

FCC C2PC Test Report

FCC ID	:	SQG-WB50NBT
Equipment	:	Wireless 802.11abgn + BT4.1 intelligent module
Model No.	:	WB50NBT
Brand Name	:	Laird Connectivity
Applicant	:	Laird Connectivity
Address	:	W66N220 Commerce Court, Cedarburg, Wisconsin 53012, USA
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Apr. 02, 2020
Tested Date	:	Jun. 01 ~ Jun. 04, 2020

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ong Chen

Along Cherk/ Assistant Manager

Gary Chang / Manager

Approved by:

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	Test Equipment List and Calibration Data	8
1.5	Test Standards	9
1.6	Deviation from Test Standard and Measurement Procedure	
1.7	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	Testing Facility	10
2.3	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	Emissions in Restricted Frequency Bands	15
4	TEST LABORATORY INFORMATION	26

Release Record

Report No.	Version	Description	Issued Date
FR631002-07AE	Rev. 01	Initial issue	Jun. 29, 2020

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207		[dBuV]: 0.350MHz 36.54 (Margin -12.42dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 2483.50MHz 50.71 (Margin -3.29dB) - AV	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

This is a Class II Permissive Change report (C2PC).

This report is issued as a supplementary report to the original project no. FR631002AE. The modification is concerned with

- \diamond adding new antennas.
- ♦ Updated brand name and applicant.

Therefore, conducted emission and radiated emission tests were performed for this C2PC.

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	Bluetooth Mode	Ch. Freq. (MHz)	Channel Number	Data Rate			
2400-2483.5	V4.1 LE	2402-2480	0-39 [40]	1 Mbps			
Note 1: Bluetooth LE	Note 1: Bluetooth LE (Low energy) uses GFSK modulation.						

1.1.2 Antenna Details (New set of antennas were marked in boldface.)

Ant.	Model	Туре	Connector	Operati	ng Frequen	cies (MHz) /	Antenna Ga	ain (dBi)
No.	Woder	туре	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850
1	Laird MAF94051	Dipole	RP-SMA	2.1	2.4	2.6	3.4	3.4
2	Laird NanoBlade-IP04	PCB Dipole	IPEX MHF	2	3.9	3.9	4	4
3	Laird MAF95310 Mini NanoBlade Flex	PCB Dipole	IPEX MHF	2.79	3.38			
4	Laird NanoBlue-IP04	PCB Dipole	IPEX MHF	2				
5	Ethertronics WLAN_1000146	Isolated Magnetic Dipole	IPEX MHF	2.5	3.5			
6	Ethertronics 1004450	PCB Dipole	U.FI	1.3	2.69	2.69	2	1.9
7	Ethertronics 1004788	Dipole	U.FI	2.2	2.7			
8	Ethertronics 1004791	Dipole	U.FI	1.8	2.6			

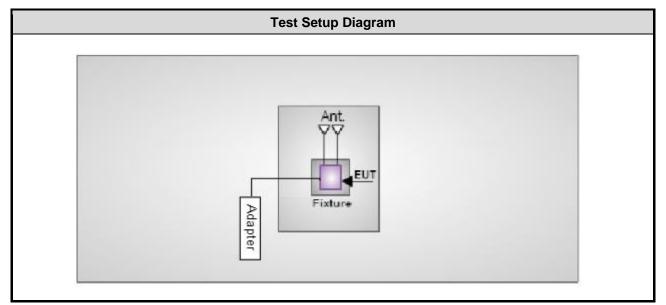
1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 3.3Vdc from host

1.1.4 Accessories

N/A

1.1.5 Channel List


	Frequency	band (MHz)			2400~2	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	S/N	FCC ID	Remarks	
1	Notebook	DELL	Latitude E6430	9ZFB4X1	DoC		
2	Fixture					Provided by applicant	
3	Adapter	OEM	ADS0128-W 120100			Provided by applicant	

1.3 Test Setup Chart

Note: The support notebook was disconnected from EUT and removed from test table when EUT is set to transmit continuously.

Test Equipment List and Calibration Data 1.4

Test Item	Conducted Emission							
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)						
Tested Date	Jun. 04, 2020							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Receiver	R&S	ESR3	101658	Dec. 12, 2019	Dec. 11, 2020			
LISN	R&S	ENV216	101579	Mar. 12, 2020	Mar. 11, 2021			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 22, 2019	Oct. 21, 2020			
Measurement Software	AUDIX	e3	6.120210k	NA	NA			

Test Item	Radiated Emission							
Test Site	966 chamber 3 / (03C	966 chamber 3 / (03CH03-WS)						
Tested Date	Jun. 01, 2020							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101499	Jan. 09, 2020	Jan. 08, 2021			
Receiver	R&S	ESR3	101657	Feb. 14, 2020	Feb. 13, 2021			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 29, 2020	Apr. 28, 2021			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Dec. 27, 2019	Dec. 26, 2020			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2019	Nov. 14, 2020			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2019	Nov. 12, 2020			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 07, 2019	Oct. 06, 2020			
Preamplifier	EMC	EMC02325	980187	Aug. 14, 2019	Aug. 13, 2020			
Preamplifier	Agilent	83017A	MY53270014	Aug. 07, 2019	Aug. 06, 2020			
Preamplifier	EMC	EMC184045B	980192	Aug. 01, 2019	Jul. 31, 2020			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/ 4	Sep. 27, 2019	Sep. 26, 2020			
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Sep. 27, 2019	Sep. 26, 2020			
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Sep. 27, 2019	Sep. 26, 2020			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Sep. 27, 2019	Sep. 26, 2020			
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Sep. 27, 2019	Sep. 26, 2020			
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Sep. 27, 2019	Sep. 26, 2020			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.6 Deviation from Test Standard and Measurement Procedure

None

1.7 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty				
Parameters	Uncertainty			
AC conducted emission	±2.92 dB			
Radiated emission ≤ 1GHz	±3.96dB			
Radiated emission > 1GHz	±4.51 dB			

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	25°C / 62%	Alex Tsai
Radiated Emissions	03CH03-WS	24°C / 64% 20°C / 64%	Brad Wu Aska Huang

➢ FCC Designation No.: TW0009

➤ FCC site registration No.: 207696

> ISED#: 10807A

➤ CAB identifier: TW2732

2.2 Testing Facility

Test Laboratory	International Certification Corp.			
Test Site	CO01-WS			
Address of Test Site No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.				
Test Site	03CH03-WS			
Address of Test Site	No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.			

2.3 The Worst Test Modes and Channel Details

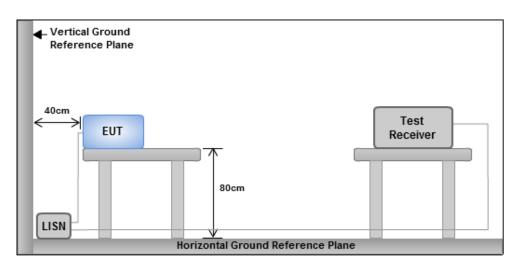
Test item	Mode	Test Frequency (MHz)	Data Rate	Test Configuration
AC Power Line Conducted Emissions Radiated Emissions ≤ 1GHz	BT LE	2440	1Mbps	-
Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	-
NOTE: 1. The EUT was pretested with 3 orienta	tions placed on the	table for the radiated	emission measurer	nent – X, Y, and

 The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

2. The antennas (1004788 & 1004791) are used for final testing for this module: (See item 1.1.2 for more details.)

3 Transmitter Test Results

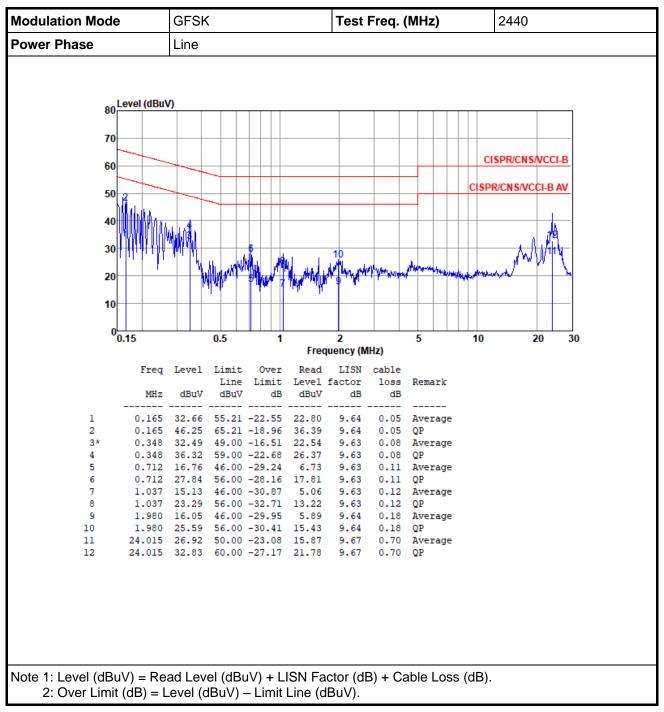
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

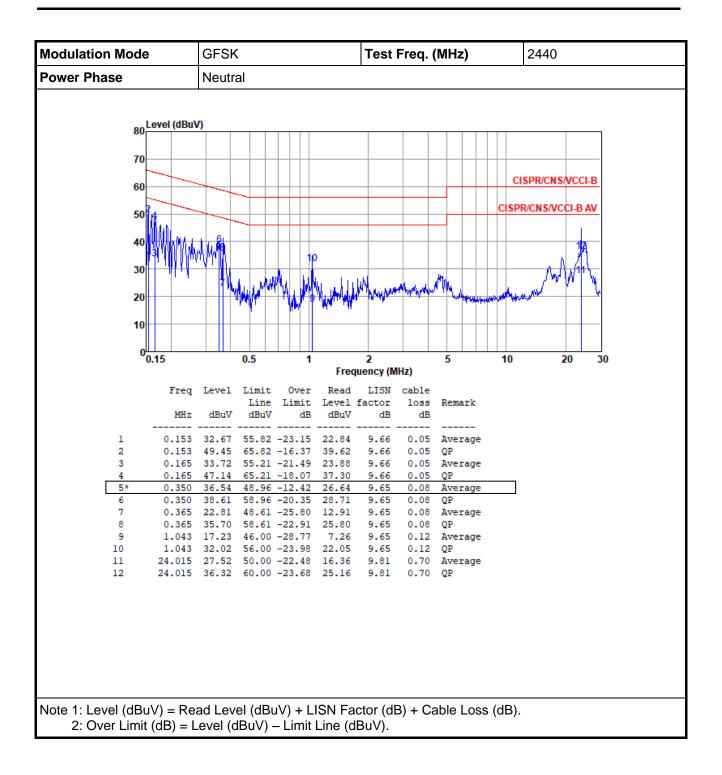
Conducted Emissions Limit									
Frequency Emission (MHz) Quasi-Peak Average									
0.15-0.5	66 - 56 *	56 - 46 *							
0.5-5	56	46							
5-30	60	50							
Note 1: * Decreases with the logarithm of the frequency.									

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

3.2 Emissions in Restricted Frequency Bands

3.2.1 Limit of Emissions in Restricted Frequency Bands

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Note 1:

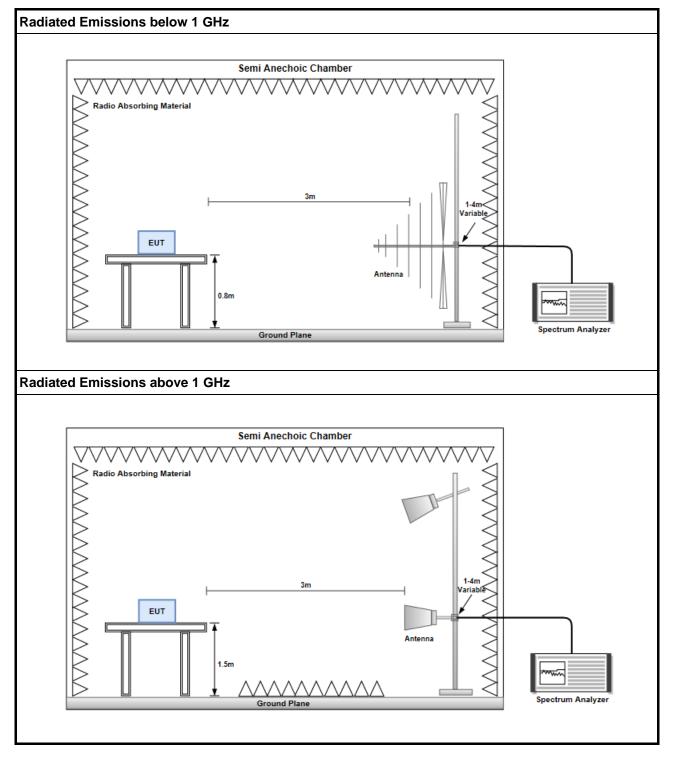
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

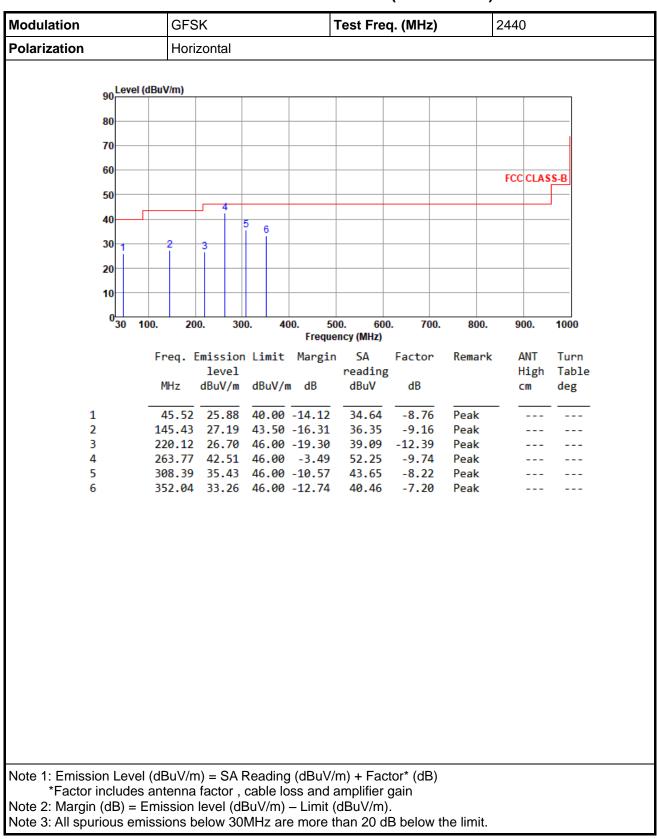
3.2.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

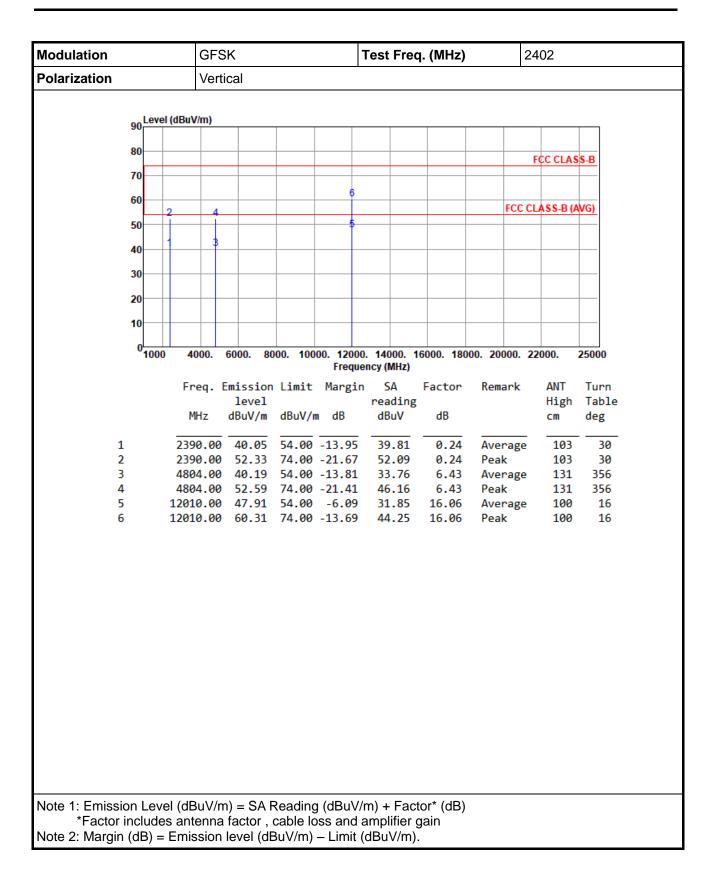

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.

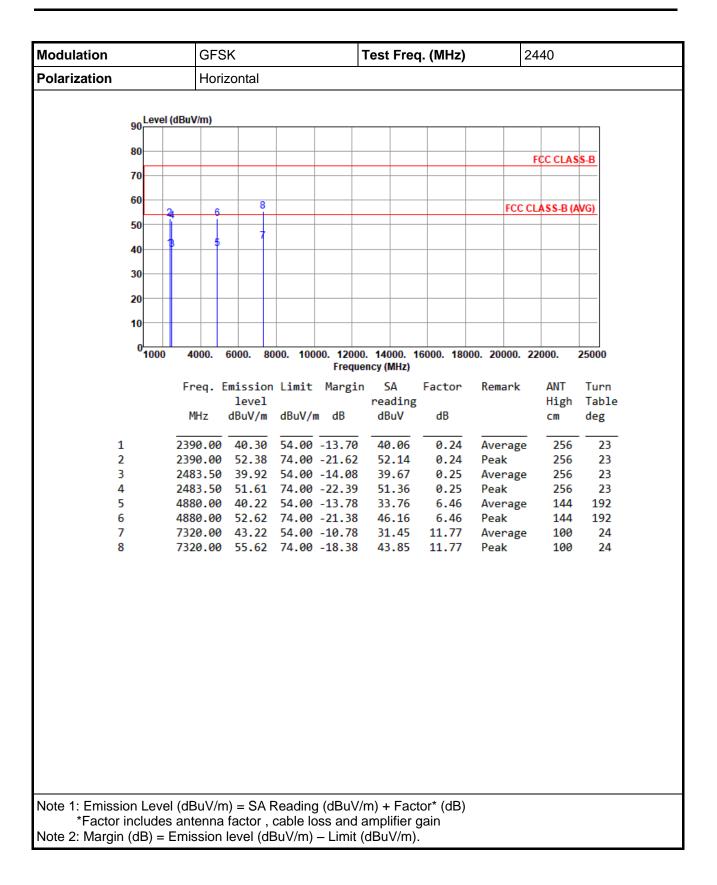
Radiated emission above 1GHz / Average value for band edge and harmonics The average value is: Average = Peak value + 20log(Duty cycle)


- The average value is. Average = Peak value + 2009(Duty c)
 Duty cycle of signal declared by applicant is 24 %
 Duty factor = 20log(Duty cycle) = 20log(24%) = -12.4 dB
- 4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz, VBW=1/T and Peak detector

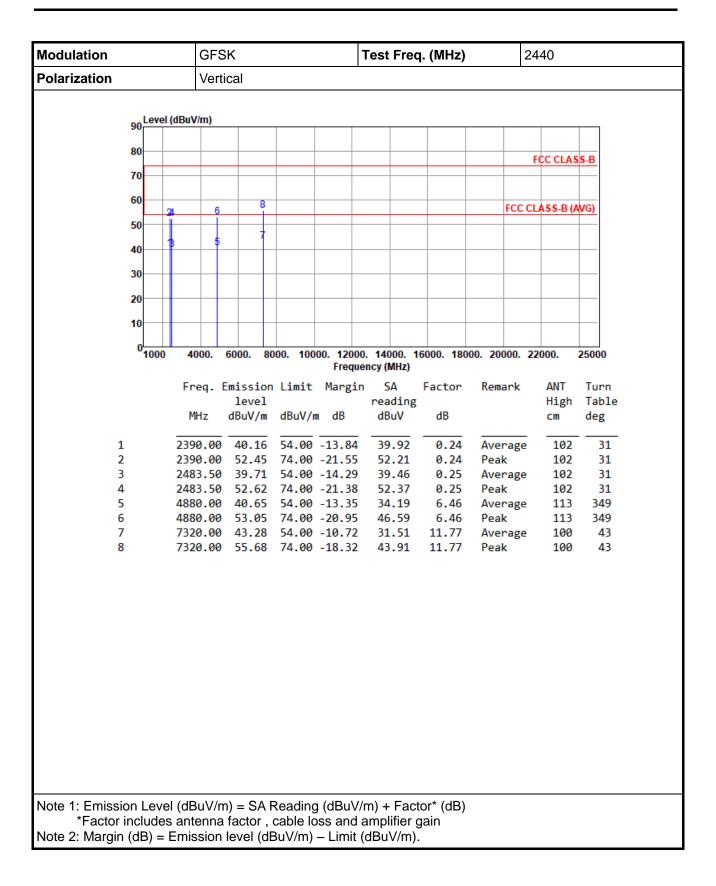
3.2.3 Test Setup

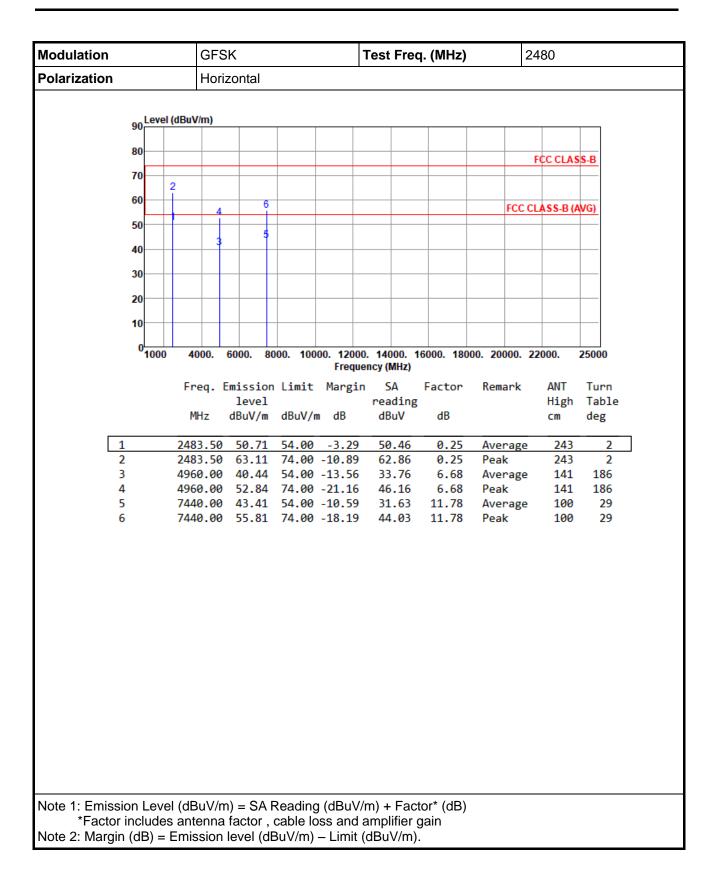
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

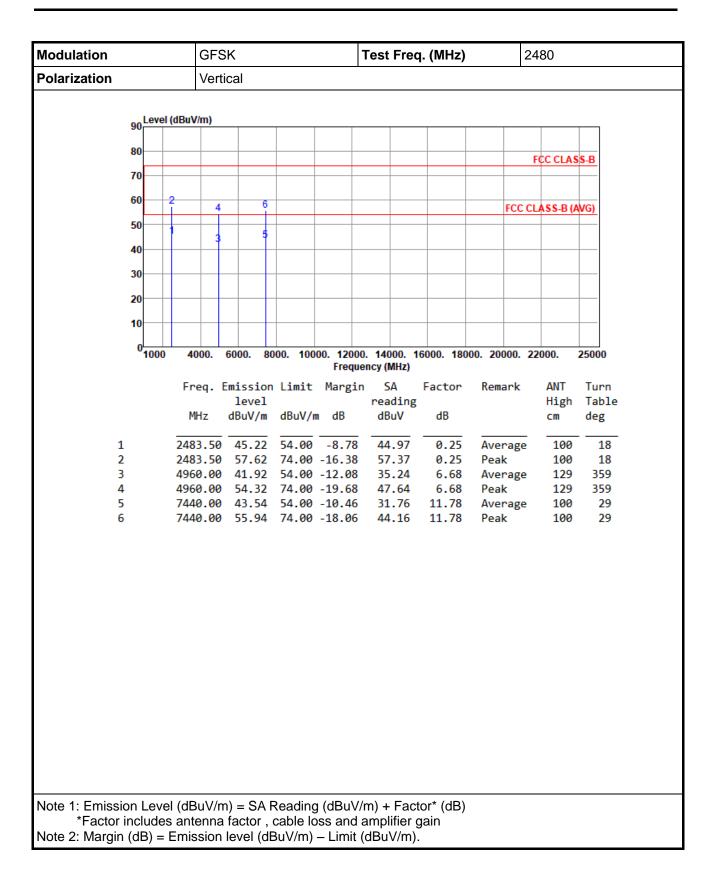

Modulation	GF	GFSK Test Freq. (MHz) 2440									
Polarization	Ve	tical									
	vol (dDu)//m)										
90 -	vel (dBuV/m)										
80											
70—											
60											
								FCC CLAS	SS-B		
50		2		3	4 5			6			
40				Ť							
30											
20					_						
10											
0 30	100. 2	00. 30	0. 40		0. 60 ncy (MHz)	0. 700.	800.	900.	1000		
	Enor	Emission	limit	-		Factor	Remark	ANT	Turn		
	iicq.	level	LIMIC	Hai Bill	reading		Nelliur K	High			
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		CM	deg		
1	38.7	3 34.27	40.00	-5.73	43.30	-9.03	Peak				
2	263.7	7 39.12	46.00	-6.88	48.86	-9.74	Peak				
3 4		5 40.54 1 40.73			43.94 43.28		Peak Peak				
5		3 39.39			43.28		Peak				
6	924.0	4 42.44	46.00	-3.56	37.51	4.93	QP	100	135		
Note 1: Emission Le	vel (dBuV/	m) = SA I	Reading	(dBuV/r	n) + Fac	ctor* (dB)					
*Factor incluc Note 2: Margin (dB)	ues antenn	a tactor , h level (di	cable lo: SuV/m) -	ss and a _ I imit (amplifier dBu\//m	gain					
Note 3: All spurious											


Modulation		GFSK Test Freq. (MHz) 2402												
Polarization				Hori	zontal									
		Leve	l (dBuV	//m)										
	9													
	8	0											CC CLAS	SS-B
	7	0												
	~						6							
	6		2	4								FCC CI	ASS-B (AVG)
	5	0		÷										+
	4	0	1	3										
	3	0												
	2	0												
	10													
		0 <mark>1000</mark>	4	000.	6000. 80	00. 100		0. 14 iency (6000. 180	00. 20	000. 2	2000.	25000
			Fr	ea.	Emission	limit	-		5A	Factor	Rem	ark	ANT	Turn
					level	CIMIC	1101 81		ading		rice in		High	
			м	Hz	dBuV/m	dBuV/r	n dB	d	BuV	dB			cm	deg
	1				40.45				9.21	0.24		rage	256	
	2				52.80				2.56	0.24	Peal		256	
	3 4				39.48 51.88				3.05 5.45	6.43 6.43		rage	149 149	
	5				47.62				1.56			rage	100	
	6				60.02				3.96	16.06	Peal	_	100	
Note 1: Emis *Facto Note 2: Marg	or inc	lude	s ant	enna	factor, o	cable lo	ss and	amp	lifier o	gain				

3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK







3.2.6 Band edge Re-evaluation by DCCF for original configurations

Below configurations and peak values are from original report, report No.: FR631002AE. This is to calculate average value by using DCCF method. Average Value = Peak value + 20log(Duty cycle) Duty cycle of signal declared by applicant is 24 %

Duty factor = 20log(Duty cycle) = 20log(24%) = -12.4 dB

Antenna Configuration	Frequency (MHz)	Polarization	Emission Level (dBuV/m)	Limit (dBuV/m)	Pass / Fail
		Horizontal	55.13(PK)	74	Pass
	0490 F	HUHZUHIAI	42.73(AV)	54	Pass
1 : MAF94051	2483.5	Vertical	59.49(PK)	74	Pass
		ventical	47.09(AV)	54	Pass
		Horizontol	60.38(PK)	74	Pass
2: MAE05210 Mini NoneBlade Flor	2483.5	Horizontal	47.98(AV)	54	Pass
2: MAF95310 Mini NanoBlade Flex) / a mti a a l	56.57(PK)	74	Pass
		Vertical	44.17(AV)	54	Pass
		Horizontol	56.07(PK)	74	Pass
2 . WI AN 1000146	0490 F	Horizontal	43.67(AV)	54	Pass
3 : WLAN_1000146	2483.5	Vartical	57.56(PK)	74	Pass
		Vertical	45.16(AV)	54	Pass

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—