

FCC Test Report

FCC ID	SQG-SONAIF513
	JUG-JUNAII JIJ

Equipment : Sona IF513 802.11ax Wi-Fi 6E Module with

Bluetooth 5.4

Model No. : Sona IF513

Brand Name : Ezurio

Applicant : Ezurio LLC

Address : W66N220 Commerce Court, Cedarburg, WI

53012 United States Of America

: 47 CFR FCC Part 15.407 Standard

Type

Equipment Class / : GID: Indoor access point

6PP: Subordinate device

⊠ 6XD: Client device

: Jun. 06, 2024 **Received Date**

Tested Date : Oct. 04 ~ Oct. 25, 2024

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Cherl / Assistant Manager

Report No.: FR460601-1AO Page: 1 of 30

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	12
1.3	Test Setup Chart	12
1.4	The Equipment List	16
1.5	Test Standards	18
1.6	Reference Guidance	18
1.7	Deviation from Test Standard and Measurement Procedure	18
1.8	Measurement Uncertainty	18
2	TEST CONFIGURATION	19
2.1	Testing Facility	19
2.2	Test Modes and Channel Details	19
3	TRANSMITTER TEST RESULTS	21
3.1	Emission Bandwidth	21
3.2	RF Output Power	22
3.3	Power Spectral Density	23
3.4	Unwanted Emissions	24
3.5	In-Band Emissions	27
3.6	AC Power Line Conducted Emissions	29
4	TEST I AROBATORY INFORMATION	30

Appendix A. Emission Bandwidth

Appendix B. RF Output Power

Appendix C. Power Spectral Density

Appendix D. Unwanted Emissions

Appendix E. In-Band Emissions

Appendix F. AC Power Line Conducted Emissions

Release Record

Report No.	Version	Description	Issued Date
FR460601-1AO	Rev. 01	Initial issue	Nov. 25, 2024
FR460601-1AO	Rev. 02	Modified antenna gain	Dec. 17, 2024
FR460601-1AO	Rev. 03	Modified antenna gain	Dec. 24, 2024

Report No.: FR460601-1AO Page: 3 of 30

Report Version: Rev. 03

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.150MHz 44.84 (Margin -21.16dB) – QP	Pass
15.407(b)(5) 15.209	Unwanted Emission	[dBuV/m at 3m]: 350.1MHz 42.51 (Margin -3.49dB) - QP	Pass
15.407(b)(6)	In-Band Emissions (Mask)	Meet the requirement of limit	Pass
15.407(a)(10)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)(5)	RF Output Power (e.i.r.p)	Max Power [dBm]: 5925-6425MHz: 8.19 6425-6525MHz: 8.17 6525-6875MHz: 8.18 6875-7125MHz: 8.18	Pass
15.407(a)(5)	Power Spectral Density (e.i.r.p)	Meet the requirement of limit	Pass
15.407(d)(6)	Contention Based Protocol	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR460601-1AO Page: 4 of 30

Report Version: Rev. 03

1 General Description

1.1 Information

1.1.1 Product Details

The four configurations of the EUT are shown on the following:

Model Name	Part No.	Description
453-00184		Module, Sona IF513, MHF4L
	453-00185	Module, Sona IF513, Trace Pin
	453-00193	Module, Sona IF513, Antenna Diversity, MHF4L
	453-00194	Module, Sona IF513, Antenna Diversity, Trace Pin
Sona IF513	453-00186	Module, Sona IF513, M.2, Key E, SDIO, UART
	453-00195	Module, Sona IF513, Antenna Diversity, M.2, Key E, SDIO, UART
	453-00213	Module, Sona IF513, M.2, Key E, SDIO, UART, Ext. OSC
	453-00214	Module, Sona IF513, Antenna Diversity, M.2, Key E, SDIO, UART, Ext. OSC

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency IEEE Std. Ch. Freq. Channel Transmit Data Rate / Range (MHz) 802.11 (MHz) Number Chains (N _{TX}) MCS						
5925 ~ 7125	11a	5955 ~ 7115	1 ~ 233 [59]	1	6-54 Mbps	
5925 ~ 7125	ax (HE20)	5955 ~ 7115	1 ~ 233 [59]	1	MCS 0-11	

Note 1: OFDM/OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM and 1024QAM modulation.

Note 2: 802.11ax supports full RU and partial RU configuration. Test results of partial RU configuration are recorded in this report. Refers to report no.: FR460601AO for test results of full RU configuration.

1.1.3 Antenna Details

Ant.	Manufacturer	Model	Madel Part	Part	Type	Connector	Operating Frequencies / Gain (dBi)		
No.	Wanulacturer	Wiodei	Number	Туре	Connector	2.4GHz	5GHz	6GHz	
1	Joymax Inc.	TWX- 100BRS3B	NA	Dipole	RP-SMA	2	4	4	
2	Ezurio	FlexMIMO 6E	EFD2471A3 S-10MH4L	PIFA	MHF4L	2.2	3.8	3.3	
3	Ezurio	Mini NanoBlade Flex 6 GHz	EMF2471A 3S-10MH4L	PCB Dipole	MHF4L	2.4	4.4	5.2	
4	Ezurio	FlexPIFA 6E	EFB2471A3 S-10MH4L	PIFA	MHF4L	2.2	3.9	3.8	

Report No.: FR460601-1AO Page: 5 of 30

Report Version: Rev. 03

1.1.4 Configuration of Equipment under Test (EUT)

Power Supply Type	3.3Vdc from host	
Beamforming	☐ Support	
RU Configuration	☐ Full RU	□ Partial RU
Channel Puncturing	☐ Support	

1.1.5 Channel List

802.11a / ax HE20							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
		57	6235	117	6535	177	6835
1	5955	61	6255	121	6555	181	6855
5	5975	65	6275	125	6575	185	6875
9	5995	69	6295	129	6595	189	6895
13	6015	73	6315	133	6615	193	6915
17	6035	77	6335	137	6635	197	6935
21	6055	81	6355	141	6655	201	6955
25	6075	85	6375	145	6675	205	6975
29	6095	89	6395	149	6695	209	6995
33	6115	93	6415	153	6715	213	7015
37	6135	97	6435	157	6735	217	7035
41	6155	101	6455	161	6755	221	7055
45	6175	105	6475	165	6775	225	7075
49	6195	109	6495	169	6795	229	7095
53	6215	113	6515	173	6815	233	7115

1.1.6 Test Tool and Duty Cycle

Test Tool	Tera Term, Version: v4.74				
	Mode	Duty Cycle (%)	Duty Factor (dB)		
Duty Cycle and Duty Factor	ax HE20 RU26	99.30%	0.03		
Duty Cycle and Duty Factor	ax HE20 RU52	98.78%	0.05		
	ax HE20 RU106	99.30%	0.03		

Report No.: FR460601-1AO Page: 6 of 30

1.1.7 Power Index of Test Tool

Part No. 453-00184

Modulation Mode	Test Frequency (MHz)	Power Index
ax HE20 RU26	5955	-18
ax HE20 RU26	6175	-18
ax HE20 RU26	6415	-16
ax HE20 RU26	6435	-18
ax HE20 RU26	6475	-18
ax HE20 RU26	6515	-18
ax HE20 RU26	6535	-18
ax HE20 RU26	6715	-15
ax HE20 RU26	6855	-13
ax HE20 RU26	6875	-13
ax HE20 RU26	6895	-12
ax HE20 RU26	7015	-10
ax HE20 RU26	7095	-10
ax HE20 RU26	7115	-10
ax HE20 RU52	5955	-6
ax HE20 RU52	6175	-6
ax HE20 RU52	6415	-5
ax HE20 RU52	6435	-5
ax HE20 RU52	6475	-4
ax HE20 RU52	6515	-3
ax HE20 RU52	6535	-3
ax HE20 RU52	6715	-2
ax HE20 RU52	6855	-1
ax HE20 RU52	6875	0
ax HE20 RU52	6895	1
ax HE20 RU52	7015	2
ax HE20 RU52	7095	2
ax HE20 RU52	7115	1
ax HE20 RU106	5955	7
ax HE20 RU106	6175	7
ax HE20 RU106	6415	8
ax HE20 RU106	6435	8
ax HE20 RU106	6475	8

Report No.: FR460601-1AO

Report Version: Rev. 03

ax HE20 RU106	6515	9
ax HE20 RU106	6535	9
ax HE20 RU106	6715	10
ax HE20 RU106	6855	11
ax HE20 RU106	6875	11
ax HE20 RU106	6895	12
ax HE20 RU106	7015	13
ax HE20 RU106	7095	13
ax HE20 RU106	7115	13

Part No. 453-00193

Modulation Mode	Test Frequency (MHz)	Power Index
ax HE20 RU26	5955	-16
ax HE20 RU26	6175	-14
ax HE20 RU26	6415	-13
ax HE20 RU26	6435	-16
ax HE20 RU26	6475	-16
ax HE20 RU26	6515	-16
ax HE20 RU26	6535	-17
ax HE20 RU26	6715	-17
ax HE20 RU26	6855	-17
ax HE20 RU26	6875	-16
ax HE20 RU26	6895	-16
ax HE20 RU26	7015	-14
ax HE20 RU26	7095	-14
ax HE20 RU26	7115	-13
ax HE20 RU52	5955	-1
ax HE20 RU52	6175	-1
ax HE20 RU52	6415	-3
ax HE20 RU52	6435	-2
ax HE20 RU52	6475	-4
ax HE20 RU52	6515	-4
ax HE20 RU52	6535	-2
ax HE20 RU52	6715	-3
ax HE20 RU52	6855	-3
ax HE20 RU52	6875	-4
ax HE20 RU52	6895	-3

Report No.: FR460601-1AO Report Version: Rev. 03 Page : 8 of 30

ax HE20 RU52	7015	-2
ax HE20 RU52	7095	-1
ax HE20 RU52	7115	0
ax HE20 RU106	5955	10
ax HE20 RU106	6175	11
ax HE20 RU106	6415	9
ax HE20 RU106	6435	9
ax HE20 RU106	6475	10
ax HE20 RU106	6515	9
ax HE20 RU106	6535	9
ax HE20 RU106	6715	7
ax HE20 RU106	6855	7
ax HE20 RU106	6875	9
ax HE20 RU106	6895	9
ax HE20 RU106	7015	9
ax HE20 RU106	7095	10
ax HE20 RU106	7115	10

Part No. 453-00213

Modulation Mode	Test Frequency (MHz)	Power Index
ax HE20 RU26	5955	-17
ax HE20 RU26	6175	-16
ax HE20 RU26	6415	-16
ax HE20 RU26	6435	-17
ax HE20 RU26	6475	-18
ax HE20 RU26	6515	-18
ax HE20 RU26	6535	-19
ax HE20 RU26	6715	-18
ax HE20 RU26	6855	-17
ax HE20 RU26	6875	-18
ax HE20 RU26	6895	-18
ax HE20 RU26	7015	-17
ax HE20 RU26	7095	-16
ax HE20 RU26	7115	-16
ax HE20 RU52	5955	-3
ax HE20 RU52	6175	-3
ax HE20 RU52	6415	-4

Report No.: FR460601-1AO Report Version: Rev. 03

ax HE20 RU52	6435	-3
ax HE20 RU52	6475	-4
ax HE20 RU52	6515	-3
ax HE20 RU52	6535	-3
ax HE20 RU52	6715	-4
ax HE20 RU52	6855	-5
ax HE20 RU52	6875	-5
ax HE20 RU52	6895	-4
ax HE20 RU52	7015	-5
ax HE20 RU52	7095	-4
ax HE20 RU52	7115	-2
ax HE20 RU106	5955	7
ax HE20 RU106	6175	8
ax HE20 RU106	6415	8
ax HE20 RU106	6435	8
ax HE20 RU106	6475	9
ax HE20 RU106	6515	9
ax HE20 RU106	6535	7
ax HE20 RU106	6715	6
ax HE20 RU106	6855	6
ax HE20 RU106	6875	8
ax HE20 RU106	6895	7
ax HE20 RU106	7015	7
ax HE20 RU106	7095	8
ax HE20 RU106	7115	8

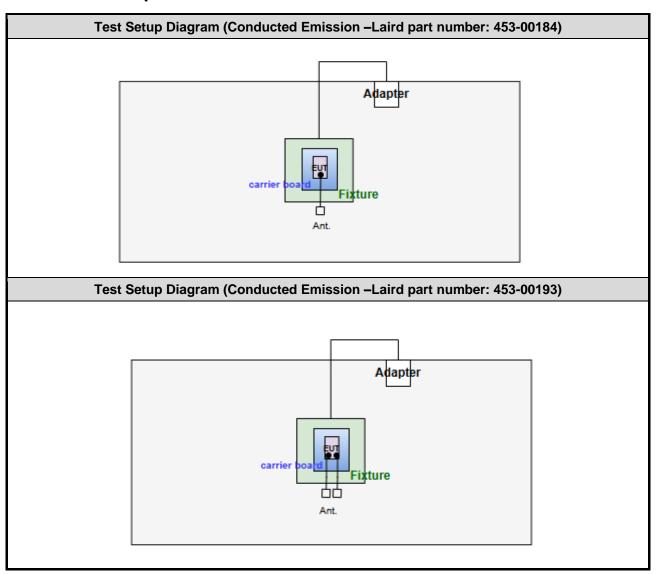
Part No. 453-00214

Modulation Mode	Test Frequency (MHz)	Power Index
ax HE20 RU26	5955	-14
ax HE20 RU26	6175	-13
ax HE20 RU26	6415	-12
ax HE20 RU26	6435	-13
ax HE20 RU26	6475	-12
ax HE20 RU26	6515	-13
ax HE20 RU26	6535	-13
ax HE20 RU26	6715	-13
ax HE20 RU26	6855	-12

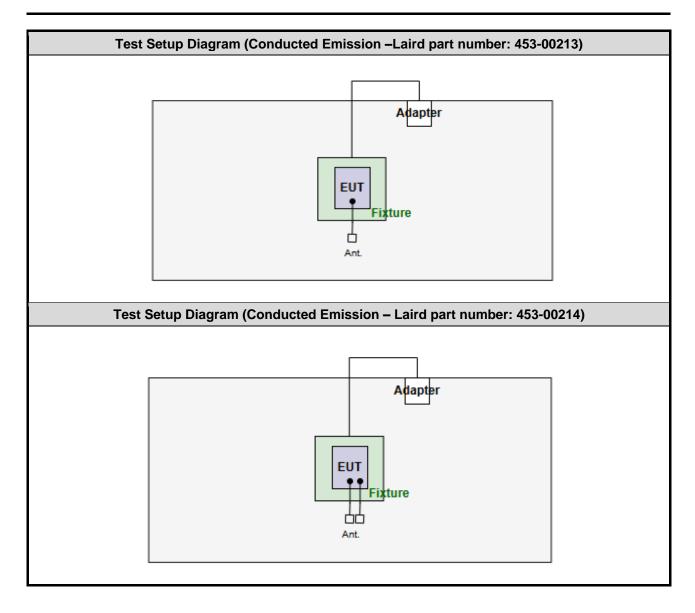
Report No.: FR460601-1AO

Report Version: Rev. 03

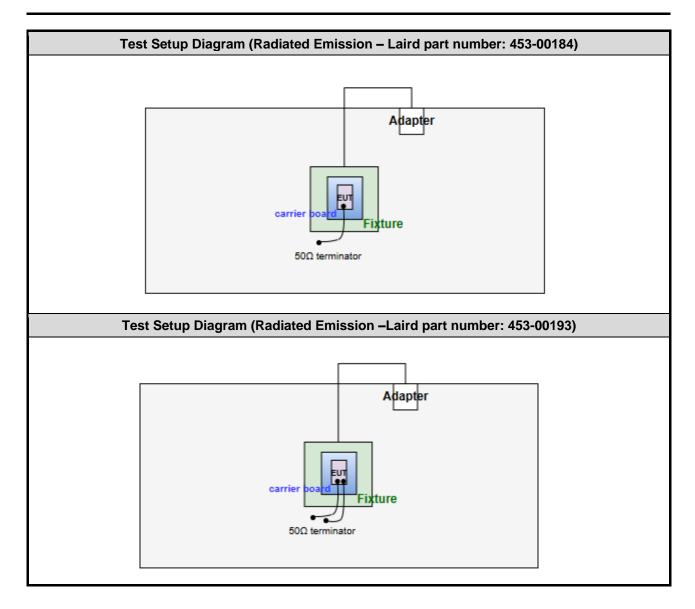
ax HE20 RU26	6875	-12
ax HE20 RU26	6895	-12 -12
ax HE20 RU26 ax HE20 RU26		
	7015	-11
ax HE20 RU26	7095	-11
ax HE20 RU26	7115	-11
ax HE20 RU52	5955	0
ax HE20 RU52	6175	0
ax HE20 RU52	6415	2
ax HE20 RU52	6435	1
ax HE20 RU52	6475	1
ax HE20 RU52	6515	1
ax HE20 RU52	6535	1
ax HE20 RU52	6715	0
ax HE20 RU52	6855	1
ax HE20 RU52	6875	0
ax HE20 RU52	6895	3
ax HE20 RU52	7015	2
ax HE20 RU52	7095	1
ax HE20 RU52	7115	2
ax HE20 RU106	5955	10
ax HE20 RU106	6175	11
ax HE20 RU106	6415	13
ax HE20 RU106	6435	12
ax HE20 RU106	6475	14
ax HE20 RU106	6515	13
ax HE20 RU106	6535	12
ax HE20 RU106	6715	11
ax HE20 RU106	6855	11
ax HE20 RU106	6875	12
ax HE20 RU106	6895	11
ax HE20 RU106	7015	13
ax HE20 RU106	7095	12
ax HE20 RU106	7115	12


Page: 11 of 30

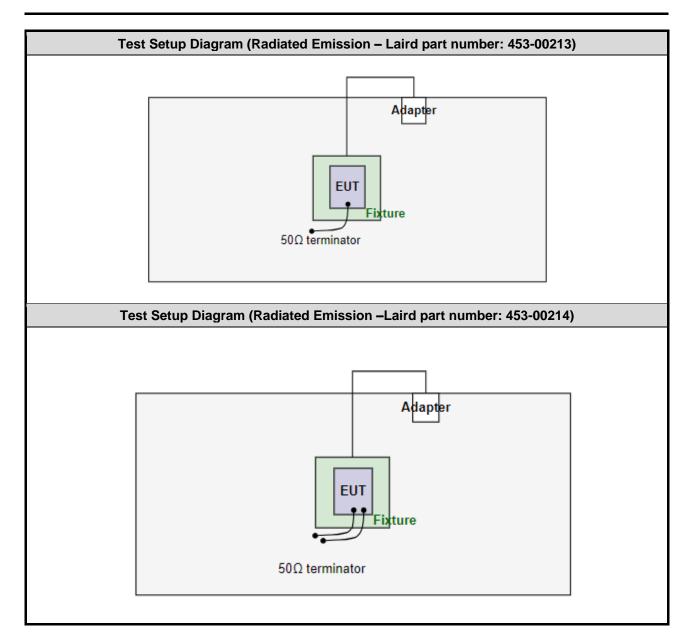
1.2 Local Support Equipment List


	Support Equipment List					
No.	Equipment	Brand	Model	FCC ID	Remarks	
1	Laptop	DELL	Latitude 5400	DoC		
2	Fixture	Ezurio	750-00001-2-0		Provided by applicant.	
3	Fixture's adapter	Chenzhou Frecom Electronics Co.	F36L7- 120300SPACP		Provided by applicant.	
4	50Ω terminator	Woken	WTER-18S2			

1.3 Test Setup Chart



Report No.: FR460601-1AO Report Version: Rev. 03 Page: 12 of 30



Report No.: FR460601-1AO Page: 15 of 30

1.4 The Equipment List

Conducted Emission				
Conduction room 1 / (CO01-WS)			
Oct. 21, 2024				
Brand	Model No.	Serial No.	Calibration Date	Calibration Until
R&S	ESR3	101658	Feb. 23, 2024	Feb. 22, 2025
R&S	ENV216	101579	May 09, 2024	May 08, 2025
SCHWARZBECK	Schwarzbeck 8127	8127667	Jan. 10, 2024	Jan. 09, 2025
Woken	CFD200-NL	CFD200-NL-001	Oct. 07, 2024	Oct. 08, 2025
NA	50	01	Jun. 19, 2024	Jun. 18, 2025
AUDIX	e3	6.120210k	NA	NA
	Oct. 21, 2024 Brand R&S R&S SCHWARZBECK Woken NA	Conduction room 1 / (CO01-WS) Oct. 21, 2024 Model No. R&S ESR3 R&S ENV216 SCHWARZBECK Schwarzbeck 8127 Woken CFD200-NL NA 50	Conduction room 1 / (CO01-WS) Oct. 21, 2024 Brand Model No. Serial No. R&S ESR3 101658 R&S ENV216 101579 SCHWARZBECK Schwarzbeck 8127 8127667 Woken CFD200-NL CFD200-NL-001 NA 50 01	Conduction room 1 / (CO01-WS) Oct. 21, 2024 Brand Model No. Serial No. Calibration Date R&S ESR3 101658 Feb. 23, 2024 R&S ENV216 101579 May 09, 2024 SCHWARZBECK Schwarzbeck 8127 8127667 Jan. 10, 2024 Woken CFD200-NL CFD200-NL-001 Oct. 07, 2024 NA 50 01 Jun. 19, 2024

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Oct. 04 ~ Oct. 25, 202	24			
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101910	Apr. 18, 2024	Apr. 17, 2025
Power Meter	Anritsu	ML2495A	1241002	Nov. 21, 2023	Nov. 20, 2024
Power Sensor	Anritsu	MA2411B	1207366	Nov. 21, 2023	Nov. 20, 2024
Attenuator	Pasternack	PE7005-10	10-2	Oct. 04, 2024	Oct. 03, 2025
HIGHPASS FILTER 3.1-18G	WHK	WHK3.1/18G-10SS	39	Oct. 02, 2024	Oct. 01, 2025
LOWPASS FILTER	WI	WLKS1100-12SS	2	Oct. 02, 2024	Oct. 01, 2025
Measurement Software	Sporton	SENSE-15247_DTS	V5.11	NA	NA
Note: Calibration Inte	rval of instruments liste	d above is one year.			

Report No.: FR460601-1AO Page: 16 of 30

Report Version: Rev. 03

Test Item	Radiated Emission				
Test Site	966 chamber1 / (03CH01-WS)				
Tested Date	Oct. 11 ~ Oct. 14, 2024				
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Receiver	R&S	ESR3	101657	Mar. 05, 2024	Mar. 04, 2025
Spectrum Analyzer	R&S	FSV40	101498	Nov. 23, 2023	Nov. 22, 2024
Loop Antenna	R&S	HFH2-Z2	100330	Oct. 31, 2023	Oct. 30, 2024
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 09, 2024	Aug. 08, 2025
Horn Antenna 1G- 18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Nov. 27, 2023	Nov. 26, 2024
Horn Antenna 18G- 40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 30, 2023	Oct. 29, 2024
Preamplifier	EMC	EMC02325	980225	Jun. 17, 2024	Jun. 16, 2025
Preamplifier	EMC	EMC118A45SE	980898	Jul. 05, 2024	Jul. 04, 2025
Preamplifier	EMC	EMC184045SE	980903	Jul. 30, 2024	Jul. 29, 2025
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 02, 2024	Oct. 01, 2025
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 02, 2024	Oct. 01, 2025
LF cable 11M	EMC	EMCCFD400-NW- NW-11000	200801	Oct. 02, 2024	Oct. 01, 2025
LF cable 1M	EMC	EMCCFD400-NM- NM-1000	160502	Oct. 02, 2024	Oct. 01, 2025
RF Cable	EMC	EMC104-35M-35M- 8000	210920	Oct. 02, 2024	Oct. 01, 2025
RF Cable	EMC	EMC104-35M-35M- 3000	210922	Oct. 02, 2024	Oct. 01, 2025
Attenuator	Pasternack	PE7005-10	10-1	Oct. 02, 2024	Oct. 01, 2025
HIGHPASS FILTER 3.1-18G	WHK	WHK3.1/18G-10SS	39	Oct. 02, 2024	Oct. 01, 2025
Measurement Software	Sporton	SENSE-15247_DTS	V5.11	NA	NA
Measurement Software	Sporton	SENSE-EMI	V5.11	NA	NA

Report No.: FR460601-1AO Page : 17 of 30

Report Version: Rev. 03

1.5 Test Standards

47 CFR FCC Part 15.407 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v03

FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.130 Hz			
Conducted power	±0.808 dB			
Frequency error	±1x10 ⁻⁹			
Power density	±0.583 dB			
Conducted emission	±2.715 dB			
AC conducted emission	±2.92 dB			
Radiated emission ≤ 1GHz	±3.41 dB			
Radiated emission > 1GHz	±4.59 dB			
Time	±0.1%			
Temperature	±0.4 °C			

Report No.: FR460601-1AO Page: 18 of 30

Report Version: Rev. 03

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corp.
Test Site	CO01-WS, 03CH01-WS, TH01-WS
Address of Test Site	No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 33381, Taiwan, R.O.C.

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test method	Mode	Test Configuration	Note
AC Power Line Conducted Emissions	ax HE20 RU106	5955	MCS 0	Conducted	TX	1	
Unwanted Emissions ≤1GHz	ax HE20 RU106	5955	MCS 0	Radiated	TX	1, 2, 3, 4	Note 2
Unwanted Emissions >1GHz	ax HE20 RU26 ax HE20 RU52 ax HE20 RU106	5955 / 6175 / 6415 / 6435 6475 / 6515 / 6535 / 6715 / 6855 6875 / 6895 / 7015 / 7095 / 7115	MCS 0	Radiated	TX	1	Note 2
	ax HE20 RU52	7095	MCS 0	Radiated	TX	2, 3, 4	Note 2
	ax HE20 RU106	5955 / 6475 / 6875	MCS 0	Radiated	TX	2, 3, 4	Note 2
Unwanted Emissions ≤1GHz	ax HE20 RU106	5955	MCS 0	Conducted	TX	1, 2, 3, 4	
Unwanted Emissions >1GHz	ax HE20 RU26 ax HE20 RU52 ax HE20 RU106	5955 / 6175 / 6415 / 6435 6475 / 6515 / 6535 / 6715 / 6855 6875 / 6895 / 7015 / 7095 / 7115	MCS 0	Conducted	ТХ	1	
	ax HE20 RU52	5955 / 7115	MCS 0	Conducted	TX	2, 3, 4	
	ax HE20 RU106	6475 / 6875	MCS 0	Conducted	TX	2, 3, 4	
RF Output Power	ax HE20 RU26 ax HE20 RU52 ax HE20 RU106	5955 / 6175 / 6415 / 6435 6475 / 6515 / 6535 / 6715 / 6855 6875 / 6895 / 7015 / 7095 /	MCS 0	Conducted	TX	1, 2, 3, 4	

Report No.: FR460601-1AO Page : 19 of 30

Report Version: Rev. 03

		7115					
Emission Bandwidth In-Band Emissions	ax HE20 RU26 ax HE20 RU52 ax HE20 RU106	5955 / 6175 / 6415 / 6435 6475 / 6515 / 6535 / 6715 / 6855 6875 / 6895 / 7015 / 7095 / 7115	MCS 0	Conducted	TX	1	
Power Spectral Density	ax HE20 RU26 ax HE20 RU52 ax HE20 RU106	5955 / 6175 / 6415 / 6435 6475 / 6515 / 6535 / 6715 / 6855 6875 / 6895 / 7015 / 7095 / 7115	MCS 0	Conducted	TX	1	

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Z-plane** result was found as the worst case and was shown in this report.
- 2. The 50Ω terminator is connected to antenna port of EUT for radiated emission measurement.
- 3. Test configurations are listed as below:

Configuration 1: Laird part number: 453-00184 Configuration 2: Laird part number: 453-00193 Configuration 3: Laird part number: 453-00213 Configuration 4: Laird part number: 453-00214

Report No.: FR460601-1AO Page: 20 of 30

Report Version: Rev. 03

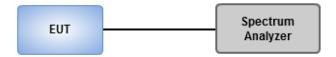
3 Transmitter Test Results

3.1 Emission Bandwidth

3.1.1 Limit

The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.

3.1.2 Test Procedures


26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW.
- 2. Set VBW ≥ 3 RBW.
- 3. Sample detection and single sweep mode shall be used.
- 4. Use the 99 % power bandwidth function of the instrument.

3.1.3 Test Setup

3.1.4 Test Result

Ambient Condition	24-25°C / 61-62%	Tested By	Roger Lu

Refer to Appendix A.

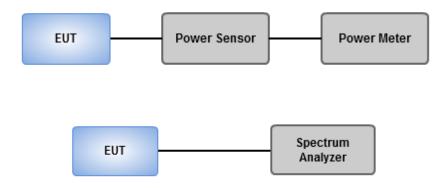
Report No.: FR460601-1AO Page: 21 of 30

3.2 RF Output Power

3.2.1 Limit

Frequency Band	Operating Mode	Maximum EIRP Limit
5925 ~ 7125 MHz	☐ Indoor access point	30 dBm
	☐ Subordinate device	30 dBm
		24 dBm

3.2.2 Test Procedures


Method PM-G (Measurement using a gated RF average power meter)

- 1. Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 2. EIRP = Measured conducted power + Antenna gain

Spectrum analyzer (For channel that extends across the 6.525 / 6.875 GHz boundary)

- 1. Set RBW = 1MHz, VBW = 3MHz, Sweep time = Auto, Detector = RMS.
- 2. Trace average at least 100 traces in power averaging mode.
- 3. Compute power by integrating the spectrum across the 26 dB EBW.
- 4. Add 10 log(1/X, X:duty cycle) if duty cycle is <98%).
- 5. EIRP = Measured conducted power + Antenna gain

3.2.3 Test Setup

3.2.4 Test Result

Ambient Condition	24-25°C / 61-62%	Tested By	Roger Lu

Refer to Appendix B.

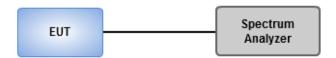
Report No.: FR460601-1AO Page: 22 of 30

3.3 Power Spectral Density

3.3.1 Limit

Frequency Band	Operating Mode	Limit
5925 ~ 7125 MHz	☐ Indoor access point	EIRP: 5 dBm / 1 MHz
	☐ Subordinate device	EIRP: 5 dBm / 1 MHz
		EIRP: -1 dBm / 1 MHz

3.3.2 Test Procedures


Duty cycle ≥ 98 %

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.
- 4. EIRP PSD = Measured conducted power density + Antenna gain

Duty cycle < 98 %

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add $10 \log(1/x)$, where x is the duty cycle.
- 6. EIRP PSD = Measured conducted power density + Antenna gain

3.3.3 Test Setup

3.3.4 Test Result

Ambient Condition 24-25°C / 61-62%	Tested By	Roger Lu	
------------------------------------	-----------	----------	--

Refer to Appendix C.

Report No.: FR460601-1AO Page: 23 of 30

3.4 Unwanted Emissions

3.4.1 Limit of Unwanted Emissions

Restricted Band Emissions Limit				
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)	
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300	
0.490~1.705	24000/F(kHz)	33.8 - 23	30	
1.705~30.0	30	29	30	
30~88	100	40	3	
88~216	150	43.5	3	
216~960	200	46	3	
Above 960	500	54	3	

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Note 2:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit			
Operating Band	PK Limit	AV Limit	
5.925 – 7.125 GHz	e.i.r.p7 dBm [88.2 dBuV/m@3m]	e.i.r.p27 dBm [68.2 dBuV/m@3m]	

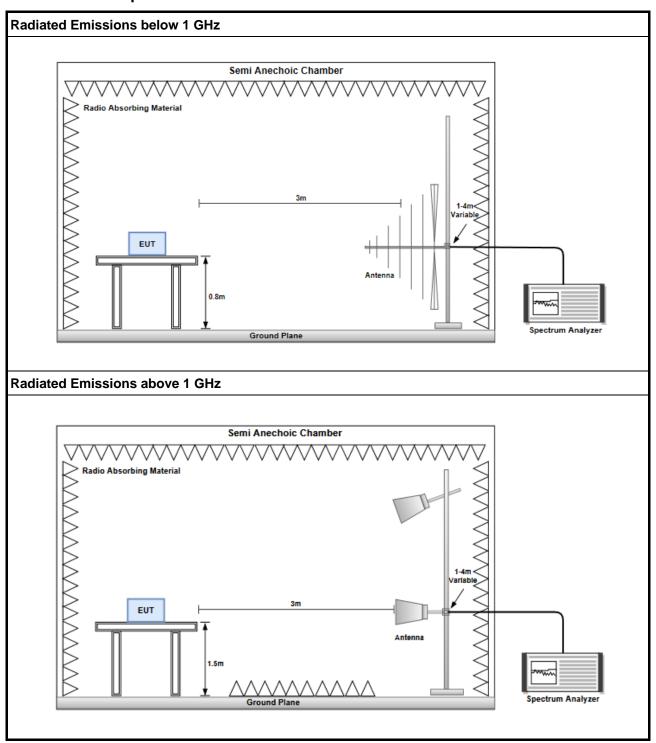
Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR460601-1AO Page: 24 of 30

Report Version: Rev. 03

3.4.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

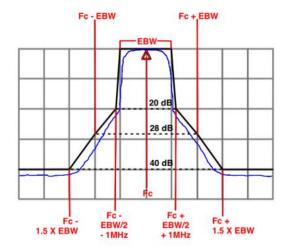
Report No.: FR460601-1AO Page: 25 of 30

3.4.3 Test Setup

3.4.4 Test Results

Refer to Appendix D.

Report No.: FR460601-1AO Page: 26 of 30


Report Version: Rev. 03

3.5 In-Band Emissions

3.5.1 Limit

Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

Report No.: FR460601-1AO Page: 27 of 30

3.5.2 Test Procedures

- 1. Connect output of the antenna port to a spectrum analyzer
- 2. Set the reference level of the measuring equipment
- Measure the 26 dB EBW
- 4. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW ≥ 3 X RBW
 - d) Number of points in sweep ≥ [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
- For the purposes of developing the emission mask, the channel bandwidth is defined as the 26 dB FRW
- 6. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the 26-dB point on either side of the carrier center frequency.)
 - b. Suppressed by 28 dB at one channel bandwidth from the channel center.
 - c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 7. Adjust the span to encompass the entire mask as necessary
- Clear trace.
- 9. Trace average at least 100 traces in power averaging (rms) mode.
- 10. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask

3.5.3 Test Setup

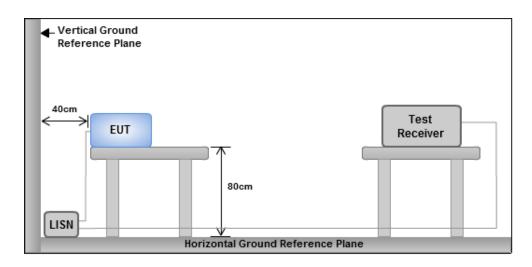
3.5.4 Test Results

Ambient Condition	24-25°C / 61-62%	Tested By	Roger Lu
-------------------	------------------	-----------	----------

Refer to Appendix E.

Report No.: FR460601-1AO Page: 28 of 30

3.6 AC Power Line Conducted Emissions


3.6.1 Limit of AC Power Line Conducted Emissions

Conducted Emissions Limit				
Frequency Emission (MHz)	Quasi-Peak	Average		
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30	60	50		
Note 1: * Decreases with the logarithm of the frequency.				

3.6.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.6.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.6.4 Test Result

Refer to Appendix F.

Report No.: FR460601-1AO Page: 29 of 30

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666

No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640

No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC Service@icertifi.com.tw

==END==

Report No.: FR460601-1AO Page: 30 of 30