

FCC C2PC Test Report

FCC ID : SQGBL652

Equipment : Bluetooth 4.2 module (BLE only)

Model No. : BL652-SA, BL652-SC

(Refer to item 1.1.1 for more details)

Brand Name : Laird

Applicant : Laird Technologies

Address : W66N220 Commerce Court, Cedarburg,

Wisconsin 53012, USA

Standard : 47 CFR FCC Part 15.247

Received Date : May 14, 2018

Tested Date : May 25 ~ May 28, 2018

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen Assistant Manager Gary Chang / Manager

Testing Laboratory 2732

Report No.: FR662202-06-1AE Page: 1 of 40

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	Test Equipment List and Calibration Data	
1.5	Test Standards	10
1.6	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Condition	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	6dB and Occupied Bandwidth	15
3.3	RF Output Power	17
3.4	Power Spectral Density	19
3.5	Emissions in Restricted Frequency Bands	21
3.6	Emissions in non-restricted Frequency Bands	37
4	TEST LABORATORY INFORMATION	40

Release Record

Report No.	Version	Description	Issued Date
FR662202-06-1AE	Rev. 01	Initial issue	Jul. 27, 2018

Report No.: FR662202-06-1AE Page: 3 of 40

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.387MHz 36.84 (Margin -11.28dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 64.92MHz	Pass
15.209	Radiated Emissions	36.38 (Margin -3.62dB) - PK	Pd55
15.247(b)(3)	Maximum Output Power	Power [dBm]: 4.42	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR662202-06-1AE Page: 4 of 40

1 General Description

1.1 Information

This report is issued as a FCC Class II Permissive Change.

This report is issued as a supplementary report to original ICC report no. FR662202AE. The modification is concerned with adding 4 antennas and 2 Mbps data rate by software setting.

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description		
	BL652-SA		with chip antenna		
Laird	BL652-SC		with MHF4 & IPEX connector type antenna		
The above models model RI 652-SC was selected as a representative one for the final test and only its					

The above models, model **BL652-SC** was selected as a representative one for the final test and only its data was recorded in this report.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz) Bluetooth Ch. Freq. (MHz) Channel Number Data Rate							
2400-2483.5 V4.2 LE 2402-2480 0-39 [40] 2 Mbps							
Note 1: Bluetooth LE (Low energy) uses GFSK modulation.							

1.1.3 Antenna Details(The additional antennas are marked in boldface)

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)	Remarks
1	ACX	AT3216-B2R7HAA	Chip	N/A	0.5	For BL652-SA
2	LSR	FlexPIFA 001-0022	FlexPIFA	MHF4	2	
3	LSR	FlexNotch 001-0023	Flexible Notch	MHF4	2	
4	MAG. LAYERS	EDA-8709-2G4C1-B27	Dipole	MHF4	2	
5	Walsin	RFDPA870910EMAB302	Dipole	MHF4	2	
6	Walsin	RFDPA870900SBAB8G1	Dipole	MHF4	2	For BL652-SC
7	YAMAMOTO METAL	YAN-02-C-MHF4P-050	Chip	MHF4	-1.76	
8	Laird	PCA-4606-2G4C1-A33-CY Laird # 0600-00056	PCB Dipole	IPEX	2.21	
9	Laird	EFA2400A3S-10MH4L	mFlexPIFA	MHF4	2	

Note: The antenna with highest gain was selected for final testing in this test report

Report No.: FR662202-06-1AE Page: 5 of 40

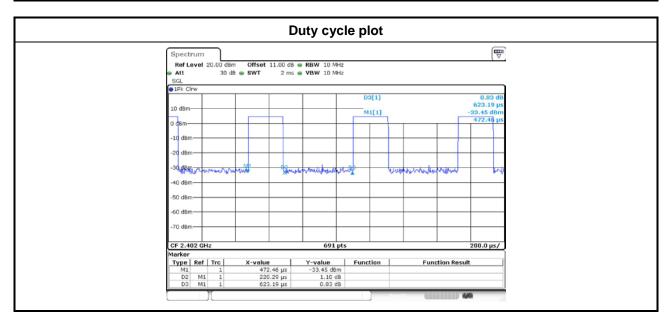
1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 3.3Vdc from host	
------------------------------------	--

1.1.5 Accessories

N/A

1.1.6 Channel List


	Frequency band (MHz)				2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

Report No.: FR662202-06-1AE Page: 6 of 40

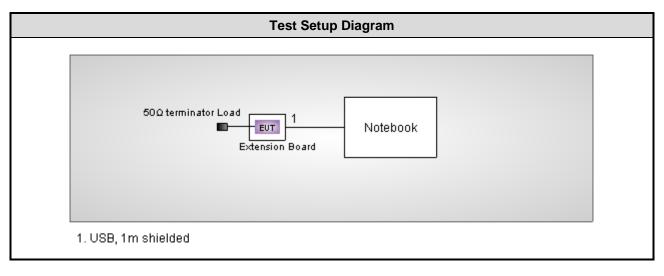
1.1.7 Test Tool and Duty Cycle

Test tool	UwTerminal, Version: v7_94
Duty cycle of test signal (%)	35.35%
Duty Factor (dB)	4.52

1.1.8 Power Setting

Modulation Mode	Test Frequency (MHz)			
wodulation wode	2402 2440 2480			
GFSK/2Mbps	Default	Default	Default	

Report No.: FR662202-06-1AE Page: 7 of 40



1.2 Local Support Equipment List

	Support Equipment List						
No. Equipment Brand Model FCC ID Signal cable / Length (
1	Notebook	DELL	Latitude E6440	DoC			
2	Extension Board	Laird	DVK-BL652-A1		USB, 1m shielded without core		

Note: Extension Board and USB cable were supplied by applicant.

1.3 Test Setup Chart

Report No.: FR662202-06-1AE Page: 8 of 40

1.4 Test Equipment List and Calibration Data

Test Item	Conducted Emission	Conducted Emission						
Test Site	Conduction room 1 / (CO01-WS)							
Instrument	ument Manufacturer Model No. Serial No. Calibration Date Calibration Until							
Receiver	R&S	ESR3	101657	Jan. 05, 2018	Jan. 04, 2019			
LISN	LISN SCHWARZBECK Schwarzbeck 8127 8127-667 Nov. 13, 2017 Nov.							
RF Cable-CON	RF Cable-CON EMC EMCCFD300-BM-BM-6000 50821 Dec. 18, 2017 Dec. 17, 20							
Measurement Software AUDIX e3 6.120210k NA NA								
Note: Calibration Interval of instruments listed above is one year.								

Test Item	Radiated Emission				
Test Site	966 chamber 3 / (03C	H03-WS)			
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101499	Jan. 03, 2018	Jan. 02, 2019
Receiver	R&S	ESR3	101658	Nov. 20, 2017	Nov. 19, 2018
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 19, 2018	Apr. 18, 2019
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Jan. 18, 2018	Jan. 17, 2019
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 23, 2017	Nov. 22, 2018
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2017	Nov. 12, 2018
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 07, 2017	Dec. 06, 2018
Preamplifier	EMC	EMC02325	980187	Sep. 04, 2017	Sep. 03, 2018
Preamplifier	Agilent	83017A	MY53270014	Aug. 21, 2017	Aug. 20, 2018
Preamplifier	EMC	EMC184045B	980192	Aug. 22, 2017	Aug. 21, 2018
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Nov. 27, 2017	Nov. 26, 2018
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY32487/4	Nov. 27, 2017	Nov. 26, 2018
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Nov. 27, 2017	Nov. 26, 2018
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Nov. 27, 2017	Nov. 26, 2018
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Nov. 27, 2017	Nov. 26, 2018
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Nov. 27, 2017	Nov. 26, 2018
Measurement Software	AUDIX	e3	6.120210g	NA	NA
Note: Calibration Inter	val of instruments liste	d above is one year.			

Report No.: FR662202-06-1AE Page: 9 of 40

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101499	Jan. 03, 2018	Jan. 02, 2019
Power Meter	Anritsu	ML2495A	1241002	Oct. 16, 2017	Oct. 15, 2018
Power Sensor	Anritsu	MA2411B	1207366	Oct. 16, 2017	Oct. 15, 2018
DC POWER SOURCE	GW INSTEK	GPC-6030D	EM892433	Oct. 26, 2017	Oct. 25, 2018
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA
Note: Calibration Inte	rval of instruments liste	d above is one year.			

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v04

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty	
Parameters	Uncertainty
Bandwidth	±34.134 Hz
Conducted power	±0.808 dB
Power density	±0.463 dB
Conducted emission	±2.670 dB
AC conducted emission	±2.90 dB
Radiated emission ≤ 1GHz	±3.66 dB
Radiated emission > 1GHz	±5.37 dB

Report No.: FR662202-06-1AE Page: 10 of 40

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 58%	Alex Tsai
Radiated Emissions	03CH03-WS	23°C / 63%	Akun Chung
RF Conducted	TH01-WS	23°C / 65%	Brad Wu

FCC Designation No.: TW0009
 FCC site registration No.: 207696
 IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
AC Power Line Conducted Emissions	BT LE	2440	2Mbps	
Radiated Emissions ≤ 1GHz	BT LE	2440	2Mbps	
Maximum Output Power 6dB bandwidth Power spectral density	BT LE	2402, 2440, 2480	2Mbps	
Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	2Mbps	

NOTE:

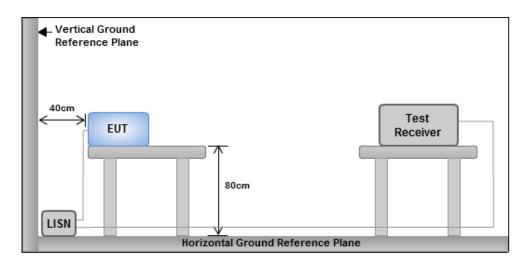
Report No.: FR662202-06-1AE Page: 11 of 40

^{1.} The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z axis. The X axis results were found as the worst case and were shown in this report.

^{2.} 50Ω terminator is connected to antenna port of EUT for radiated emission measurement.

3 Transmitter Test Results

3.1 Conducted Emissions

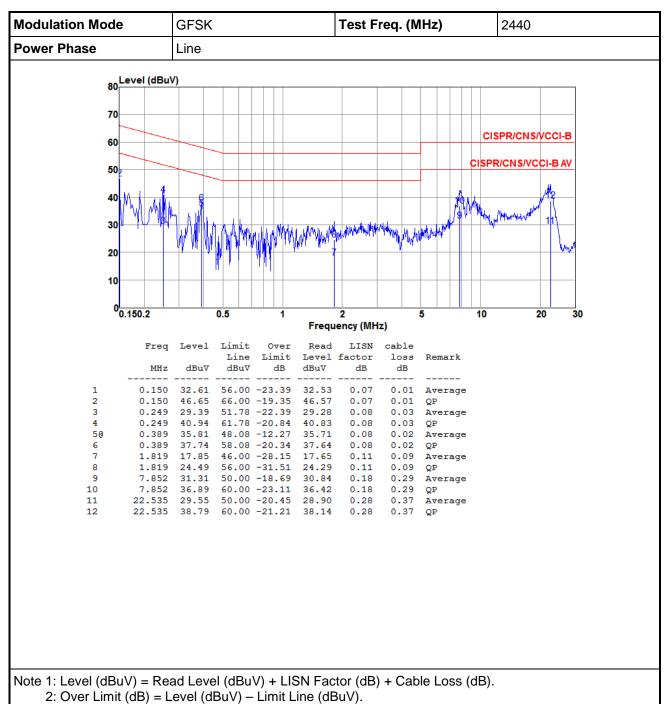

3.1.1 Limit of Conducted Emissions

	Conducted Emissions Limit	
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarith	m of the frequency.	

3.1.2 Test Procedures

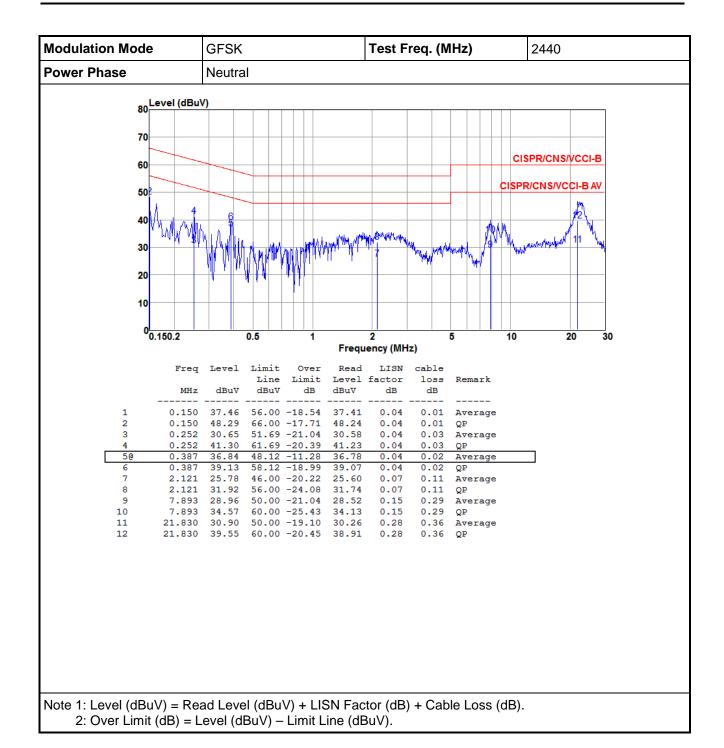
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR662202-06-1AE Page: 12 of 40



3.1.4 Test Result of Conducted Emissions

Report No.: FR662202-06-1AE Page: 13 of 40

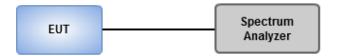
Report No.: FR662202-06-1AE Page: 14 of 40

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

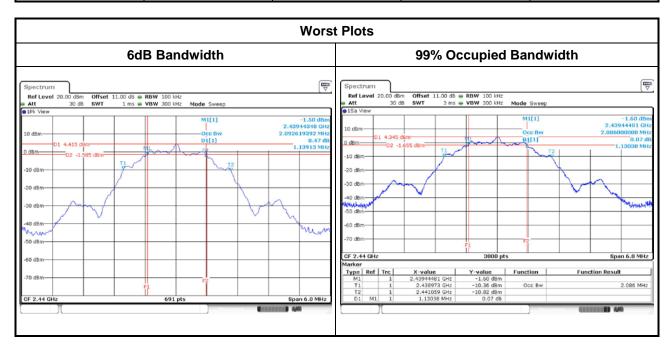

6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 30 kHz, Video bandwidth = 100 kHz.
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup



Report No.: FR662202-06-1AE Page: 15 of 40

3.2.4 Test Result of 6dB and Occupied Bandwidth

Mode	Freq. (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit of 6dB Bandwidth (kHz)
BT LE	2402	1.148	2.08	500
BT LE	2440	1.139	2.09	500
BT LE	2480	1.139	2.08	500

Report No.: FR662202-06-1AE Page: 16 of 40

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.3.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR662202-06-1AE Page: 17 of 40

3.3.4 Test Result of Maximum Output Power

			Peak Power		Antenna	EIRP	EIRP
Mode	Freq. (MHz)	Power (mW)	Power (dBm)	Limit (dBm)	gain (dBi)	(dBm)	Limit (dBm)
BT LE	2402	2.766942	4.42	30	2.21	6.63	36
BT LE	2440	2.747894	4.39	30	2.21	6.60	36
BT LE	2480	2.710192	4.33	30	2.21	6.54	36

Mode	Freq. (MHz)	AV Power (mW)	AV Power (dBm)	Limit (dBm)
BT LE	2402	2.747894	4.39	
BT LE	2440	2.728978	4.36	
BT LE	2480	2.691535	4.30	

Note: Average power is for reference only

Report No.: FR662202-06-1AE Page: 18 of 40

3.4 Power Spectral Density

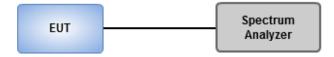
3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

Peak PSD

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = Peak, Sweep time = auto couple.
- 3. Trace mode = max hold, allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

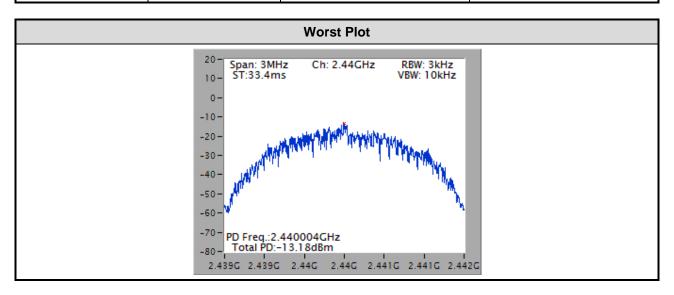

Average PSD, duty cycle ≥ 98%

- 1. Set the RBW = 3 kHz, VBW = 10 kHz.
- 2. Detector = RMS, Sweep time = auto couple.
- 3. Sweep time = auto couple.
- 4. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 5. Use the peak marker function to determine the maximum amplitude level.

Average PSD, duty cycle < 98%

- 1 Set the RBW = 3 kHz, VBW = 10 kHz. Detector = RMS.
- Set the sweep time to: \geq 10 (number of measurement points in sweep) x (total on/off period of the transmitted signal).
- 3 Perform the measurement over a single sweep.
- 4 Use the peak marker function to determine the maximum amplitude level.
- 5 Add 10 log (1/x), where x is the duty cycle.

3.4.3 Test Setup



Report No.: FR662202-06-1AE Page: 19 of 40

3.4.4 Test Result of Power Spectral Density

Mode	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
BT LE	2402	-13.30	8
BT LE	2440	-13.18	8
BT LE	2480	-13.32	8

Report No.: FR662202-06-1AE Page: 20 of 40

3.5 Emissions in Restricted Frequency Bands

3.5.1 Limit of Emissions in Restricted Frequency Bands

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

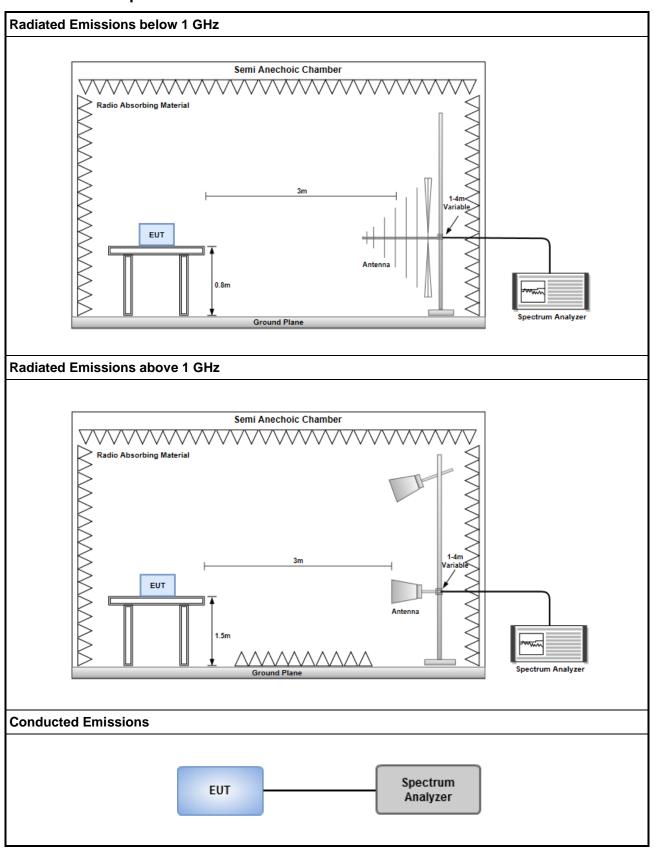
Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

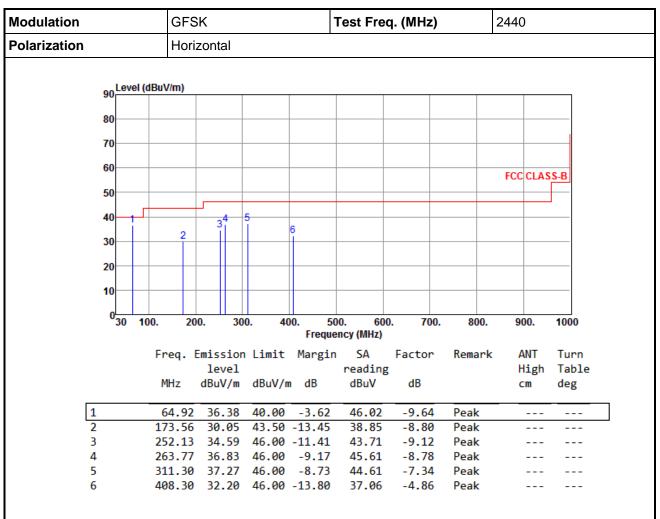
3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

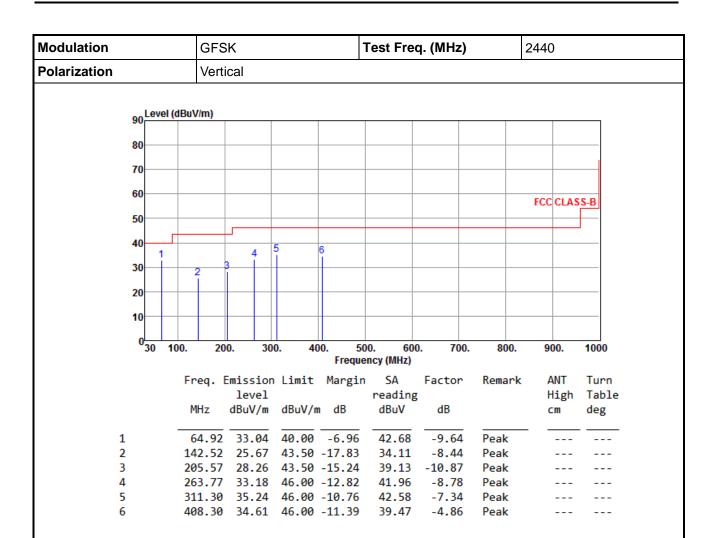
Report No.: FR662202-06-1AE Page: 21 of 40


3.5.3 Test Setup

Report No.: FR662202-06-1AE Page: 22 of 40

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

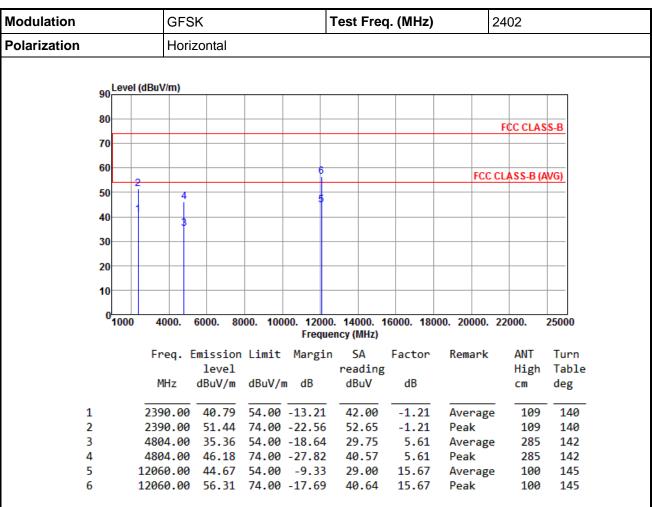
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR662202-06-1AE Page: 23 of 40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR662202-06-1AE Page: 24 of 40

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR662202-06-1AE Page: 25 of 40

3

4

5

6

Modulation				GFS	K				Te	est Fre	q. (MH	z)		24	02	
Polarization				Vert	ical											
	90 Level (dBuV/m)															
	80															
														F	CC CLAS	S-B
	70															
	60								5				FCC	C CL	ASS-B (A	(VG)
	50		,	4												
	40	·		3												
	30															
	20															
	10															
	0								<u>L</u>							
		1000	40	00.	6000.	80	00. 100			14000. cy (MHz)	16000.	18000	. 20000.	. 22	000.	25000
			Fr	eq.∣	Emiss	ion	Limit	Marg	in	SA	Facto	r	Remark	:	ANT	Turn
					lev	el				reading	g				High	
			М	Ιz	dBuV	/m	dBuV/ı	n dB		dBuV	dB				CM	deg
:	1		239	0.00	40.	70	54.00	-13.3	0	41.91	-1.2	21	Averag	e	320	89
	2		239	00.6	51.	30	74.00	-22.7	0	52.51	-1.2	21	Peak		320	89

35.68

42.78

28.79

40.23

5.61

5.61

15.67

15.67

Average

Average

Peak

Peak

313

313

100

100

199

199

90

90

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

4804.00 41.29 54.00 -12.71

12060.00 44.46 54.00 -9.54

12060.00 55.90 74.00 -18.10

4804.00 48.39 74.00 -25.61

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR662202-06-1AE Page: 26 of 40

Modulation				GFS	K			Test Fre	q. (MHz)	2	2440	
Polarization			<u> </u>	Horiz	zontal		<u>'</u>			•		
			-									
	90	Level	(dBuV/	m)								
	80											
											FCC CLAS	S-B
	70											
	60									ECC I	CLASS-B (A	WG)
	50		24 							100	CLASS-D (A	wo,
	30	.	В	6 	-	,						
	40			- 5								
	30											
	20											
	10											-
	0											
	U	1000	400	00.	6000.	8000. 1		0. 14000. [•] ency (MHz)	16000. 180	00. 20000.	22000.	25000
			Fre	eq. E	missio	n Limi	t Margir		Factor	Remark	ANT	Turn
					level	L		reading	Ţ.		High	Table
			MH	z	dBuV/r	ı dBuV	/m dB	dBuV	dB		cm	deg
	1		2390	0.00	41.17	54.0	0 -12.83	42.38	-1.21	Average	100	141
	2		2390				0 -21.52	53.69	-1.21	Peak	100	141
	3				41.09		0 -12.91	41.95		Average		141
	4						0 -21.14		-0.86	Peak	100	141
	5		4880	0.00	37.0	54.0	0 -16.95	31.23	5.82	Average	290	148

40.46

28.90

5.82

10.99

10.99

Peak

Peak

Average

290

125

125

148

70

70

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor , cable loss and amplifier gain

4880.00 46.28 74.00 -27.72

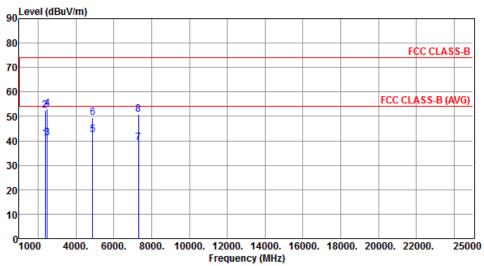
7320.00 39.89 54.00 -14.11

7320.00 52.35 74.00 -21.65 41.36

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR662202-06-1AE Page: 27 of 40

Report Version: Rev. 01

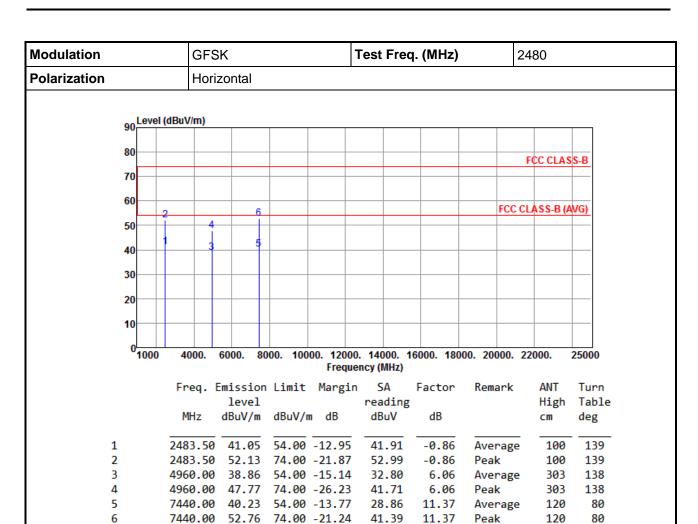

6

7

8

Modulation	GFSK	Test Fr	eq. (MHz)	24	40	
Polarization	Vertical					
90 Level (dBi	ıV/m)					

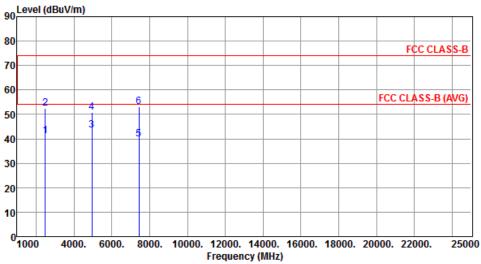
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2390.00	40.85	54.00	-13.15	42.06	-1.21	Average	347	92
2	2390.00	52.51	74.00	-21.49	53.72	-1.21	Peak	347	92
3	2483.50	41.24	54.00	-12.76	42.10	-0.86	Average	347	92
4	2483.50	53.18	74.00	-20.82	54.04	-0.86	Peak	347	92
5	4880.00	42.62	54.00	-11.38	36.80	5.82	Average	333	208
6	4880.00	49.41	74.00	-24.59	43.59	5.82	Peak	333	208
7	7320.00	39.33	54.00	-14.67	28.34	10.99	Average	100	150
8	7320.00	50.69	74.00	-23.31	39.70	10.99	Peak	100	150


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR662202-06-1AE Page: 28 of 40


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB) *Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR662202-06-1AE Page: 29 of 40

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Vertical		
Laural (dDa)			

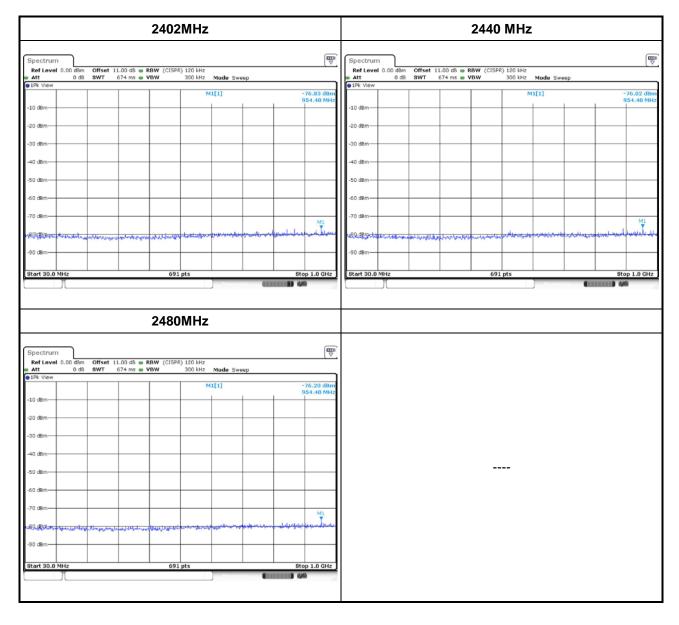
	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2483.50	41.12	54.00	-12.88	41.98	-0.86	Average	351	91
2	2483.50	52.49	74.00	-21.51	53.35	-0.86	Peak	351	91
3	4960.00	43.60	54.00	-10.40	37.54	6.06	Average	342	200
4	4960.00	50.76	74.00	-23.24	44.70	6.06	Peak	342	200
5	7440.00	39.84	54.00	-14.16	28.47	11.37	Average	118	144
6	7440.00	53.12	74.00	-20.88	41.75	11.37	Peak	118	144

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

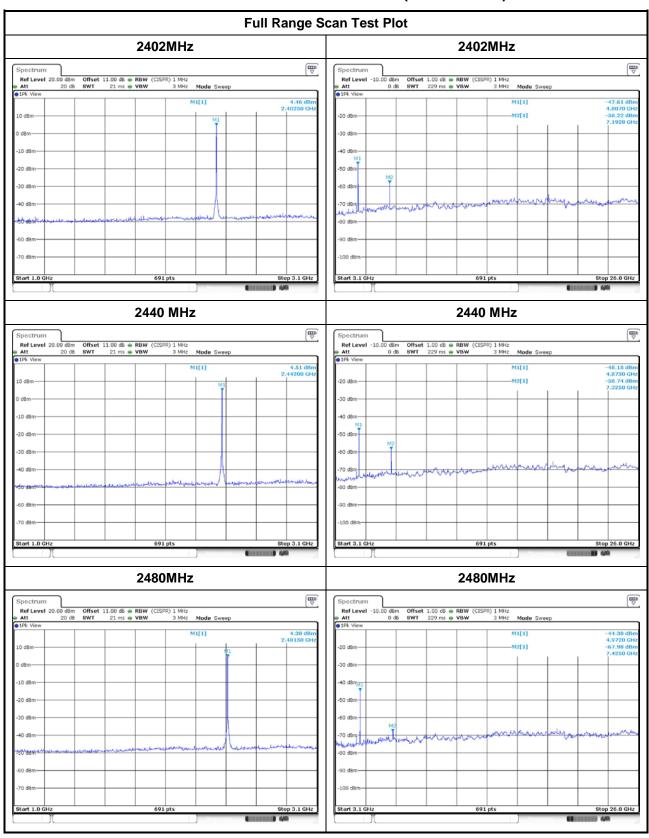
Report No.: FR662202-06-1AE Page: 30 of 40



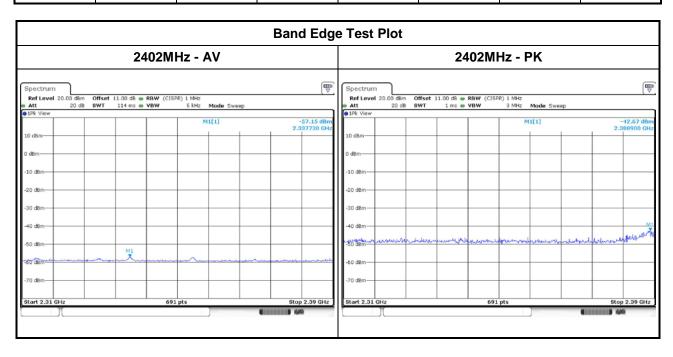
3.5.6 Transmitter Conducted Unwanted Emissions (Below 1 GHz)

Transmitter Conducted Unwanted Emissions Results in Restrict bands									
Modulation		Bī	Γ-BLE	NTx	1				
Test ch. Freq. (MHz)	Range (MHz)	Max Value (dBm)	Gain (dBi)	GRF (dB)	EIRP (dBm)	Limit* (dBm)	Margin (dB)		
2402	30-1000	-76.83	2.21	4.7	-69.92	-55.20	-14.72		
2440	30-1000	-76.02	2.21	4.7	-69.11	-55.20	-13.91		
2480	30-1000	-76.20	2.21	4.7	-69.29	-55.20	-14.09		

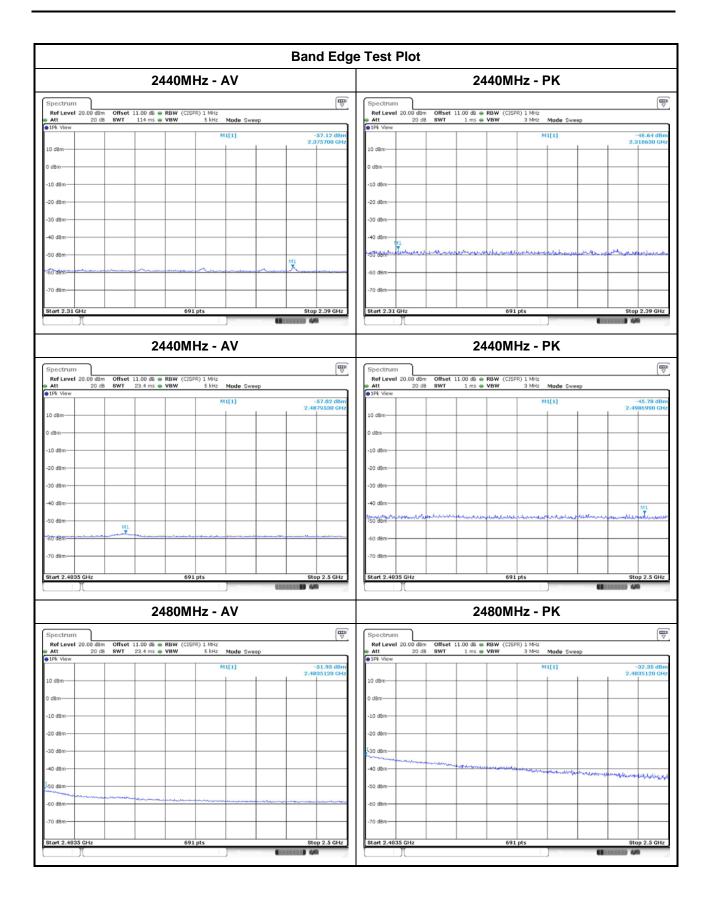
Note:


- 1. GRF = Ground Reflection Factor.
- 2. DG = Directional Gain.
- 3. Worst case of emission limit below 1GHz is selected to be limit.

Report No.: FR662202-06-1AE Page: 31 of 40

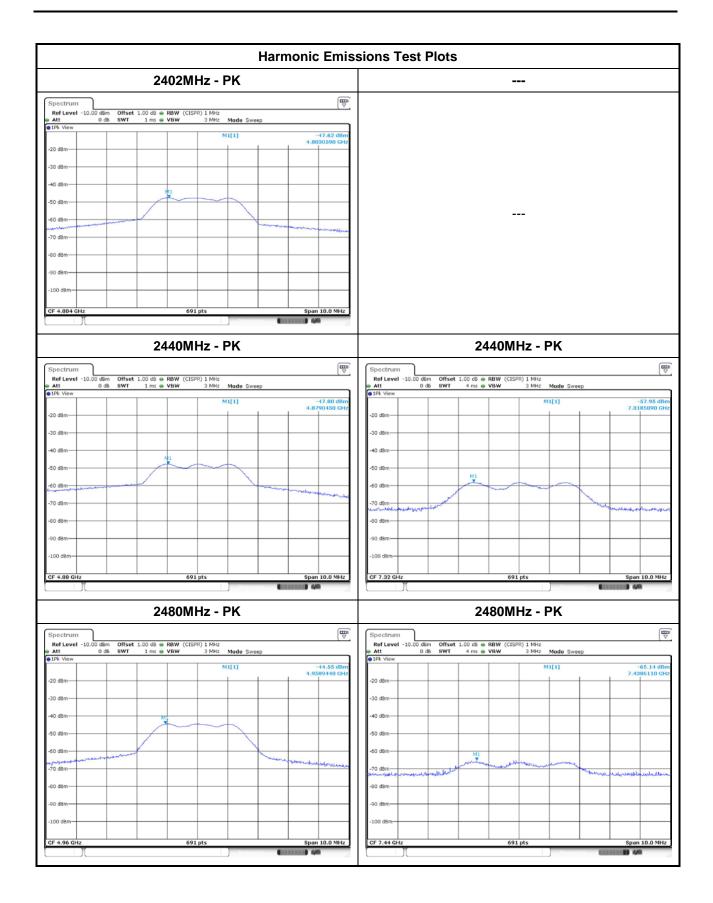

3.5.7 Transmitter Conducted Unwanted Emissions (Above 1GHz)

Report No.: FR662202-06-1AE Page: 32 of 40



	Transmitter Conducted Unwanted Emissions Results in Band Edge										
Modulation		BT-I	BLE	N ⁻	Тх	1					
Test ch. Freq. (MHz)	Freq (MHz)	Measured Value (dBm)	Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Remark				
2402	2353.70	-57.15	2.21	-54.94	-41.20	-13.74	AV				
2402	2354.05	-42.67	2.21	-40.46	-21.20	-19.26	PK				
	2375.70	-57.12	2.21	-54.91	-41.20	-13.71	AV				
2440	2325.22	-46.64	2.21	-44.43	-21.20	-23.23	PK				
2440	2487.88	-57.02	2.21	-54.81	-41.20	-13.61	AV				
	2488.24	-45.78	2.21	-43.57	-21.20	-22.37	PK				
2490	2483.51	-51.95	2.21	-49.74	-41.20	-8.54	AV				
2480	2483.51	-32.35	2.21	-30.14	-21.20	-8.94	PK				

Report No.: FR662202-06-1AE Page: 33 of 40


Report No.: FR662202-06-1AE Page: 34 of 40

Modulation		BT-BLE		NTx		1	
Test ch. Freq. (MHz)	Freq (MHz)	Measured Value (dBm)	Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Remark
2402	-	-	2.21	-	-41.20	-	AV
	4804.00	-47.62	2.21	-45.41	-21.20	-24.21	PK
	-	-	2.21	-	-41.20	-	AV
0440	4880.00	-47.80	2.21	-45.59	-21.20	-24.39	PK
2440	-	-	2.21	-	-41.20	-	AV
	7320.00	-57.95	2.21	-55.74	-21.20	-34.54	PK
	-	-	2.21	-	-41.20	-	AV
0.400	4960.00	-44.55	2.21	-42.34	-21.20	-21.14	PK
2480	-	-	2.21	-	-41.20	-	AV
	7440.00	-65.14	2.21	-62.93	-21.20	-41.73	PK

Report No.: FR662202-06-1AE Page: 35 of 40

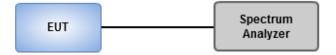
Report No.: FR662202-06-1AE Page: 36 of 40

3.6 Emissions in non-restricted Frequency Bands

3.6.1 Emissions in non-restricted frequency bands limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz

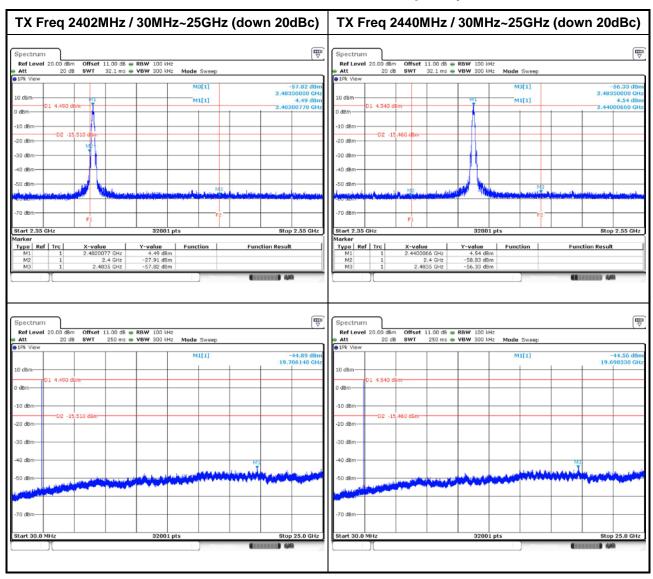
3.6.2 Test Procedures


Reference level measurement

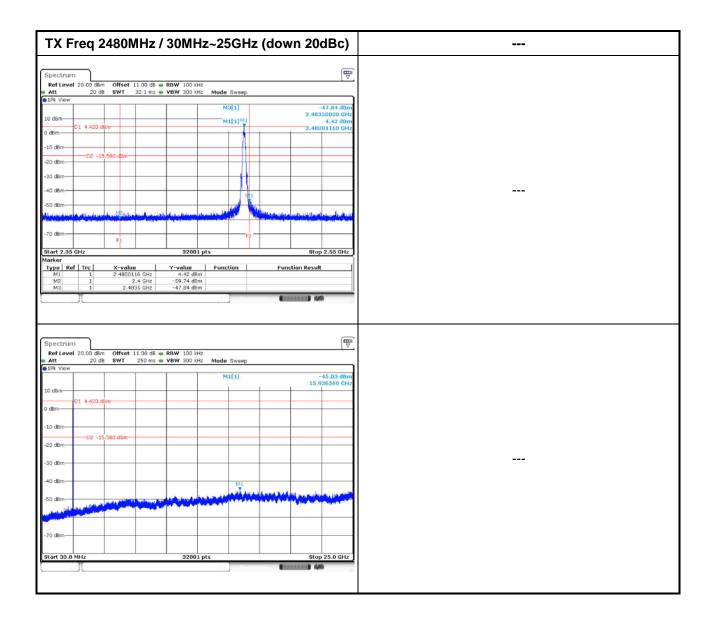
- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level


3.6.3 Test Setup

Report No.: FR662202-06-1AE Page: 37 of 40



3.6.4 Test Result of Emissions in non-restricted Frequency Bands

Report No.: FR662202-06-1AE Page: 38 of 40

Report No.: FR662202-06-1AE Page: 39 of 40

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City,

Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR662202-06-1AE Page: 40 of 40