

RADIO TEST REPORT

Test Report No. : 12634949H-A-R2

Applicant	:	Fujitsu Component Limited
Type of Equipment	:	Bluetooth Low Energy Module
Model No.	:	FWM7BLZ20B
FCC ID	:	SQK-7BLZ20
Test regulation	:	FCC Part 15 Subpart C: 2018 For Permissive Change

Test Result: Complied (Refer to Section 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

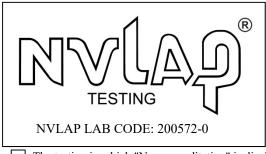
8. The information provided from the customer for this report is identified in SECTION 1.

9. This report is a revised version of 12634949H-A-R1. 12634949H-A-R1 is replaced with this report.

Date of test:

December 5, 2018 to January 23, 2019

Representative test engineer:


Junki Nagatomi

Engineer Consumer Technology Division

Approved by:

Jahayuki S

Takayuki Shimada Leader Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://japan.ul.com/resources/emc accredited/

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan. There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

REVISION HISTORY

Original Test Report No.: 12634949H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	12634949H-A	January 11, 2019	-	-
1	12634949H-A-R1	January 24, 2019	P.1	Correction of note No.8.
1	12634949H-A-R1	January 24, 2019	P.4	SECTION 1: Addition of note.
1	12634949H-A-R1	January 24, 2019	P.4	SECTION 2.1: Addition of note for Receipt
		, , , , , , , , , , , , , , , , , , ,		Date of Sample.
1	12634949H-A-R1	January 24, 2019	P.8	Correction of Low power setting:
				from -16 dBm to -20 dBm
1	12634949H-A-R1	January 24, 2019	P.19, 20	Correction of test data (Lowest power setting)
2	12634949H-A-R2	January 28, 2019	P.1	Addition of sentence "For Permissive Change"
2	12634949H-A-R2	January 28, 2019	P.4	Addition of "Contents of the change from
				original model".
2	12634949H-A-R2	January 28, 2019	P.15	Correction of test chart
2	12634949H-A-R2	January 28, 2019	P.19, 20	Correction of Result of Lowest power setting: from two places of decimals to three places of decimals
	<u> </u>			

Test report No.	: 12634949H-A-R2
Page	: 3 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

CONTENTS

PAGE

SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	
SECTION 3: Test specification, procedures & results	
a) Refer to Appendix 1 (Data of Conducted Emission)	5
SECTION 4: Operation of E.U.T. during testing	
SECTION 5: Conducted Emission	
SECTION 6: Radiated Spurious Emission	
SECTION 7: Antenna Terminal Conducted Tests	
APPENDIX 1: Test data	
Conducted Emission	
6 dB Bandwidth and 99 % Occupied Bandwidth	
Maximum Peak Output Power	
Average Output Power	
Radiated Spurious Emission	
Conducted Spurious Emission	
Power Density	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	
Conducted Emission	
Radiated Spurious Emission	
Worst Case Position	

Test report No. Page Issued date FCC ID	: 12634949H-A-R2 : 4 of 36 : January 28, 2019 : SQK-7BLZ20

SECTION 1: Customer information

:	Fujitsu Component Limited
:	1174, Oaza Suzaka, Suzaka-shi, Nagano, 382-0076, Japan
:	+81-26 248-7993
:	+81-26-248-2840
:	Masafumi Chiba
	: : : : : : : : : : : : : : : : : : : :

The information provided from the customer is as follows;

- Applicant, Type of Equipment, Model No. on the cover and other relevant pages

- SECTION 1: Customer information

- SECTION 2: Equipment under test (E.U.T.)

- SECTION 4: Operation of E.U.T. during testing

* The laboratory is exempted from liability of any test results affected from the information in SECTION 2 and 4.

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment	:	Bluetooth Low Energy Module
Model No.	:	FWM7BLZ20B
Serial No.	:	Refer to Section 4, Clause 4.2
Rating	:	DC 3.0 V (DC 1.7 to 3.6 V)
Receipt Date of Sample	:	December 3, 2018
(Information from test lab.)		
Country of Mass-production	:	Japan
Condition of EUT	:	Production prototype
		(Not for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT	:	No Modification by the test lab

2.2 Product Description

Model: FWM7BLZ20B (referred to as the EUT in this report) is a Bluetooth Low Energy Module.

Radio Specification

Radio Type	:	Transceiver
Frequency of Operation	:	2402 MHz - 2480 MHz
Modulation	:	GFSK
Antenna type	:	Mono-pole antenna
Antenna Gain	:	-0.4 dBi
Clock frequency (Maximum)	:	32 MHz
Operating temperature	:	-40 deg. C to +85 deg. C

<Contents of the change from original model>

Test Report Number of original model is 11451821H-A-R1 (issued by UL Japan, Inc.).

Specification was changed from the original model as follows:

RF bandwidth of 2 MHz was added.

The other radio specification is identical to the original.

Therefore, tests were only performed on 2M-PHY mode in this report.

Test r Page	T S S S S S S S S S S S S S S S S S S S	2634949H-A-R2 5 of 36
Issued FCC I		anuary 28, 2019 QK-7BLZ20

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart C
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted limits Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

* Also the EUT complies with FCC Part 15 Subpart B.

3.2 Procedures and results

Item	Test Procedure	Specification	Test Method	Worst margin	Results	Remarks
Conducted	FCC: ANSI C63.10-2013 6. Standard test methods	FCC: Section 15.207		QP 6.5 dB, 0.19432 MHz, N	Complied	
Emission	IC: RSS-Gen 8.8	IC: RSS-Gen 8.8	_	AV 17.0 dB, 0.19432 MHz, N	a) -	-
6dB Bandwidth	FCC: KDB 558074 D01 15.247 Meas Guidance v05 IC: -	FCC: Section 15.247(a)(2) IC: RSS-247 5.2(a)	Conducted		Complied b)	-
Maximum Peak Output Power	FCC: KDB 558074 D01 15.247 Meas Guidance v05 IC: RSS-Gen 6.12	FCC: Section 15.247(b)(3) IC: RSS-247 5.4(d)	Conducted	See data.	Complied c)	-
	FCC: KDB 558074 D01 15.247 Meas Guidance v05 IC: -	FCC: Section 15.247(e) IC: RSS-247 5.2(b)	Conducted		Complied d)	-
Spurious Emission Restricted Band Edges	FCC: KDB 558074 D01 15.247 Meas Guidance v05 IC: RSS-Gen 6.13	FCC: Section15.247(d) IC: RSS-247 5.5 RSS-Gen 8.9 RSS-Gen 8.10	Conducted (below 30 MHz)/ Radiated (above 30 MHz)	2.1 dB 7320.00 MHz, AV, Hori.	Complied# e), f)	*1)

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05_8.5 and 8.6.

a) Refer to Appendix 1 (Data of Conducted Emission)

b) Refer to Appendix 1 (Data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

c) Refer to Appendix 1 (Data of Maximum Peak Output Power)

d) Refer to Appendix 1 (Data of Power Density)

e) Refer to Appendix 1 (Data of Radiated Spurious Emission)

f) Refer to Appendix 1 (Data of Conducted Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Test Method	Worst margin	Results	Remarks		
99% Occupied	IC: RSS-Gen 6.6	IC: -	Conducted	N/A	Complied	-		
Bandwidth					a)			
a) Refer to Appendix 1 (Data of 6 dB Bandwidth and 99 % Occupied Bandwidth)								
Symbols:								
Complied The data of this test item has enough margin, more than the measurement uncertainty.								
Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.								

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

<u>Antenna Terminal test</u>

Test Item	Uncertainty (+/-)
6 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.3 dB
Burst Rate	0.10 %
Power Density	2.7 dB
Conducted Spurious Emission	2.7 dB

liated emission		
Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.9 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
3 m	1 GHz to 6 GHz	5.0 dB
-	6 GHz to 18 GHz	5.3 dB
1 m	10 GHz to 26.5 GHz	5.8 dB
	26.5 GHz to 40 GHz	5.8 dB
10 m	1 GHz to 18 GHz	5.2 dB

Test report No.	: 12634949H-A-R2
Page	: 7 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124 NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967

Test site	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	-	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.6 shielded room	-	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	-	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	-	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	-	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	-	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	-	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

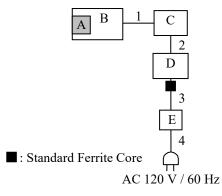
* Size of vertical conducting plane (for Conducted Emission test) : 2.0 m x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

Test report No. Page	: 12634949H-A-R2 : 8 of 36
Issued date FCC ID	: January 28, 2019 : SQK-7BLZ20

SECTION 4: Operation of E.U.T. during testing


4.1 Operating Mode(s) Bluetooth (BT) Low Energy (LE):

Mode		Remarks*
Bluetooth (BT) Lo	ow Energy (LE) 2M-PHY	Maximum Packet Size, PRBS9
*Power of the EU	T was set by the software as follow	's;
Power settings:	High power : 4 dBm	
_	Low Power : -20 dBm	
Software:	BLZ20B_DTM_v2.0.0	
*This setting of so	oftware is the worst case.	
Any conditions ur	nder the normal use do not exceed t	he condition of setting.
In addition, end users cannot change the settings of the output power of the product.		

*The details of Operating mode(s)

Test Item	Operating Mode	Tested frequency
Conducted Emission	Tx BLE 2M-PHY	2402 MHz
6dB Bandwidth		2440 MHz
Maximum Peak Output Power		2480 MHz
Power Density		
99% Occupied Bandwidth		
Spurious Emission(Radiated /		
Conducted)		

Configuration and peripherals

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support Equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Bluetooth Low	FWM7BLZ20B	1	Fujitsu Component	EUT
	Energy Module			Limited	
В	Jig	-	-	Fujitsu Component	-
				Limited	
С	Jig	-	-	Fujitsu Component	-
	-			Limited	
D	Laptop PC	CF-N8HWCDPS	0BKSA07449	Panasonic	-
Е	AC Adapter	CF-AA6372B	6372BM409X17298B	Panasonic	-

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	0.2	Unshielded	Unshielded	-
2	USB Cable	2.0	Shielded	Shielded	-
3	DC Cable	1.1	Unshielded	Unshielded	-
4	AC Cable	1.0 for CE* 0.9 for other tests	Unshielded	Unshielded	-

*CE: Conducted emission

Test report No. Page	: 12634949H-A-R2 : 10 of 36
Issued date FCC ID	: January 28, 2019 : SQK-7BLZ20

SECTION 5: Conducted Emission

Test Procedure and conditions

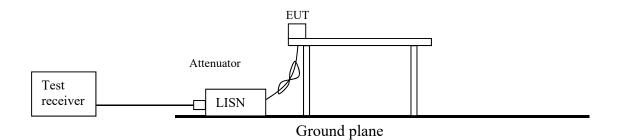
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 500hm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement range	: 0.15 MHz - 30 MHz
Test data	: APPENDIX
Test result	: Pass

Figure 1: Test Setup

Test report No.	: 12634949H-A-R2
Page	: 11 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

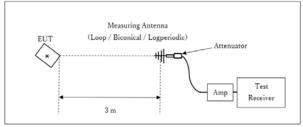
The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

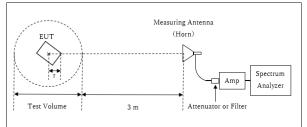
Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

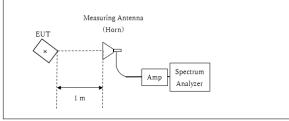

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(IC) and outside the
restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (IC).

Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	РК	AV *1)	РК
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	Average Power Method:	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300kHz
			VBW: 3 MHz	
		Detector:		
		Power Averaging (RMS)		
			Trace: 100 traces	
			If duty cycle was less than	
			98%, a duty factor was	
			added to the results.	


Figure 2: Test Setup

Below 1 GHz


× : Center of turn table

1 GHz - 10 GHz

r : Radius of an outer periphery of EUT × : Center of turn table

10 GHz - 26.5 GHz

Distance Factor: $20 \times \log (3.75 \text{ m} / 3.0 \text{ m}) = 1.94 \text{ dB}$ * Test Distance: (3 + Test Volume / 2) - r = 3.75 m

Test Volume : 1.5 m

Test Distance: 3 m

(Test Volume has been calibrated based on CISPR 16-1-4.) r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ *Test Distance: 1 m

× : Center of turn table

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range	: 30 MHz - 26.5 GHz
Test data	: APPENDIX
Test result	: Pass

Test report No. Page	: 12634949H-A-R2 : 13 of 36
Issued date FCC ID	: January 28, 2019 : SQK-7BLZ20

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

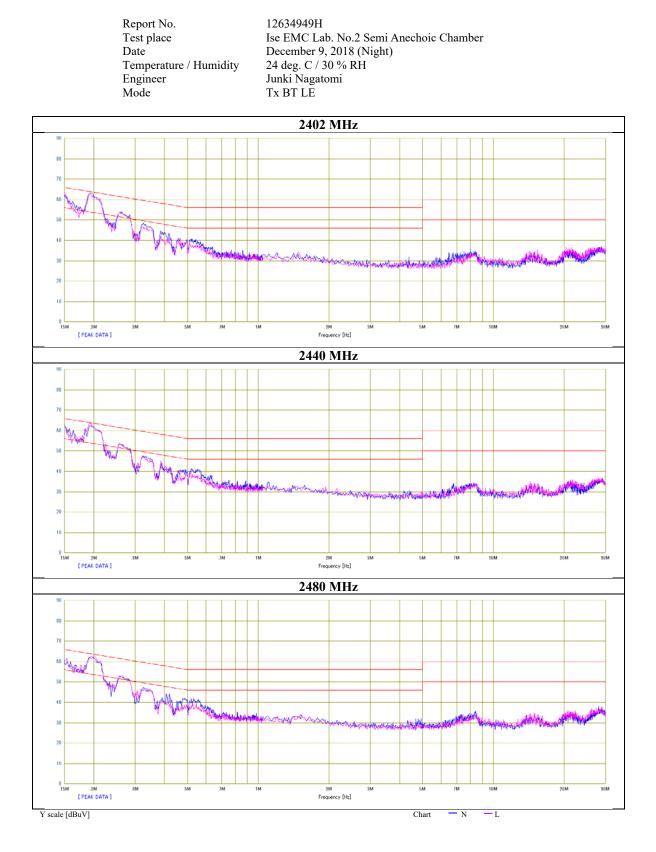
The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument used
6dB Bandwidth	5 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4)	150kHz to 30MHz	9.1 kHz	27 kHz				
*1) Peak hold was app *2) Reference data	blied as Worst-case measure	ment.					•

*3) Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".
*4) In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz)

The test results and limit are rounded off to two decimals place, so some differences might be observed.

Test data	: APPENDIX
Test result	: Pass


APPENDIX 1: Test data

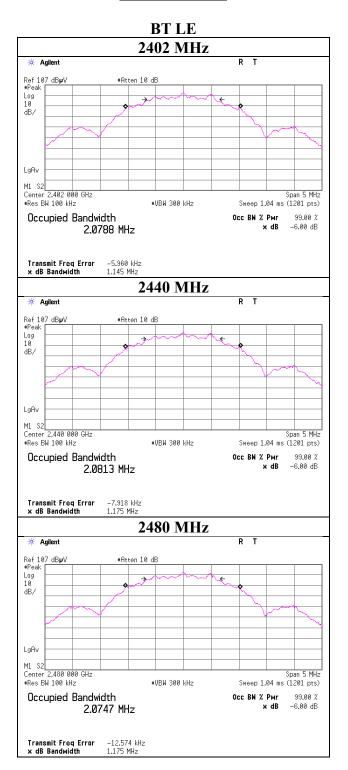
Conducted Emission

Repor Test p Date Tempo Engin Mode	lace erature	/ Hum	nidity	Ise De 24 Jur		Lab. No 9, 201 / 30 % atomi			choic C	Chamb	er	
	5.207 A	V									<u> </u>	QP×:AV QP×:AV
90 [dBuV]	~~	QP/AV I	DATA >>								— L 0:	QP×:AV
30			_	+++				_		+++		
70			_	+++				_		+++		
50 March												
50	6 m											
40	 1 6	Mag										م <mark>انل</mark> ىم يە
30 🖌 🗍	∣ I ≹ X	· p	- WWW	when we	www.	way where	Warrisonald	al a subscription of the	MAR MAR	MA W	Million Market	γ.
20		*	_						_	+++		*
10												
0 . 15M . 2M	. 3M	. 5	M.7M	1M		2M	3M	5	 M 7M	10	M 20M	1 30M
Frequency	Reading	Level	Corr.		ults AV		mit		gin		Freq	uency[Hz]
[MHz] 0.15000	[dBuV] 34.9	AV [dBuV] 14.5	Factor [dB] 13.3	[dBuV] 48.2		UP [dBuV] 66. 0	AV [dBuV] 56.0	[dB] 17.8	AV [dB] 28. 2	Phase N	Comment	_
0. 19432 0. 25541	34.9 44.1 34.3	14. 5 23. 6 15. 0	13. 3 13. 2 13. 2	48.2 57.3 47.5	27.8 36.8 28.2	63.8 61.6	56.0 53.8 51.6	6.5 14.1	28.2 17.0 23.4	N N N		
0. 32124	28.4 18.3	13. 0 13. 0 8. 4	13. 2 13. 3 13. 3	47.5 41.7 31.6	26.2 26.3 21.7	59.7 57.5	49.7 47.5	14. 1 18. 0 25. 9	23.4 23.4 25.8	NNN		
28. 61620 0. 15000	13. 7 34. 9	8.3 14.7	15. 1 13. 3	28.8 48.2	23.4 28.0	60. 0 66. 0	50.0	31.2 17.8	26. 6 28. 0	NL		
0. 19350 0. 25692	43. 7 35. 1	22. 7 15. 7	13. 2 13. 2	56.9 48.3	35.9 28.9	63.9 61.5	53.9 51.5	7.0 13.2		L		
0. 32304 0. 42004	28. 2 17. 7	12.8	13.3	41.5	26. 3 26. 1 21. 1	59.6 57.4		18. 1 26. 4	23. 5 26. 3	L		
28. 41840	13.9	8.5	15.1	29.0	23.6	60.0		31.0		Ĺ		

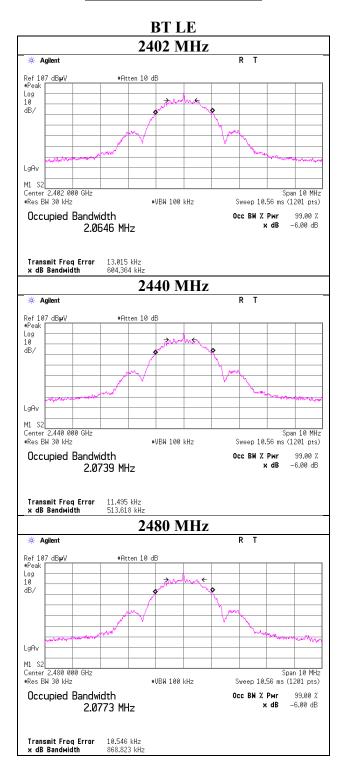
CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + C.F (LISN + CABLE + ATT) Except for the above table: adequate margin data below the limits.

Conducted Emission

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124


Test report No.	: 12634949H-A-R2
Page	: 16 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

6 dB Bandwidth and 99 % Occupied Bandwidth


Report No. Test place Date Temperature / Humidity Engineer	12634949H Ise EMC Lab. No.8 Measurement Room December 5, 2018 23 deg. C / 48 % RH Junki Nagatomi
Engineer	Junki Nagatomi
Mode	Tx BT LE

Mode	Frequency	99% Occupied	6dB Bandwidth	Limit for
		Bandwidth		6dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BLE	2402	2064.600	1.145	> 0.5000
	2440	2073.900	1.175	> 0.5000
	2480	2077.300	1.175	> 0.5000

6dB Bandwidth

99%Occupied Bandwidth

Test report No.	: 12634949H-A-R2
Page	: 19 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

Maximum Peak Output Power

Report No. Test place	12634949H Ise EMC Lab. No.8 Measure	ement Room
Date	December 5, 2018	January 23, 2019
Temperature / Humidity	23 deg. C / 48 % RH	25 deg. C / 40 % RH
Engineer	Junki Nagatomi	Tomoki Matsui
Mode	Tx BT LE	

Highest	Power set	ting (4dE	Bm)	Conducted Power e.i.r.p. for RSS-247				7						
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Li	mit	Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-7.99	0.30	10.04	2.35	1.72	30.00	1000.00	27.65	-0.40	1.95	1.57	36.02	4000.00	34.07
2440	-7.86	0.30	10.04	2.48	1.77	30.00	1000.00	27.52	-0.40	2.08	1.61	36.02	4000.00	33.94
2480	-7.79	0.30	10.04	2.55	1.80	30.00	1000.00	27.45	-0.40	2.15	1.64	36.02	4000.00	33.87

Lowest I	Power sett	ing (-20c	lBm)	Conducted Power e.i.r.p. for RSS-247					.7					
Freq.	Reading	Cable	Atten.	Res	Result		Limit		Antenna	Result		Li	imit	Margin
_	_	Loss	Loss				Gain					_		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-19.02	0.30	0.00	-18.72	0.013	30.00	1000.00	48.72	-0.40	-19.12	0.012	36.02	4000.00	55.14
2440	-18.74	0.30	0.00	-18.44	0.014	30.00	1000.00	48.44	-0.40	-18.84	0.013	36.02	4000.00	54.86
2480	-18.51	0.30	0.00	-18.21	0.015	30.00	1000.00	48.21	-0.40	-18.61	0.014	36.02	4000.00	54.63

Sample Calculation: Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain *The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No.	: 12634949H-A-R2
Page	: 20 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

<u>Average Output Power</u> (Reference data for RF Exposure / SAR testing)

Report No.	12634949Н	
Test place	Ise EMC Lab. No.8 Measure	ement Room
Date	December 5, 2018	January 23, 2019
Temperature / Humidity	23 deg. C / 48 % RH	25 deg. C / 40 % RH
Engineer	Junki Nagatomi	Tomoki Matsui
Mode	Tx BT LE	

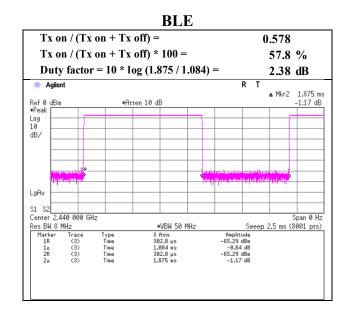
Highest Power setting (4dBm)

Freq.	Reading	Cable	Atten.	Result		Duty	Result	
		Loss	Loss	(Time average)		factor	(Burst power average)	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-10.51	0.30	10.04	-0.17	0.96	2.38	2.21	1.66
2440	-10.47	0.30	10.04	-0.13	0.97	2.38	2.25	1.68
2480	-10.34	0.30	10.04	0.00	1.00	2.38	2.38	1.73

Lowest Power setting (-20dBm)

Loneberg	o n er betting	5 (20 abin	.)						
Freq.	Reading	Cable	Atten.	Result		Duty	Result		
		Loss	Loss	(Time average)		factor	(Burst power average		
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]	
2402	-23.39	0.30	0.00	-23.09	0.005	2.38	-20.71	0.008	
2440	-22.89	0.30	0.00	-22.59	0.006	2.38	-20.21	0.010	
2480	-22.53	0.30	0.00	-22.23	0.006	2.38	-19.85	0.010	

Sample Calculation:


Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

*The equipment and cables were not used for factor 0 dB of the data sheets.

Test report No. Page	: 12634949H-A-R2 : 21 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

Burst rate confirmation

Report No.	12634949Н
Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 5, 2018
Temperature / Humidity	23 deg. C / 48 % RH
Engineer	Junki Nagatomi
Mode	Tx BT LE

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

Test report No.	: 12634949H-A-R2
Page	: 22 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

Radiated Spurious Emission

Report No.	12634949H		
Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.2	No.2	No.3
Date	December 8, 2018	December 9, 2018	December 13, 2018 (Night)
Temperature / Humidity	20 deg. C / 30 % RH	23 deg. C / 35 % RH	24 deg. C / 34 % RH
Engineer	Takafumi Noguchi	Takumi Shimada	Junki Nagatomi
-	(1 GHz - 10 GHz)	(10 GHz - 26.5 GHz)	(Below 1 GHz)
Mode	Tx BT LE 2402 MHz		`

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	120.018	QP	42.7	12.8	8.4	32.1	-	31.8	43.5	11.7	
Hori	129.240	QP	39.0	13.8	8.5	32.1	-	29.2	43.5	14.3	
Hori	168.008	QP	38.6	15.9	8.9	32.0	-	31.4	43.5	12.1	
Hori	247.410	QP	42.4	11.8	9.6	32.0	-	31.8	46.0	14.2	
Hori	300.072	QP	35.1	13.7	10.1	32.0	-	26.9	46.0	19.1	
Hori	432.012	QP	34.3	16.5	11.0	32.0	-	29.8	46.0	16.2	
Hori	2390.000	PK	46.6	27.7	5.1	34.4	-	45.0	73.9	28.9	
Hori	4804.000	PK	48.2	31.2	7.2	33.7	-	52.9	73.9	21.0	
Hori	7206.000	PK	47.2	35.5	8.6	33.6	-	57.7	73.9	16.2	
Hori	9608.000	PK	42.2	38.4	8.1	33.9	-	54.8	73.9	19.1	Floor noise
Hori	2390.000	AV	36.0	27.7	5.1	34.4	2.4	36.8	53.9	17.1	*1)
Hori	4804.000	AV	39.6	31.2	7.2	33.7	2.4	46.7	53.9	7.2	
Hori	7206.000	AV	38.8	35.5	8.6	33.6	2.4	51.7	53.9	2.2	
Hori	9608.000	AV	34.0	38.4	8.1	33.9	-	46.6	53.9	7.3	Floor noise
Vert	50.520	QP	49.0	11.0	7.5	32.1	-	35.4	40.0	4.6	
Vert	60.051	QP	35.3	7.9	7.6	32.1	-	18.7	40.0	21.3	
Vert	94.009	QP	43.6	9.2	8.1	32.1	-	28.8	43.5	14.7	
Vert	120.021	QP	47.5	12.8	8.4	32.1	-	36.6	43.5	6.9	
Vert	129.252	QP	44.7	13.8	8.5	32.1	-	34.9	43.5	8.6	
Vert	168.003	QP	40.6	15.9	8.9	32.0	-	33.4	43.5	10.1	
Vert	2390.000	PK	46.1	27.7	5.1	34.4	-	44.5	73.9	29.4	
Vert	4804.000	PK	48.3	31.2	7.2	33.7	-	53.0	73.9	20.9	
Vert	7206.000	PK	46.8	35.5	8.6	33.6	-	57.3	73.9	16.6	
Vert	9608.000	PK	42.1	38.4	8.1	33.9	-	54.7	73.9	19.2	Floor noise
Vert	2390.000	AV	36.4	27.7	5.1	34.4	2.4	37.2	53.9	16.7	*1)
Vert	4804.000	AV	39.6	31.2	7.2	33.7	2.4	46.7	53.9	7.2	
Vert	7206.000	AV	38.3	35.5	8.6	33.6	2.4	51.2	53.9	2.7	
Vert	9608.000	AV	34.2	38.4	8.1	33.9	-	46.8	53.9	7.1	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

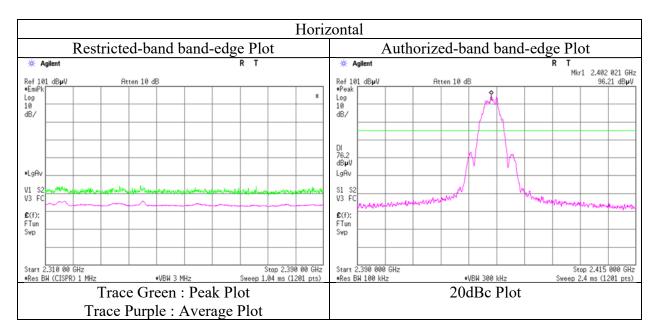
*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

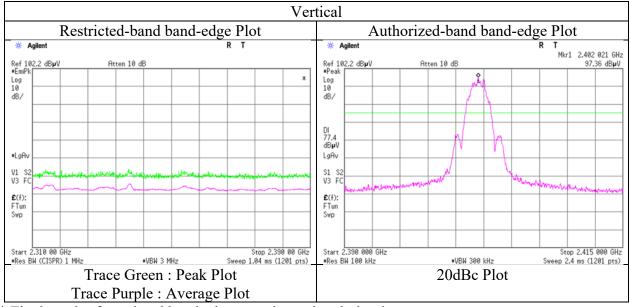
Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

*1) Not Out of Band emission(Leakage Power)

20dBc Data Sheet

Polarity	Frequency	Detector	Reading	Ant	Loss	Gain	Result	Limit	Margin	Remark
				Factor						
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	2402.000	PK	96.2	27.7	5.1	34.4	94.6	-	-	Carrier
Hori	2400.000	PK	64.4	27.8	5.1	34.4	62.9	74.6	11.7	
Vert	2402.000	PK	97.4	27.7	5.1	34.4	95.8	-	-	Carrier
Vert	2400.000	PK	65.7	27.8	5.1	34.4	64.2	75.8	11.6	


Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)


Distance factor: 1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB

Radiated Spurious Emission (Reference Plot for band-edge)

Report No. 12634949H Test place Semi Anechoic Chamber No.2 Date Temperature / Humidity Engineer Mode

Ise EMC Lab. December 8, 2018 20 deg. C / 30 % RH Takafumi Noguchi (1 GHz - 10 GHz) Tx BT LE 2402 MHz

* Final result of restricted band edge was shown in tabular data.

Test report No.	: 12634949H-A-R2
Page	: 24 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

Radiated Spurious Emission

Report No.	12634949H		
Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.2	No.2	No.3
Date	December 8, 2018	December 9, 2018	December 13, 2018 (Night)
Temperature / Humidity	20 deg. C / 30 % RH	23 deg. C / 35 % RH	24 deg. C / 34 % RH
Engineer	Takafumi Noguchi	Takumi Shimada	Junki Nagatomi
C	(1 GHz - 10 GHz)	(10 GHz – 26.5 GHz)	(Below 1 GHz)
Mode	Tx BT LE 2440 MHz		` '

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	120.008	QP	41.3	12.8	8.4	32.1	-	30.4	43.5	13.1	
Hori	129.250	QP	37.8	13.8	8.5	32.1	-	28.0	43.5	15.5	
Hori	168.001	QP	36.9	15.9	8.9	32.0	-	29.7	43.5	13.8	
Hori	252.021	QP	40.0	12.0	9.7	32.0	-	29.7	46.0	16.3	
Hori	299.891	QP	35.2	13.7	10.1	32.0	-	27.0	46.0	19.0	
Hori	432.072	QP	33.3	16.5	11.0	32.0	-	28.8	46.0	17.2	
Hori	4880.000	PK	49.2	31.5	7.3	33.7	-	54.3	73.9	19.6	
Hori	7320.000	PK	46.8	35.9	8.5	33.6	-	57.6	73.9	16.3	
Hori	9760.000	PK	41.3	38.6	8.1	34.0	-	54.0	73.9	19.9	Floor noise
Hori	4880.000	AV	41.9	31.5	7.3	33.7	2.4	49.4	53.9	4.5	
Hori	7320.000	AV	38.6	35.9	8.5	33.6	2.4	51.8	53.9	2.1	
Hori	9760.000	AV	32.3	38.6	8.1	34.0	-	45.0	53.9	8.9	Floor noise
Vert	50.612	QP	48.2	11.0	7.5	32.1	-	34.6	40.0	5.4	
Vert	59.897	QP	37.2	7.9	7.6	32.1	-	20.6	40.0	19.4	
Vert	93.291	QP	43.4	9.1	8.1	32.1	-	28.5	43.5	15.0	
Vert	120.024	QP	46.8	12.8	8.4	32.1	-	35.9	43.5	7.6	
Vert	129.196	QP	44.2	13.8	8.5	32.1	-	34.4	43.5	9.1	
Vert	169.005	QP	38.7	15.9	8.9	32.0	-	31.5	43.5	12.0	
Vert	4880.000	PK	48.5	31.5	7.3	33.7	-	53.6	73.9	20.3	
Vert	7320.000	PK	45.3	35.9	8.5	33.6	-	56.1	73.9	17.8	
Vert	9760.000	PK	41.3	38.6	8.1	34.0	-	54.0	73.9	19.9	Floor noise
Vert	4880.000	AV	40.5	31.5	7.3	33.7	2.4	48.0	53.9	5.9	
Vert	7320.000	AV	37.0	35.9	8.5	33.6	2.4	50.2	53.9	3.7	
Vert	9760.000	AV	32.2	38.6	8.1	34.0	-	44.9	53.9	9.0	Floor noise

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No.	: 12634949H-A-R2
Page	: 25 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

Radiated Spurious Emission

Report No.	12634949H		
Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.2	No.2	No.3
Date	December 8, 2018	December 9, 2018	December 13, 2018 (Night)
Temperature / Humidity	20 deg. C / 30 % RH	23 deg. C / 35 % RH	24 deg. C / 34 % RH
Engineer	Takafumi Noguchi	Takumi Shimada	Junki Nagatomi
	(1 GHz - 10 GHz)	(10 GHz – 26.5 GHz)	(Below 1 GHz)
Mode	Tx BT LE 2480 MHz		. ,

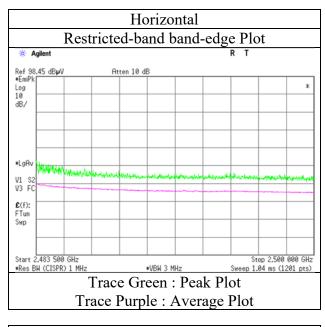
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori	120.012	QP	42.6	12.8	8.4	32.1	-	31.7	43.5	11.8	
Hori	129.237	QP	39.2	13.8	8.5	32.1	-	29.4	43.5	14.1	
Hori	168.012	QP	38.4	15.9	8.9	32.0	-	31.2	43.5	12.3	
Hori	252.021	QP	42.3	12.0	9.7	32.0	-	32.0	46.0	14.0	
Hori	299.839	QP	34.9	13.7	10.1	32.0	-	26.7	46.0	19.3	
Hori	432.069	QP	33.6	16.5	11.0	32.0	-	29.1	46.0	16.9	
Hori	2483.500	PK	53.4	27.5	5.1	34.4	-	51.6	73.9	22.3	
Hori	4960.000	PK	49.3	31.7	7.3	33.7	-	54.6	73.9	19.3	
Hori	7440.000	PK	44.1	36.1	8.6	33.6	-	55.2	73.9	18.7	
Hori	9920.000	PK	41.4	38.5	8.2	34.0	-	54.1	73.9	19.8	Floor noise
Hori	2483.500	AV	40.8	27.5	5.1	34.4	2.4	41.4	53.9	12.5	*1)
Hori	4960.000	AV	41.0	31.7	7.3	33.7	2.4	48.7	53.9	5.2	
Hori	7440.000	AV	34.4	36.1	8.6	33.6	2.4	47.9	53.9	6.0	
Hori	9920.000	AV	33.0	38.5	8.2	34.0	-	45.7	53.9	8.2	Floor noise
Vert	50.240	QP	48.4	11.2	7.5	32.1	-	35.0	40.0	5.0	
Vert	59.998	QP	36.8	7.9	7.6	32.1	-	20.2	40.0	19.8	
Vert	93.511	QP	42.2	9.1	8.1	32.1	-	27.3	43.5	16.2	
Vert	120.012	QP	47.1	12.8	8.4	32.1	-	36.2	43.5	7.3	
Vert	129.243	QP	44.5	13.8	8.5	32.1	-	34.7	43.5	8.8	
Vert	168.012	QP	40.7	15.9	8.9	32.0	-	33.5	43.5	10.0	
Vert	2483.500	PK	54.0	27.5	5.1	34.4	-	52.2	73.9	21.7	
Vert	4960.000	PK	47.2	31.7	7.3	33.7	-	52.5	73.9	21.4	
Vert	7440.000	PK	42.5	36.1	8.6	33.6	-	53.6	73.9	20.3	
Vert	9920.000	PK	41.5	38.5	8.2	34.0	-	54.2	73.9	19.7	Floor noise
Vert	2483.500	AV	41.3	27.5	5.1	34.4	2.4	41.9	53.9	12.0	*1)
Vert	4960.000	AV	39.2	31.7	7.3	33.7	2.4	46.9	53.9	7.0	
Vert	7440.000	AV	33.7	36.1	8.6	33.6	2.4	47.2	53.9	6.7	
Vert	9920.000	AV	33.1	38.5	8.2	34.0	-	45.8	53.9	8.1	Floor noise

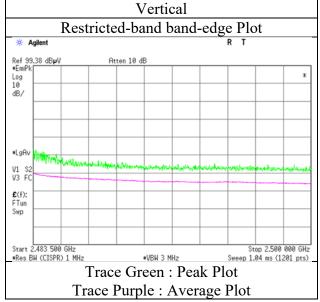
Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Distance factor: 1 GHz - 10 GH

1 GHz - 10 GHz 20log (3.75 m / 3.0 m) = 1.94 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB

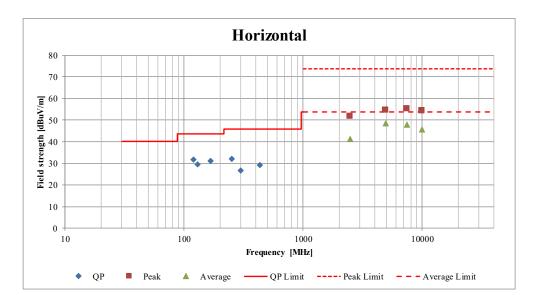

*1) Not Out of Band emission(Leakage Power)

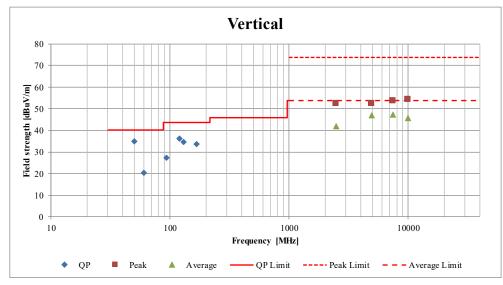

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Report No.11Test placeIsSemi Anechoic ChamberNDateDTemperature / Humidity22EngineerT

12634949H Ise EMC Lab. No.2 December 8, 2018 20 deg. C / 30 % RH Takafumi Noguchi (1 GHz - 10 GHz) Tx BT LE 2480 MHz

Mode


* Final result of restricted band edge was shown in tabular data.


UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No.	: 12634949H-A-R2
Page	: 27 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

Radiated Spurious Emission (Plot data, Worst case)

Report No.	12634949H		
Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.2	No.2	No.3
Date	December 8, 2018	December 9, 2018	December 13, 2018 (Night)
Temperature / Humidity	20 deg. C / 30 % RH	23 deg. C / 35 % RH	24 deg. C / 34 % RH
Engineer	Takafumi Noguchi	Takumi Shimada	Junki Nagatomi
	(1 GHz - 10 GHz)	(10 GHz – 26.5 GHz)	(Below 1 GHz)
Mode	Tx BT LE 2480 MHz		

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

Conducted Spurious Emission

Report No.	12634949Н
Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 5, 2018
Temperature / Humidity	23 deg. C / 48 % RH
Engineer	Junki Nagatomi
Mode	Tx BT LE 2402 MHz

	9 kHz - 150 kHz											150 kHz - 30 MHz									
₩ A	gilent	RT							₩ A	gilent							RΤ				
Ref -5 Peak			#Atten 10	dB				Mkr1 13.23 kHz -94.92 dBm			Ref -50 dBm		#Atten 10 dB							Mkr1 225 kHz -89.32 dBm	
Log 10 dB/								D	C Coupled	Peak Log 10 dB/									DC	Coupled	
LgAv S1 S2 M3 FS	1. AND	(managana ang ang ang ang ang ang ang ang	nowahilyang	ulluyudandy	Muranan	hondarter (* 1	unikot (n) kira	nenavljega	Maria	LgAv S1 S2 M3 FS		Rowhidesgeway	the second second	bitemedicity	din ang kang p	Vhurnerhadhad			ad Alendaria Alen	the start and	
£ (f): f<50k FFT										€(f): FTun Swp											
	9.00 kHz W 200 Hz _			#VBW 620			Sweep 2		50.00 kHz 1201 pts)_		150 kHz W 9.1 kH	 z					s	Sweep 344		.000 MHz 201 pts)	

Γ	Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	M argin	Remark
			Loss	Loss	Gain*	(Number			bounce	(field strength)			
	[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
	13.23	-94.9	0.30	9.7	2.0	1	-82.9	300	6.0	-21.7	45.1	66.8	
	225.00	-89.3	0.30	9.7	2.0	1	-77.3	300	6.0	-16.1	20.5	36.6	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

*2.0 dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Conducted Spurious Emission

Report No.	12634949Н
Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 5, 2018
Temperature / Humidity	23 deg. C / 48 % RH
Engineer	Junki Nagatomi
Mode	Tx BT LE 2440 MHz

	9 kHz - 150 l	ĸHz		150 kHz - 30 M	150 kHz - 30 MHz					
🔆 Agilent		R T	🔆 Agilent		RT					
Ref -50 dBm Peak	#Atten 10 dB	Mkr1 10.29 kHz _97.42 dBm	Ref -50 dBm Peak	#Atten 10 dB	Mkr1 175 kHz -89.81 dBm					
Log 10 dB/		DC Coupled	Log 10 dB/		DC Coupled					
			1 ¢							
LgAv \$1 \$2 M3 FS	When period a second and the period of the	Madelline Madelline and the foreign of the foreign	LgAv S1 S2 M3 FS	knynt fan itte fan de fan d	ated of the standard and a standard					
£(f): f<50k FFT			£(f): FTun Swp							
Start 9.00 kHz #Res BW 200 Hz	#VBW 620 Hz	^ Stop 150.00 kHz Sweep 2.279 s (1201 pts)	Start 150 kHz #Res BW 9.1 kHz	#VBW 27 kHz	Stop 30.000 MHz Sweep 344.8 ms (1201 pts)					

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
10.29	-97.4	0.30	9.7	2.0	1	-85.4	300	6.0	-24.2	47.3	71.5	
175.00	-89.8	0.30	9.7	2.0	1	-77.8	300	6.0	-16.6	22.7	39.3	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

N: Number of output

 $*2.0~\mathrm{dBi}$ was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Conducted Spurious Emission

Report No.	12634949Н
Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 5, 2018
Temperature / Humidity	23 deg. C / 48 % RH
Engineer	Junki Nagatomi
Mode	Tx BT LE 2480 MHz

	9 kHz - 150 l	кНz		150 kHz - 30 M	150 kHz - 30 MHz				
🔆 Agilent		R T	🔆 Agilent		RT				
Ref -50 dBn Peak		Mkr1 9.24 kHz _97.29 dBm	Ref -50 dBm Peak	#Atten 10 dB	Mkr1 175 kHz -89.38 dBm				
Log 10 dB/		DC Coupled	Log 10 dB/		DC Coupled				
LgAv S1 S2 M3 FS	non What in the man and an interval to a design of the second second second second second second second second	in Junio free standing and a stand of the stand	LgAv S1 S2 M3 FS	erter ofen tiensindel unterheis geseneligen jederschalten der	1941:Hant Mar 42,419411-66453-154 ft/1/100-6644				
£(f): f<50k FFT			£(f): FTun Swp						
Start 9.00 k #Res BW 200		Stop 150.00 kHz Sweep 2.279 s (1201 pts)	Start 150 kHz #Res BW 9.1 kHz	#VBW 27 kHz	Stop 30.000 MHz Sweep 344.8 ms (1201 pts)				

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.24	-97.3	0.30	9.7	2.0	1	-85.3	300	6.0	-24.0	48.2	72.2	
175.00	-89.4	0.30	9.7	2.0	1	-77.4	300	6.0	-16.1	22.7	38.8	

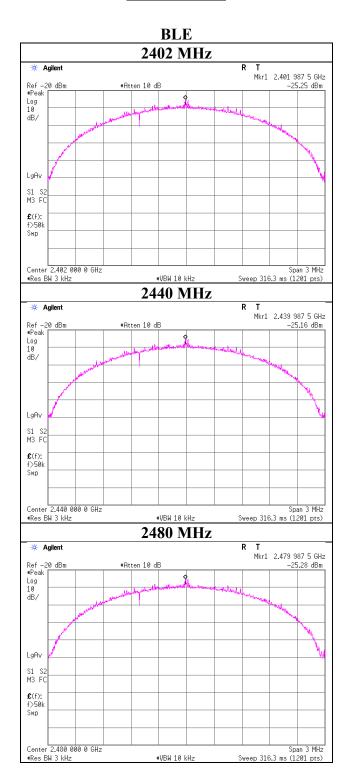
E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N) N: Number of output

*2.0 dBi was applied to the test result based on KDB 558074 since antenna gain was less than 2.0 dBi.

Power Density

Report No.	12634949Н
Test place	Ise EMC Lab. No.8 Measurement Room
Date	December 5, 2018
Temperature / Humidity	23 deg. C / 48 % RH
Engineer	Junki Nagatomi
Mode	Tx BT LE


Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2402.00	-25.25	0.30	10.04	-14.91	8.00	22.91
2440.00	-25.16	0.30	10.04	-14.82	8.00	22.82
2480.00	-25.28	0.30	10.04	-14.94	8.00	22.94

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss

*The equipment and cables were not used for factor $0 \, dB$ of the data sheets.

Power Density

Test report No.	: 12634949H-A-R2
Page	: 33 of 36
Issued date	: January 28, 2019
FCC ID	: SQK-7BLZ20

APPENDIX 2: Test instruments

Test Instruments

Test Item		nts Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
AT	141806	Power Meter	ANRITSU	ML2495A	6K00003348	10/31/2018	10/31/2019	12
AT	141841	Power sensor	ANRITSU	MA2411B	11598	10/31/2018	10/31/2019	12
AT	141567	Thermo-Hygrometer	CUSTOM	CTH-201	0008	01/24/2018	01/31/2019	12
AT	141244	Attenuator(10dB)	WEINSCHEL	WA8-10-34	A198	02/28/2018	02/28/2019	12
AT	141269	Attenuator(10dB) 1-18GHz	Orient Microwave	BX10-0476-00	-	03/12/2018	03/31/2019	12
AT,RE	141902	Spectrum Analyzer	AGILENT	E4440A	MY46187105	10/04/2018	10/31/2019	12
RE	141579	Pre Amplifier	AGILENT	8449B	3008A02142	01/23/2018	01/31/2019	12
RE	141392	Microwave Cable	Junkosha	MWX221	1604S253(1 m) 1608S087(5 m)	08/08/2018	08/31/2019	12
RE,CE	141556	Thermo-Hygrometer	CUSTOM	CTH-201	0003	12/05/2018	12/31/2019	12
RE	141404	High Pass Filter 3.5-24GHz	TOKIMEC	TF323DCA	601	05/14/2018	05/31/2019	12
RE	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/01/2018	04/30/2019	12
RE,CE	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/21/2018	08/31/2019	12
RE,CE	141152	EMI measurement program	TSJ	TEPTO-DV	-	-	-	-
RE	141512	Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D	254	06/06/2018	06/30/2019	12
RE	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/19/2018	09/30/2019	12
RE,CE	142228	Measure	KOMELON	KMC-36	-	-	-	-
RE	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/06/2018	06/30/2019	12
CE	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/06/2018	12/31/2019	12
CE	141222	Coaxial Cable	FUJIKURA	3D-2W(12m)/5D-2W(5m)/ 5D-2W(0.8m)/5D-2W(1m)	-	02/23/2018	02/28/2019	12
CE	141357	LISN(AMN)	Schwarzbeck	NSLK8127	8127-729	07/24/2018	07/31/2019	12
RE,CE	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/08/2018	08/31/2019	12
RE	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	06/26/2018	06/30/2020	24
RE	148897	Attenuator	KEYSIGHT	8491A	MY52462349	12/18/2017	12/31/2018	12
RE	141554	Thermo-Hygrometer	CUSTOM	CTH-180	1301	01/24/2018	01/31/2019	12
RE	142183	Measure	KOMELON	KMC-36	-	-	-	-
RE	141532	DIGITAL HITESTER	HIOKI	3805	51201197	01/09/2018	01/31/2019	12
RE	141424	Biconical Antenna	Schwarzbeck	BBA9106	1915	06/04/2018	06/30/2019	12
RE	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck	VUSLP9111B	911B-191	06/04/2018	06/30/2019	12
RE	141323	Coaxial cable	UL Japan	-	-	07/03/2018	07/31/2019	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/27/2018	02/28/2019	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	08/06/2018	08/31/2019	12

*Hyphens for Last Calibration Date, Calibration Due Date and Cal Int are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item: CE: Conducted Emission test RE: Radiated Emission test AT: Antenna Terminal Conducted test