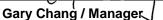


FCC DFS Test Report

FCC ID	:	SQG-SSD50NBT
Equipment	:	802.11abgn 2x2 and Bluetooth 4.0 module
Model No.	:	SSD50NBT
Brand Name	:	Laird
Applicant	:	Laird Connectivity
Address	:	W66N220 Commerce Court, Cedarburg, Wisconsin 53012, USA
Standard	:	47 CFR FCC Part 15.407
Received Date	:	Nov. 12, 2019
Tested Date	:	Nov. 22, 2019
Operating Mode	:	Client Without Radar Detection


We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ons Chei

Along Cherk/ Assistant Manager

Approved by:

Table of Contents

1	GENERAL DESCRIPTION
1.1	Information5
1.2	Support Equipment List
1.3	The Equipment List6
1.4	Testing Condition6
1.5	Test Standards
1.6	Deviation from Test Standard and Measurement Procedure
2	TECHNICAL REQUIREMENTS FOR DFS8
2.1	Applicability of DFS Requirements
2.2	DFS Detection Thresholds and Response Requirement9
2.3	Radar Test Waveforms
3	DFS TEST RESULT14
3.1	DFS Detection Threshold levels
3.2	In-Service Monitoring15
3.3	Non-Associated
4	TEST LABORATORY INFORMATION19

Release Record

Report No.	Version	Description	Issued Date
FZ5D1002-02	Rev. 01	Initial issue	Jan. 03, 2020

Summary of Test Results

FCC Rules		Description of Test	Result
FCC 15.407	KDB 905462 D02	Non-Occupancy Period	Pass
FCC 15.407	KDB 905462 D02	Channel Closing Transmission Time	Pass
FCC 15.407	KDB 905462 D02	Channel Move Time	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

This report is issued as a supplementary report to original ICC report no. FZ5D1002. The modification is concerned with following item:

♦ CH144 (5720MHz) & CH142 (5710MHz) are activated by software.

1.1.1 Specification of the Equipment under Test (EUT)

Frequency Range (GHz)	5.15~5.25, 5.25~5.35, 5.47~5.725, 5.725 ~ 5.85		
Wireless Function	11a / HT20 / HT40		
Operating Mode at DFS Band	Client without radar detection and ad hoc function		
Firmware / Software Version	WB50_RDVK_plus_Ch144		

1.1.2 Antenna Details

Ant.	Model	Туре	Connector	Operati	ng Frequeno	cies (MHz) /	Antenna Ga	ain (dBi)
No.	model	Турс	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850
1	Laird MAF94051	Dipole	RP-SMA	2.1	2.4	2.6	3.4	3.4
2	Laird NanoBlade-IP04	PCB Dipole	IPEX MHF	2	3.9	3.9	4	4
3	Laird MAF95310 Mini NanoBlade Flex	PCB Dipole	IPEX MHF	2.79	3.38	3.38	3.38	3.38
4	Laird NanoBlue-IP04	PCB Dipole	IPEX MHF	2				
5	Ethertronics WLAN_1000146	Isolated Magnetic Dipole	IPEX MHF	2.5	3.5	3.5	3.5	3.5

1.2 Support Equipment List

	Support Equipment List					
No.	Equipment	Brand Name	Model Name	FCC ID		
1	AP	Extreme Networks	WS-AP3805e	QXO-4200		
2	Notebook	DELL	LATITUDE-E6430	9ZFB4X1		
3	Notebook	DELL	LATITUDE-E5420	B6FV9T1		

1.3 The Equipment List

Test Site	DF01-WS				
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV7	101607	Dec. 20, 2018	Dec. 19, 2019
RF Cable	HUBER+SUHNER	SUCOFLEX_104	MY15686/4	Oct. 16, 2019	Oct. 15, 2020
RF Cable	HUBER+SUHNER	SUCOFLEX_104	296081/4	Oct. 16, 2019	Oct. 15, 2020
RF Cable	HUBER+SUHNER	SUCOFLEX_104	329023/4	Oct. 16, 2019	Oct. 15, 2020
RF Cable	HUBER+SUHNER	SUCOFLEX_104	329021/4	Oct. 16, 2019	Oct. 15, 2020
Vector signal generator	R&S	SMJ100A	100498	Dec. 26, 2018	Dec. 25, 2019
Splitter (1X2)	WOKEN	2WAYDIV	12101200003	Oct. 16, 2019	Oct. 15, 2020
Splitter (1X4)	WOKEN	4WAYDIV	0120A042011010	Oct. 16, 2019	Oct. 15, 2020
Attenuator	woken	PE7013-10	10-1	Oct. 16, 2019	Oct. 15, 2020
Attenuator	woken	PE7013-10	10-2	Oct. 16, 2019	Oct. 15, 2020
Attenuator	woken	PE7013-20	20-1	Oct. 16, 2019	Oct. 15, 2020
Attenuator	woken	PE7013-20	20-2	Oct. 16, 2019	Oct. 15, 2020
20dB Attenuator	MVE	MVE2462-20	16050401	Oct. 16, 2019	Oct. 15, 2020
30dB Attenuator	MVE	MVE2462-30	16050401	Oct. 16, 2019	Oct. 15, 2020
Direction Coupler	Marvelous Microwave	MVE4514-20	20	Oct. 16, 2019	Oct. 15, 2020
Measurement Software	ICC	DFS	V1.3.30	NA	NA

1.4 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
DFS	DF01-WS	25°C / 65%	Jack Li

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

FCC KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r02

FCC KDB 905462 D06 802 11 Channel Plans v02

1.6 Deviation from Test Standard and Measurement Procedure

None

1.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty			
Parameters	Uncertainty		
Time	±0.1%		

2 Technical Requirements for DFS

2.1 Applicability of DFS Requirements

2.1.1 Applicability of DFS Requirements Prior to use of a Channel

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

2.1.2 Applicability of DFS Requirements during Normal Operation

	Operational Mode			
Requirement	Master or Client With Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices	Operational Mode			
with multiple bandwidth modes	Master or Client With Radar Detection	Client Without Radar Detection		
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required		
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link		
All other tests	Any single BW mode	Not required		

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies between the bonded 20 MHz channel blocks.

2.2 DFS Detection Thresholds and Response Requirement

Below table provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1 , 2 and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm / MHz	-62 dBm
EIRP < 200 milliwatt and that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response Requirement Values

Parameter	Value		
Non-occupancy period	Minimum 30 minutes.		
Channel Availability Check Time	60 seconds.		
Channel Move Time	10 seconds. (See Note 1.)		
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and 2.)		
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3.)		

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

2.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

2.3.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note1	See Note1
1		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}. \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \operatorname{sec}}} \end{pmatrix} \right\}$	60%	30
		Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types 1-4)			80%	120
	ort Pulse Radar Typ	be 0 should be used	for the detection ba	ndwidth test, chanr	nel move time, and

channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous in Tests A or B.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Pulse Repetition Intervals Values for Test A

2.3.2 Long Pulse Radar Test Waveform

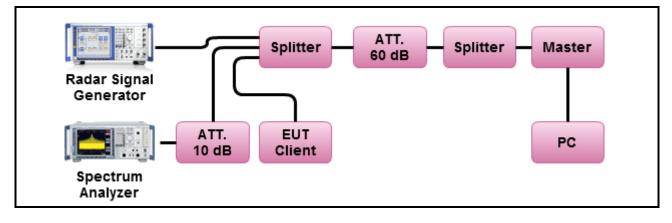
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

2.3.3 Frequency Hopping Radar Test Waveform

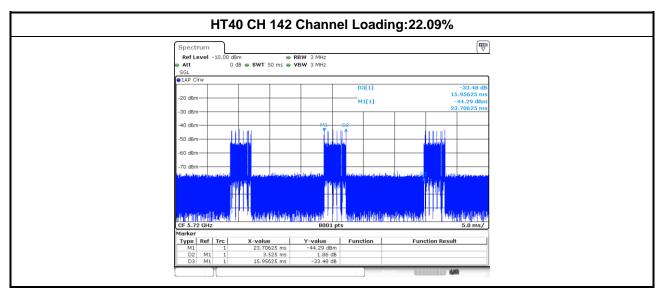
Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:


The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely

2.3.4 Radar waveform generation

A Signal Generator is used for the DFS signal generation. This instrument is capable of generating all the above waveforms with Pulse Sequencer Software. The R&S Pulse Sequencer Software comes as a stand-alone PC based software with preconfigured project files for DFS. It simplifies the generation of all required waveforms and offers a one box solution



2.3.5 DFS Test Setup

2.3.6 Channel Loading/Data Streaming

IP Based (Load Based) - stream the test file from the Master to the Client.
 The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.
 Minimum channel loading of approximately 17 %

3 DFS test result

3.1 DFS Detection Threshold levels

Master DFS Threshold Level

DFS Threshold level: -60.05dBm

The Interference **Radar Detection Threshold Level** is (-64dBm) + ([2.95dBi]) + {1 dB}= -60.05 dBm. That had been taken into account the master output power range and antenna gain.

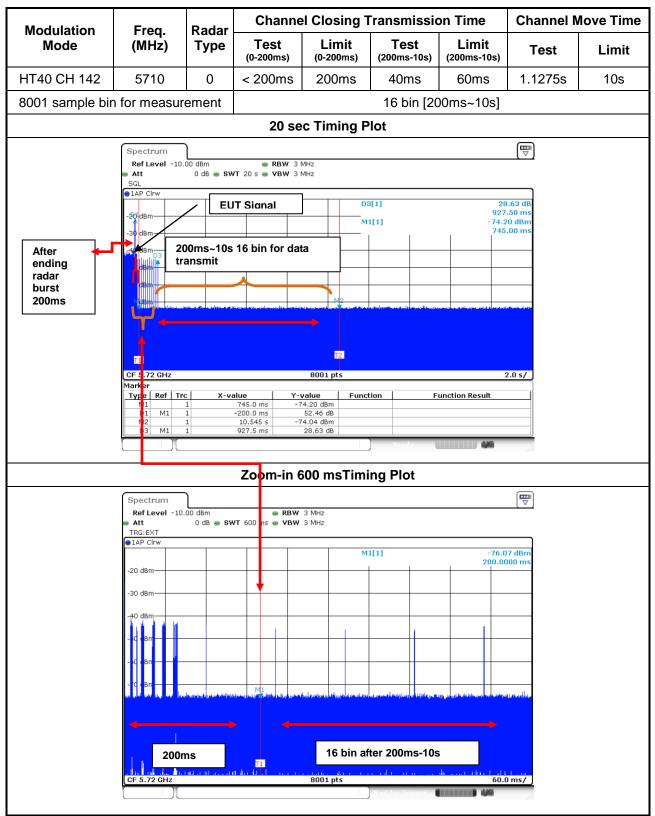
Without Data Traffic Plot (Noise Plot)	Master Data Traffic Plot
Spectrum (₩)	Spectrum 🕎
Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL
AP Cirw M1[1] -73.10 dBm	AP Cirw M1[1] -46.90 dBm
-20 dBm	-20 dBm
-30 dBm	-30 dBm
-40 dBm	-40 dBm
-50 d8m	h\$9,480mhhaonaichneolarachda shlaoinneoirda shqachaakus cinnaald aanninida kerisilladaa beshinaan bonaadaas
-60 d8m	
-70 dBm	
CF 5.72 GHz 8001 pts 2.0 s/	CF 5.72 GHz 8001 pts 2.0 s/]
	Deady 🦗
Client(EUT) Data Traffic Plot	Calibration Radar # 0 detection threshold level
Spectrum	
	Spectrum 🕎
RefLevel -10.00 dBm ● RBW 3 MHz ● Att 0 dB ● SWT 20 s ● VBW 3 MHz	Ref Level -10.00 dBm ● RBW 3 MHz ● Att 0 dB ● SWT 50 ms ● VBW 3 MHz
Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL SGL Clrw SGL SGL	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB SWT 50 ms VBW 3 MHz TRG:VID 1400 MHz VBW 3 MHz
Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL SGL Clrw SGL SGL	Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 50 ms VBW 3 MHz TRG-VID TRG-VID SWT 50 ms VBW 3 MHz
Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL SGL VBW 3 MHz 1AP Clrw M1[1] -39.35 dBm 7.31500 s X1500 s	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB SWT 50 ms VBW 3 MHz TRG:VID 0 0 0 IAP Cinw M1[1] -60.17 dBm 15.77656 ms
Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL Image: SGL Image: SGL Image: SGL ●1AP Cirw M1[1] -39.35 dBm 7.31500 s -20 dBm Image: SGL 7.31500 s 1mage: SGL	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TRG:VID • 140 - 000 mm + 1000 mm + 10000 mm + 1000 mm + 10000 mm + 10000 mm + 1000 mm + 10000 mm + 1000 mm + 10000 mm + 1000
Bit Lavel -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL 0 dB SWT 20 s VBW 3 MHz ●1AP Chw 0 dBm 7.31500 s -20 dBm 7.31500 s 7.31500 s -30 dBm M1 0 dBm	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TRG: VID 0 dI • SWT 50 ms • VBW 3 MHz ● LAP Cinw • 113 - 60.17 dBm -20 dBm - 130 dBm
Bit Lavel -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL 0 dB SWT 20 s VBW 3 MHz ●1AP Chw 0 dBm 7.31500 s -20 dBm 7.31500 s 7.31500 s -30 dBm M1 0 dBm	Ref Level -10.00 dBm RBW 3 MHz Att 0 dB SWT 50 ms VBW 3 MHz TRG:VID Image: Constraint of the second se
Image: Sql to be and the square squ	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TRG:VID • 10.00 dBm • 1AP CInw • 11.00 dBm • 20 dBm • 11.5.77656 ms • 30 dBm • 10.00 dBm • 40 dBm • 10.00 dBm • 50 dBm • 11.00 dBm
Image: Sql to be and the square squ	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TRG:VID • 10.00 dBm • 1AP CInw • 11.00 dBm • 20 dBm • 11.5.77656 ms • 30 dBm • 10.00 dBm • 40 dBm • 10.00 dBm • 50 dBm • 11.00 dBm
Image: Sql to be and the square squ	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TRG:VID • 10.00 dBm • 1AP CInw • 11.00 dBm • 20 dBm • 11.5.77656 ms • 30 dBm • 10.00 dBm • 40 dBm • 10.00 dBm • 50 dBm • 11.00 dBm
Bit Lavel -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL 0 dB SWT 20 s VBW 3 MHz ●1AP Chw 0 dBm 7.31500 s -20 dBm 7.31500 s 7.31500 s -30 dBm M1 0 dBm	Ref Level - 10.00 dbm • RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TG: VID • Att ●1.0 °C rw • M1(1) • -60.17 dBm -20 dBm • M1(1) • -60.17 dBm -30 dBm • M1(1) -30 dBm • M1(1) -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm
Image: Sql to be and the square squ	Ref Level - 10.00 dBm RBW 3 MHz Att 0 dB • SWT 50 ms • VBW 3 MHz TRG:VID • 10.00 dBm • 1AP CInw • 11.00 dBm • 20 dBm • 11.5.77656 ms • 30 dBm • 10.00 dBm • 40 dBm • 10.00 dBm • 50 dBm • 11.00 dBm

3.2 In-Service Monitoring

3.2.1 In-service Monitoring Limit

In-service Monitoring Limit			
Channel Move Time	10 sec		
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.		
Non-occupancy period	Minimum 30 minutes		

3.2.2 Test Procedures


Г

Test Method
Refer as FCC KDB 905462 D02, clause 7.8.3 verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. EUT will associate with the master device. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
Refer as FCC KDB 905462 D02, clause 7.8.3 verified during In-Service Monitoring; Non-Occupancy Period. EUT will associate with the master device. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

1

3.2.3 Test Result of Channel Closing Transmission and Channel Move Time

3.2.4 Test Result of Non-Occupancy

Non-Occupancy Period Result Non-Occupancy Period					
Modulation Mode	Freq. (MHz)	Measured	Limit	Result	
HT40 CH 142	5710	>30min	30min	Complied	
	2000 sec	Timing Plot			
Spectrum Ref Level Att SGL	-10.00 dBm • RBW 3 MH 0 dB • SWT 2000 s • VBW 3 MH				
●1AP Clrw 20 dBm		M2[1] M1[1]	-73.06 dBm 1810.500 s -21.67 dBm 10.500 s		
-30 dBm					
-50 dBm					
-60 dBm		and an increase a constant and a state of a	1998 an ann de san de state de la Maria de se seu anna de s		
T			T2		
CF 5.72 GH	z 80	01 pts	200.0 s/		

3.3 Non-Associated

	Non-Assoc	iated Test Result		
Modulation Mode	Freq. (MHz)	Observ	vation time	Result
HT40 CH 142	5710	30 1	Vinutes	Complied
	2000 se	c Timing Plot	L. C.	
Spectrum Ref Level SGL (1 AP Cirw	-10.00 dBm	MHz		
-20 dBm		M1[1]	-73.28 dBm 1800.000 s	
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm	berte between the present and with a start with a little a particular start start proves	da a sunda ya ana ana sa sana ya anifa di na sundan ya kamada na alikatika na	<u>ter para ana ana ana ana ana ana ana ana ana </u>	
CF 5.72 GH	-	8001 pts	T1 200.0 s/	
CF 3.72 GF		Ready	200.0 \$7	

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C..

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—