$ or 33.63 seconds to pass all the way through the frequency hop table

The frequencies used are as follows shown to the nearest MHz. (note table starts at 0 and goes to 75 for a total of 76 hops)

value	0	2471	MHz
value	1	2421	MHz
value	2	2445	MHz
value	3	2465	MHz
value	4	2432	MHz
value	5	2416	MHZ
	•		
value	6	2452	MHz
value	7	2406	MHz
value	8	2454	MHz
value	9	2427	MHz
value	10	2451	MHz
value	11	2409	MHz
value	12	2462	MHz
value	13	2414	MHz
value	14	2446	MHz
value	15	2477	MHz

value	16	2448	MHz
value	17	2413	MHz
value	18	2433	MHz
value	19	2403	
value	20	2444	
value	21	2425	MHz
value	22	2480	MHz
value	23	2422	MHz
value	24	2466	MHz
value	25	2447	MHz
value	26	2401	MHz
value	27	2430	MHz
value	28	2463	
value	29	2403	MHz
value	30	2453	
value	31	2405	MHz
value	32	2434	
value	33	2478	MHz
value	34	2419	MHz
value	35	2450	
value	36	2428	
	37	2475	
value			
value	38	2459	
value	39	2476	MHz
value	40	2439	MHz
value	41	2420	MHz
value	42	2449	MHz
value	43	2402	MHz
value	44	2442	MHz
value	45	2460	MHz
	46	2400	
value			
value	47	2437	MHz
value	48	2461	MHz
value	49	2426	MHz
value	50	2455	MHz
value	51	2415	MHz
value	52	2431	MHz
value	53	2467	MHz
value	54	2441	MHz
value		2411	MHz
	55		
value	56	2429	MHz
value	57	2469	MHz
value	58	2418	MHz
value	59	2470	MHz
value	60	2481	MHz
value	61	2412	MHz
value	62	2443	MHz
value	63	2464	MHz
value	64	2423	MHz
value	65	2458	MHz
value	66	2407	MHz
value	67	2438	MHz
value	68	2474	MHz
value	69	2436	MHz
value	70	2468	MHz
value	71	2435	MHz
value	72	2473	MHz
varue		21,0	

value	73	2457	MHz
value	74	2417	MHz
value	75	2479	MHz

This hopping sequence is hard coded into the firmware and is always used in this order. When the end of the table is reached the sequence starts back from the top of the table again.

Because the transmitted signal is used as the local oscillator in the downconverting mixer The receive signal is always in synch with the transmitter.

To actually wake up or write to the sensors that are being look at, the system switches the carrier on and off so that data can modulated onto it using amplitude modulation. When the data has been written to the sensor the sensor then changes the impedance of its receive antenna causing an amplitude modulation of the reflected signal back to the reader. This amplitude modulation is stripped off at the mixer and processed by the signal processor to decode the data.