

FCC C2PC Test Report

FCC ID : SQG-SU60SOMC

Equipment : 802.11ac Professional Wi-Fi + BT5.0 Module

Model No. : SU60-SOMC (453-00003)

SU60-SOMC-2G (453-00004)

(please refer to section 1.1.1 for more details.)

Brand Name : Laird Connectivity

Applicant : Laird Connectivity, LLC

Address : W66N220 Commerce Court Cedarburg WI

53012 United States Of America (Excluding

The States Of Alaska)

Standard : 47 CFR FCC Part 15.247

Received Date : Aug. 26, 2021

Tested Date : Aug. 31 ~ Sep. 02, 2021

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen / Assistant Manager Gary Chang / Manager

Testing Labor

Report No.: FR841101-05AD Page: 1 of 28

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	
1.5	Test Standards	10
1.6	Reference Guidance	10
1.7	Deviation from Test Standard and Measurement Procedure	10
1.8	Measurement Uncertainty	10
2	TEST CONFIGURATION	11
2.1	Testing Facility	11
2.2	The Worst Test Modes and Channel Details	11
3	TRANSMITTER TEST RESULTS	12
3.1	Conducted Emissions	12
3.2	Unwanted Emissions into Restricted Frequency Bands	15
3.3	Conducted Output Power	25
4	TEST LABORATORY INFORMATION	28

Release Record

Report No.	Version	Description	Issued Date
FR841101-05AD	Rev. 01	Initial issue	Oct. 05, 2021

Report No.: FR841101-05AD Page: 3 of 28

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.402MHz 34.98 (Margin -12.83dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 45.52MHz	Pass
15.209	Natiated Emissions	33.94 (Margin -6.06dB) - PK	F d 5 5
15.247(b)(1)	Conducted Output Power	Power [dBm]: 10.73	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR841101-05AD Page: 4 of 28

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a supplementary report to the original project no. FR841101AD. The modification is concerned with following:

- ♦ Revised brand name, applicant and address.
- ♦ Changed U1 to RT5170A for lower suspend mode current.
- ♦ Added C87 for solve the co-location issue with LTE.

Therefore, related test items had been performed and presented in the following sections.

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description			
Laird Connectivity	SU60-SOMC (453-00003)	802.11ac Professional Wi-Fi + BT5.0 Module	2G/1G MCP			
Laird Connectivity	SU60-SOMC-2G (453-00004)	602.11ac Professional WI-PI + B15.0 Module	2G/1G MCP 4G/2G MCP			
→ The above models, both options were assessed and SU60-SOMC-2G (453-00004) was found to be worst case and was selected for the final testing.						

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate			
2400-2483.5	BR V4.2	2402-2480	0-78 [79]	1 Mbps			
2400-2483.5	EDR V4.2	2402-2480	0-78 [79]	2 Mbps			
2400-2483.5	EDR V4.2	2402-2480	0-78 [79]	3 Mbps			

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host
-------------------	------------------

Report No.: FR841101-05AD Page: 5 of 28

1.1.4 Antenna Details

Brand	Model	Туре	Connector	Gain (dBi)
LSR	001-0009	Dipole	IPEX U.FL	2
Laird	NanoBlade-IP04	PCB Dipole	IPEX U.FL	2
Laird	MAF95310 Mini NanoBlade Flex	PCB Dipole	IPEX U.FL	2.79
LSR	FlexPIFA 001-0016	PIFA	IPEX U.FL	2.5
Ethertroni cs WLAN_1000146		Magnetic Dipole	IPEX U.FL	2.5
Laird	MIMO FlexPIFA Antenna	PIFA	IPEX U.FL	2
LSR	001-0009 (with filter)	Dipole	IPEX U.FL	2

1.1.5 Accessories

	Accessories					
No.	Equipment	Description				
1	AC Adapter	Brand Name: I.T.E POWER SUPPLY Model Name: MU12AY120100-A1 Power Rating: I/P: 100-240Vac, 50/60Hz, 0.3A O/P: 12Vdc, 1A Power Line: 1.48m non-shielded cable w/o core				

Report No.: FR841101-05AD Page: 6 of 28

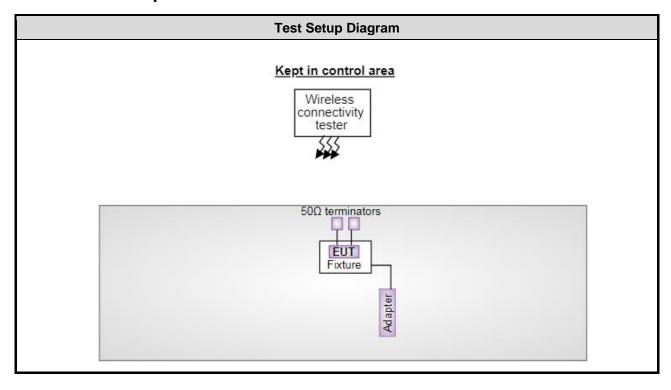
1.1.6 Channel List

Frequency band (MHz)					2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.7 Test Tool and Duty Cycle

Test Tool	Simulator, Brand: R&S / Model: CMW270				
	Mode	Duty cycle (%)	Duty factor (dB)		
Duty Cycle and Duty Footer	GFSK	47.34%	3.25		
Duty Cycle and Duty Factor	π/4-DQPSK	47.34%	3.25		
	8DPSK	47.34%	3.25		

Report No.: FR841101-05AD Page: 7 of 28


1.1.8 Power Index of Test Tool

Madulation Mada		Test Frequency (MHz)	
Modulation Mode	2402	2441	2480
GFSK/1Mbps	default	default	default
π/4-DQPSK /2Mbps	default	default	default
8DPSK/3Mbps	default	default	default

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	FCC ID	Remarks			
1	Wireless connectivity tester	R&S	CMW270	DoC				

1.3 Test Setup Chart

Report No.: FR841101-05AD Page: 8 of 28

1.4 The Equipment List

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)							
Tested Date	Sep. 02, 2021	Sep. 02, 2021							
Instrument	Brand	Brand Model No. Serial No. Calibration Date Calibration Until							
Receiver	R&S	ESR3	101658	Feb. 08, 2021	Feb. 07, 2022				
LISN	R&S ENV216 101579 Mar. 17, 2021 Mar. 16								
RF Cable-CON	Woken CFD200-NL CFD200-NL-001 Oct. 21, 2020 Oct. 20, 20								
Measurement Software AUDIX e3 6.120210k NA NA									

Test Item	Radiated Emission							
Test Site	966 chamber1 / (03Cl	H01-WS)						
Tested Date	Aug. 31, 2021							
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until			
Receiver	R&S	ESR3	101657	Mar. 12, 2021	Mar. 11, 2022			
Spectrum Analyzer	R&S	FSV40	101498	Dec. 04, 2020	Dec. 03, 2021			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 17, 2020	Nov. 16, 2021			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jun. 30, 2021	Jun. 29, 2022			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2020	Dec. 10, 2021			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170508	Dec. 31, 2020	Dec. 30, 2021			
Preamplifier	EMC	EMC02325	980225	Jun. 29, 2021	Jun. 28, 2022			
Preamplifier	Agilent	83017A	MY39501308	Sep. 26, 2020	Sep. 25, 2021			
Preamplifier	EMC	EMC184045B	980192	Jul. 14, 2021	Jul. 13, 2022			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 06, 2020	Oct. 05, 2021			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 06, 2020	Oct. 05, 2021			
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 06, 2020	Oct. 05, 2021			
LF cable 1M	EMC	EMC EMCCFD400-NM-N M-1000		Oct. 06, 2020	Oct. 05, 2021			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Oct. 06, 2020	Oct. 05, 2021			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Oct. 06, 2020	Oct. 05, 2021			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

Report No.: FR841101-05AD Page: 9 of 28

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Aug. 31, 2021				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101063	Apr. 19, 2021	Apr. 18, 2022
Power Meter	Anritsu	ML2495A	1241002	Nov. 04, 2020	Nov. 03, 2021
Power Sensor	Anritsu	MA2411B	1207366	Nov. 04, 2020	Nov. 03, 2021
Measurement Software	Sporton-	SENSE-15247_FS	V5.10.7.11	NA	NA
Wireless connectivity tester	R&S	CMW270	100856	Nov. 02, 2020	Nov. 01, 2021
Note: Calibration Inter	val of instruments liste	d above is one year.		•	

1.5 Test Standards

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty						
Parameters	Uncertainty					
Bandwidth	±34.130 Hz					
Conducted power	±0.808 dB					
Power density	±0.583 dB					
Conducted emission	±2.715 dB					
AC conducted emission	±2.92 dB					
Radiated emission ≤ 1GHz	±3.41 dB					
Radiated emission > 1GHz	±4.59 dB					
Time	±0.1%					

Report No.: FR841101-05AD Page: 10 of 28

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	CO01-WS, 03CH01-WS, TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions Radiated Emissions ≤ 1GHz Radiated Emissions > 1GHz	GFSK	2402	1Mbps	
Band edge	GFSK	2441	1Mbps	
Conducted Output Power	GFSK nducted Output Power л/4 DQPSK 8DPSK		1Mbps 2Mbps 3Mbps	

NOTE:

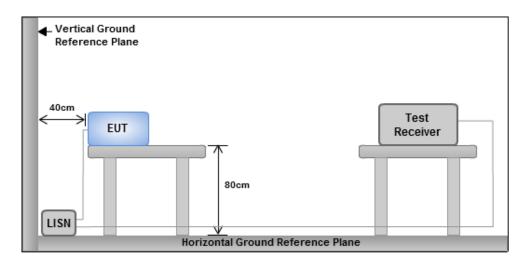
Report No.: FR841101-05AD Page: 11 of 28

^{1.} The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement - X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.

^{2.} 50Ω terminator is connected to antenna port of EUT for radiated emission measurement.

3 Transmitter Test Results

3.1 Conducted Emissions

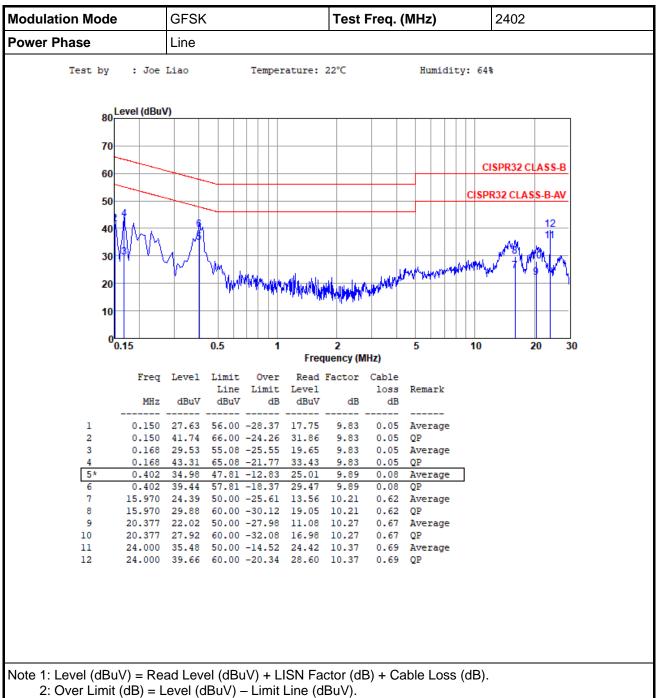

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 - 46 *							
0.5-5	56	46					
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

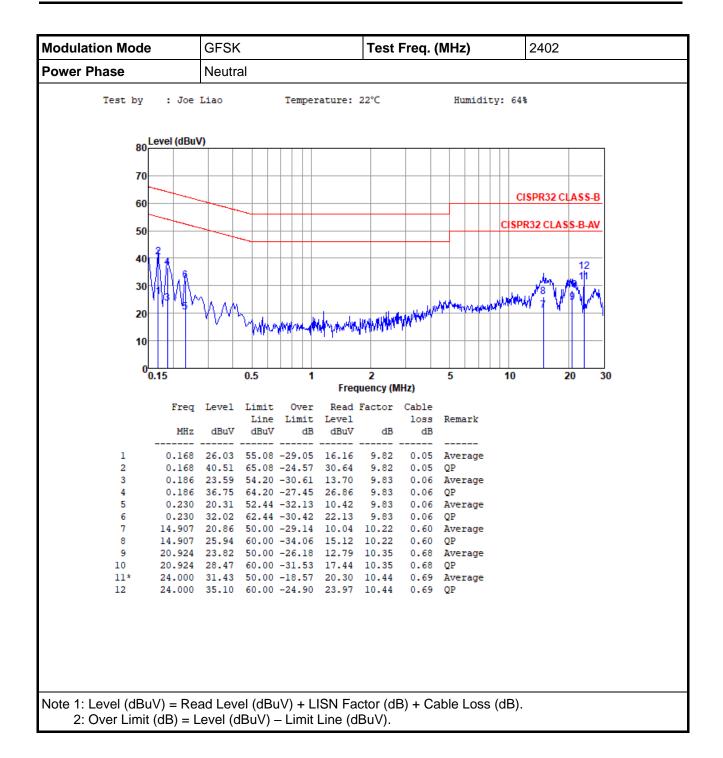
- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR841101-05AD Page: 12 of 28



3.1.4 **Test Result of Conducted Emissions**

Report No.: FR841101-05AD Page: 13 of 28

Report No.: FR841101-05AD Page: 14 of 28

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

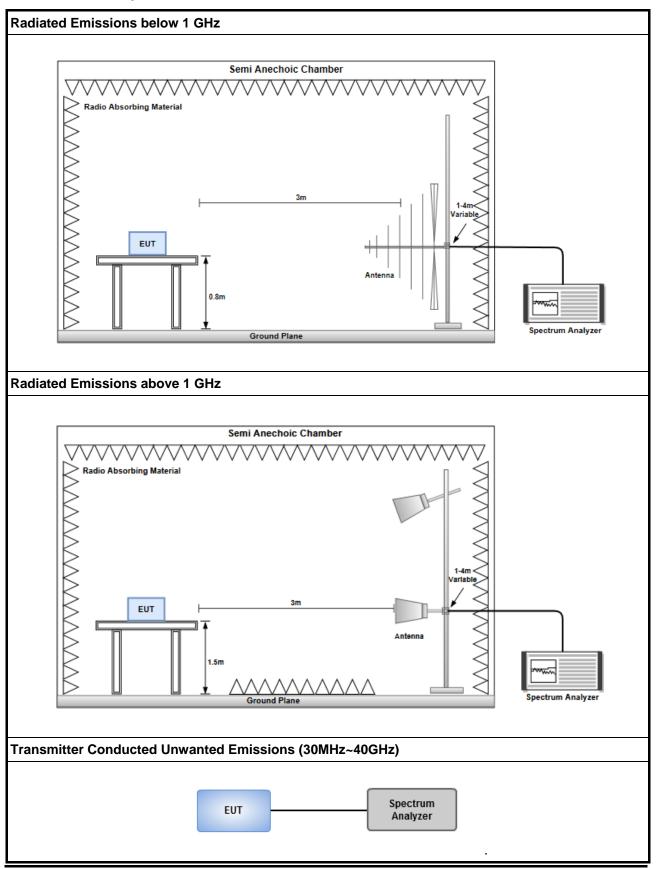
- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

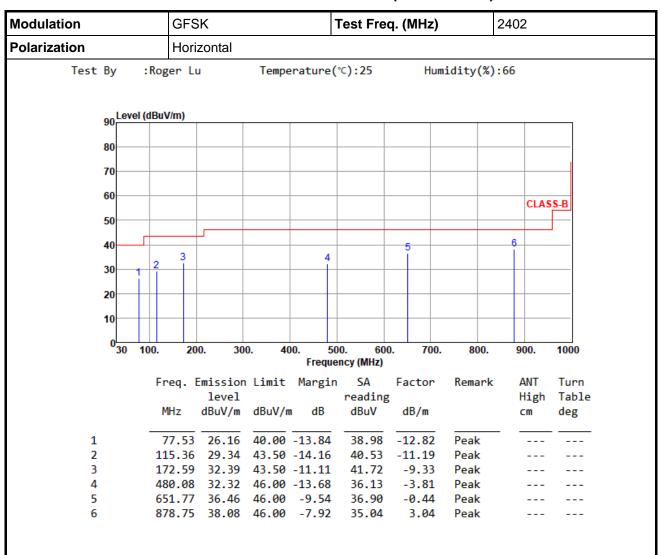
Radiated emission above 1GHz / Average value for harmonics

The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


3.
$$20\log \text{ (Duty cycle)} = 20\log \frac{1\text{s}/1600 * 5}{100 \text{ ms}} = -30.1 \text{dB}$$

4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz. VBW=1/T and Peak detector

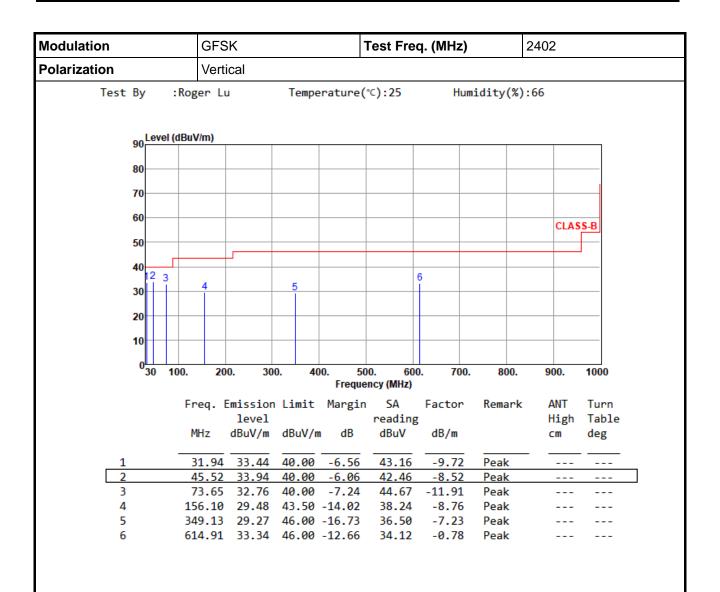
Report No.: FR841101-05AD Page: 15 of 28


3.2.3 Test Setup

Report No.: FR841101-05AD Page: 16 of 28

3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)


*Factor includes antenna factor, cable loss and amplifier gain

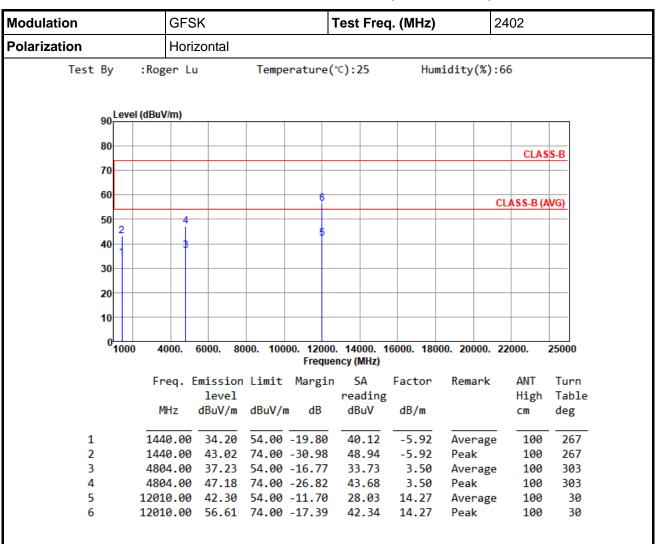
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR841101-05AD Page: 17 of 28

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

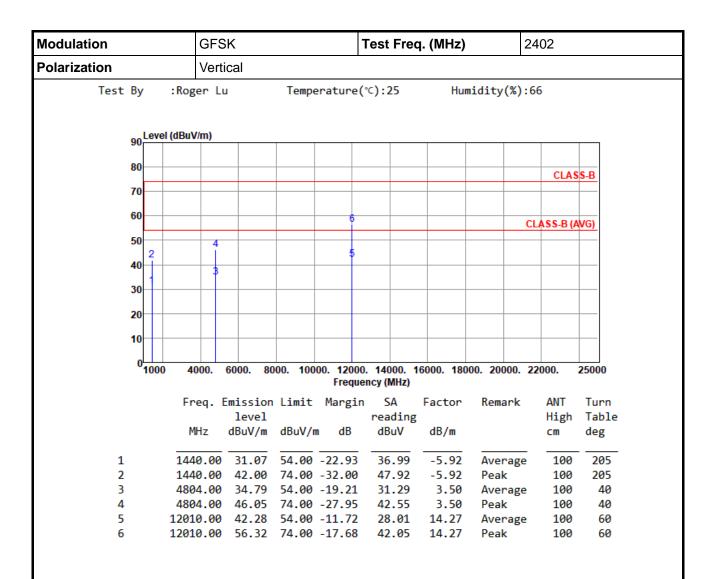
*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR841101-05AD Page: 18 of 28

3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

Report No.: FR841101-05AD Page: 19 of 28

^{*}Factor includes antenna factor, cable loss and amplifier gain

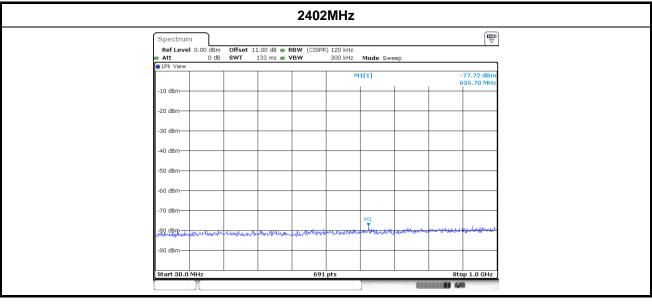
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV) + Factor* (dB/m)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR841101-05AD Page: 20 of 28

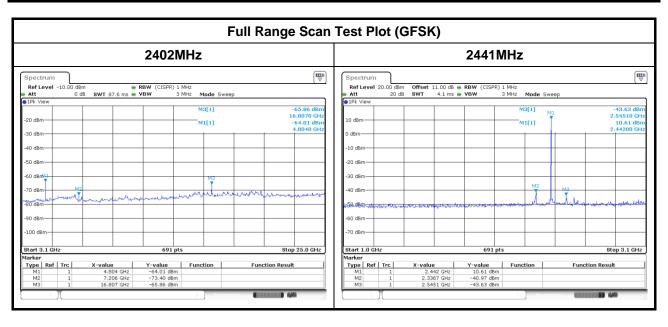


3.2.6 Transmitter Conducted Unwanted Emissions (Below 1 GHz)

Modulat	Modulation Mode		GFSK		2402MHz	
Range (MHz)	Max Value (dBm)	DG (dBi)	GRF (dB)	EIRP (dBm)	Min E-Field Limit (dBm)	E-Field Margin (dB)
30~1000	-77.72	2.79	4.70	-70.23	-55.20	-15.03

Note:

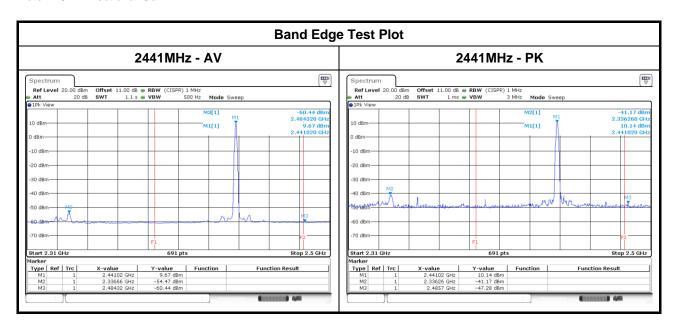
- 1. GRF = Ground Reflection Factor.
- 2. DG = Directional Gain.
- 3. Worst case of emission limit below 1GHz is selected to be limit.



Report No.: FR841101-05AD Page: 21 of 28

3.2.7 Transmitter Conducted Unwanted Emissions (Above 1GHz)

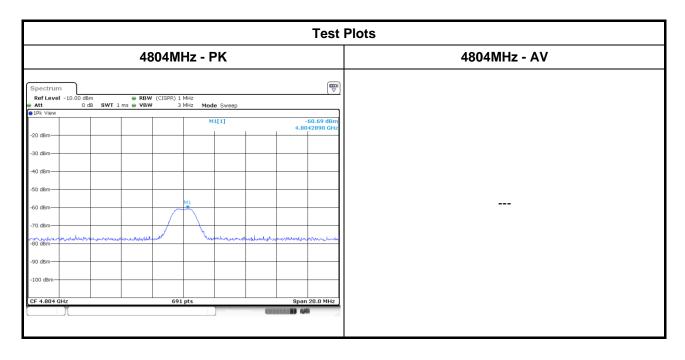
Ambient Condition24°C / 66%Tested ByAska Huang



Report No.: FR841101-05AD Page: 22 of 28

	Transmitter Conducted Unwanted Emissions Results in Band Edge								
Modulation Mode GFSK									
Test ch. Freq. (MHz)	Range (MHz)	Max Value (dBm)	DG (dBi)	EIRP (dBm)	E-Field Limit (dBm)	E-Field Margin (dB)	Remark		
	2310~2390	-41.17	2.79	-38.38	-21.20	-17.18	PK		
2441	2310~2390	-54.47	2.79	-51.68	-41.20	-10.48	AV		
2441	2483.5~2500	-47.28	2.79	-44.49	-21.20	-23.29	PK		
	2483.5~2500	-60.44	2.79	-57.65	-41.20	-16.45	AV		

Note: DG = Directional Gain.


Report No.: FR841101-05AD Page: 23 of 28

Transmitter Conducted Unwanted Emissions Results in Restricted Frequency Band							
Modulation Mode GFSK Frequency 2402MHz							
Freq. (MHz)	Remark	Max Value DG (dBm) (dBi)		EIRP (dBm)	E-Field Limit (dBuV/m)	E-Field Margin (dB)	
4804.00	PK	-60.69	2.79	-57.90	-21.20	-36.70	
4804.00	AV	-	2.79	-	-41.20	-	

Note:

- 1. If the PK margin greater than 20 dB, there is no need to get AVG reading.
- 2. DG = Directional Gain.

Report No.: FR841101-05AD Page: 24 of 28

3.3 Conducted Output Power

3.3.1 Limit of Conducted Output Power

1 Watt For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.
0.125 Watt For all other frequency hopping systems in the 2400–2483.5 MHz band.
0.125 Watt For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.3.2 Test Procedures

- A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.3.3 Test Setup

Report No.: FR841101-05AD Page: 25 of 28

3.3.4 Test Result of Conducted Output Power

Ambient Condition	24°C / 66%	Tested By	Aska Huang
-------------------	------------	-----------	------------

Summary of Peak Conducted Output Power

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	10.73	0.01183
BT-EDR(2Mbps)	10.02	0.01005
BT-EDR(3Mbps)	10.29	0.01069

Result

Mode	Result	Antenna Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	2.79	10.73	21.00
2441MHz	Pass	2.79	10.19	21.00
2480MHz	Pass	2.79	9.67	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	2.79	10.02	21.00
2441MHz	Pass	2.79	9.51	21.00
2480MHz	Pass	2.79	8.95	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	2.79	10.29	21.00
2441MHz	Pass	2.79	9.76	21.00
2480MHz	Pass	2.79	9.21	21.00

Report No.: FR841101-05AD Page: 26 of 28

Summary of Conducted (Average) Output Power

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	10.67	0.01167
BT-EDR(2Mbps)	7.56	0.00570
BT-EDR(3Mbps)	7.57	0.00571

Result

Mode	Result	Antenna Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	2.79	10.67	-
2441MHz	Pass	2.79	10.14	-
2480MHz	Pass	2.79	9.61	-
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	2.79	7.56	-
2441MHz	Pass	2.79	7.00	-
2480MHz	Pass	2.79	6.46	-
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	2.79	7.57	-
2441MHz	Pass	2.79	7.01	-
2480MHz	Pass	2.79	6.47	-

Report No.: FR841101-05AD Page: 27 of 28

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC Service@icertifi.com.tw

--END---

Report No.: FR841101-05AD Page: 28 of 28