

W66 N220 Commerce Court ● Cedarburg, WI 53012 Phone: 262.375.4400 ● Fax: 262.375.4248

www.lsr.com

TEST REPORT #: TR 316054A LSR Job #: C- 2401

Compliance Testing of:

RM191-SM

Test Date(s):

2/17/16 - 3/18/16

Prepared For:

N. Zach Hogya

Laird

11160 Thompson Ave

Lenexa, KS 66219

CFR 47 15.249 RSS 210 Annex 2.9

This Test Report is issued under the Authority of:

Shane Dock, EMC Engineer

Test Report Reviewed by:

Adam Alger, Quality Systems Engineer

Signature:

Adum DAlge

Signature:

Date: 4-7-16

Project Engineer:

Shane Dock, EMC Engineer.

Date: 4-8-16

Signature:

Date: 4-8-16

This Test Report may not be reproduced, except in full, without written approval of LSR.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION		4
1.1 - Scope		4
1.2 – Normative References		4
1.3 - LS Research, LLC Test Facility.		5
1.4 – Location of Testing		5
1.5 – Test Equipment Utilized		5
EXHIBIT 2. PERFORMANCE ASSESSME	NT	6
2.1 – Client Information		6
2.2 - Equipment Under Test (EUT) Inf	ormation	6
2.3 - Associated Antenna Description		6
2.4 - EUT'S Technical Specifications.		7
2.5 - Product Description		7
EXHIBIT 3. EUT OPERATING CONDITION	NS & CONFIGURATIONS DURING	TESTS 8
3.1 - Climate Test Conditions		8
3.2 - Applicability & Summary Of EMO	Emission Test Results	8
3.3 - Modifications Incorporated In Th	e EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From To	est Specifications	9
EXHIBIT 4. DECLARATION OF CONFOR	MITY	10
EXHIBIT 5. RADIATED EMISSIONS TEST		
EMISSIONS		
5.1 - Test Setup		
5.2 - Test Procedure 5.3 - Test Equipment Utilized		
5.4 - Test Results		
5.5 - Calculation of Radiated Emission		
5.6 - Radiated Emissions Test Data C	·	
5.7 – Screen Captures		
EXHIBIT 6. CONDUCTED EMISSIONS TE		
·		
6.5 Limits of Conducted Emissions	at the AC Mains Ports	22
6.6 CONDUCTED EMISSIONS TE	ST DATA CHART	23
6.7 Screen Captures – Conducted	Emissions Test	24
Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 2 of 31

EXHIBIT 7. DTS BANDWIDTH	25
7.1 - Method of Measurements	25
7.2 - Test Data	25
7.3 – Screen Captures	26
EXHIBIT 8. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	28
APPENDIX A – Test Equipment List	29
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	30
APPENDIX C - Uncertainty Statement	31

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 3 of 31

EXHIBIT 1. INTRODUCTION

<u>1.1 - Scope</u>

References:	FCC Part 15, Subpart C, Section 15.249 RSS 210 issue 8 Annex 2, Section A2.9
Title:	FCC: Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC: Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	ANSI C63.10
Environmental Classification:	Residential

1.2 - Normative References

Publication	Year	Title
FCC CFR Parts 0-15	2016	Code of Federal Regulations – Telecommunications
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
RSS-210 Issue 4 Annex 8	2010	Low-power License-exempt Radio communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
RSS-GEN Issue 4	2014	General Requirements and Information for the Certification of Radio Apparatus

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 4 of 31

1.3 - LS Research, LLC Test Facility

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) as conforming to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted.

1.4 - Location of Testing

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC W66 N220 Commerce Court Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Semi-Anechoic Chamber

1.5 - Test Equipment Utilized

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO/IEC 17025, and traceable to the SI standard.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 5 of 31

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	Laird Technologies, Inc.	
Address:	11160 Thompson Ave	
	Lenexa, KS 66219	
Contact Name:	N. Zach Hogya	

<u>2.2 - Equipment Under Test (EUT) Information</u> The following information has been supplied by the applicant.

Product Name:	RM191-SM
Model Number:	RM191-SM
Serial Number:	LEN DVT 20 (Conducted Testing)
	LEN DVT 1 (Radiated Testing)
	LEN DVT 13 (Colocation Testing)

2.3 - Associated Antenna Description

The antenna included on the product is a built-in AT5020 monolithic chip antenna with a gain of 0 dBi.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 6 of 31

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	2402MHz to 2480MHz
Field Strength at 3m (dBµV/m)	Conducted Measurement
	⊠ EIRP
Minimum:	50.3 dBuV at 2402 MHz
Maximum:	52.0 dBuV at 2480 MHz
Occupied Bandwidth	99%: 1.071 MHz
Type of Modulation	GFSK
Emission Designator	1M07F1D
Transmitter Spurious (worst case) at 3 meters	34.9 dBµV/m at 2514.35 MHz
	(Measured with an average
	detector)
Stepped (Y/N)	No
Step Value:	N/A
Frequency Tolerance %, Hz, ppm	Better than 100ppm
Microprocessor Model # (if applicable)	nRF51822-QFAC-R/T
	(Nordic BLE chip)
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	Chip
Gain	0
EUT will be operated under FCC Rule Part(s)	Title 47 part 15.249
EUT will be operated under RSS Rule Part(s)	RSS 210, Annex 2
Modular Filing	⊠ Yes □ No

2.5 - Product Description

The RM191-SM module is designed to enable OEMs to add a long range LoRa radio link as well as central role Bluetooth Low Energy (BLE) to small, portable, power-conscious devices. The RM191-SM module is enabled with Laird's smart BASIC, an event-driven programming language that enables OEMs to make their product development quicker and simpler, significantly reducing time to market. smartBASIC enables customers to develop a complete embedded application inside the compact RM191 hardware, connecting to a wide array of external sensors via its I2C, SPI, UART, ADC or GPIO interfaces. The module is based on the world-leading Nordic Semiconductor nRF51822 (BLE) and Semtech Sx1272 (LoRa) chipsets, the RM191-SM module provides ultra-low power consumption with outstanding wireless range using the LoRa radio link and local BLE connections. "Whisper Mode" is a BLE mode that is characterized by an extremely low output power, and can be powered by 1.8 – 3.6 VDC.

The unit has the capability to operate on 3 channels, controllable via a proprietary software provided by the manufacturer (UWTerminalX v1.01) and was run continuously with a modulated transmission. For this EUT:

Low Channel: 2402 MHz Mid Channel: 2440 MHz High Channel: 2480 MHz

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 7 of 31

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	70 -74° F
Humidity:	30-42%
Pressure:	728-741mmHg

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC: 15.207 IC: RSS GEN sect. 8.8	Power Line Conducted Emissions Measurements	Yes
FCC: 2.202 IC: RSS GEN Section 6.6	99% Bandwidth	Yes
FCC : 15.249(a) – (c) IC : RSS 210 A2.9 (a)	Field Strength	Yes
FCC: 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	Yes
FCC :15.249 (d) IC : RSS 210 A2.9 (b)	Spurious Emissions	Yes
FCC : 15.249(a) – (c) IC : RSS 210 A2.9 (a)	Harmonics	Yes

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN). The Receiver Test Report is available upon request.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 8 of 31

None Non	s Incorporated In The EUT For Co	•
3.4 - Deviations &	Exclusions From Test Specificati	ons
None Non	☐ Yes (explain below)	-

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 9 of 31

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249, and Industry Canada RSS-210, Issue 8 (2010), Annex 2.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 10 of 31

EXHIBIT 5. RADIATED EMISSIONS TEST: FUNDAMENTAL, HARMONICS AND SPURIOUS EMISSIONS

<u>5.1 - Test Setup</u>

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4-2014. The EUT was placed on an 80cm (150cm above 1GHz) high non-conductive pedestal, centered on a flush mounted turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The unit has the capability to operate on 3 channels, controllable via a proprietary software provided by the manufacturer (UWTerminalX v1.01) and was run continuously with a modulated transmission.

The applicable limits apply at a 3 meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (2402MHz), middle (2440MHz) and high (2480MHz) to comply with FCC Part 15.31(m).

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz and a standard gain horn antenna used between 18 GHz to 25 GHz. The maximum radiated RF emissions between 30MHz to 25 GHz were found by raising and lowering the sense antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities. For measurements above 1GHz, a tilting gear was used to maintain the EUT in the cone of radiation, and absorbers were placed on the ground plane.

The EUT was positioned in 3 orthogonal orientations.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 11 of 31

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at a calibration laboratory accredited to ISO 17025, and are traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of 300 kHz), and a bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of 3 MHz, with average measurements using 10 Hz).

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.249 and Canada RSS-210, Issue 8 (2010), Annex 2.9. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 12 of 31

5.5 - Calculation of Radiated Emissions Limits and reported data.

The limits below are obtained from Title 47 CFR, Part 15.249 (a) (RSS 210 A2.9 (a)), for radiated emissions measurements. These limits were applied to the fundamental and harmonics:

Frequency (MHz)	Fundamental Limit mV/m	Fundamental Limit (dBμV/m)	Harmonic Limit μV/m	Harmonic Limit (dBµV/m)
902-928	50	94.0	500	54.0
2400-2483.5	50	94.0	500	54.0
5725-5875	50	94.0	500	54.0
24000-24250	250	107.9	2500	67.9

The limits below are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any emissions outside the specified bands:

Frequency (MHz)	3 m Limit μV/m	3 m Limit (dBμV/m)	1 m Limit (dBµV/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement ($dB\mu V/m$) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 13 of 31

5.6 - Radiated Emissions Test Data Chart

Manufacturer:	Laiı	Laird Technologies					
Date(s) of Test:	2/1	7/16 – 3/17/16					
Project Engineer(s):	Sha	ane Dock					
Test Engineer(s):	Sha	ane Dock					
Voltage:	3.6	V and 1.8V (DC)					
Operation Mode:	Cor	ntinuously transmitting and	mc	dul	ated.		
Environmental	Temperature: 71°F						
Conditions in the Lab:	Rel	Relative Humidity: 30%					
EUT Power:		Single Phase 120VAC			3 Phase	_VA	C
EUT Power.		Battery		Χ	Other: 3.6/1	۸ 8.	/DC
EUT Placement:	Χ	80cm non-conductive		Χ	150cm non-	con	ductive pedestal
		pedestal					
EUT Test Location:	Х	3 Meter Semi-Anechoic			3/10m OATS		
EOT Test Location.	^	FCC Listed Chamber	namber 3/10/11 OATS				
Measurements:		Pre-Compliance			Preliminary	Χ	Final
Detectors Used:	Χ	Peak X			Quasi-Peak	Χ	Average

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 14 of 31

Fundamental Emissions

Channel (MHz)	Antenna	EUT	Height (cm)	Azimuth (°)	Peak Field strength (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)	Average Field strength (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)
2402.0	Horizontal	Vertical	300.0	278	66.5	114.0	47.5	50.3	94.0	43.7
2440.0	Horizontal	Vertical	208.0	371	65.5	114.0	48.6	51.4	94.0	42.6
2480.0	Horizontal	Vertical	257.8	271	66.4	114.0	47.6	52.0	94.0	42.0

Notes:

Harmonic Emissions

No harmonic emissions were observed above the system noise floor. Emissions seen below are all noise floor measurements.

Channel	Frequency	Antenna	Peak	P Limit	P Margin	Average	A Limit	A Margin
Charmer	(MHz)	Polarization	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)
Low	4804	Н	46.22	74.00	27.78	33.88	54.00	20.12
Low	4004	V	45.98	74.00	28.02	33.87	54.00	20.13
Mid	4880	Н	46.48	74.00	27.52	33.71	54.00	20.29
IVIIU	4000	V	46.42	74.00	27.58	33.70	54.00	20.30
High	4000	Н	45.12	74.00	28.88	33.22	54.00	20.78
High	4960	V	45.83	74.00	28.17	33.23	54.00	20.77

Spurious Emissions

Frequency (MHz)	Height (cm)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
2514.35	100.6	344.3	59.8	34.9	54.0	19.1	Н	F
2584.39	100.6	345.8	56.8	34.5	54.0	19.5	Н	F

Notes:

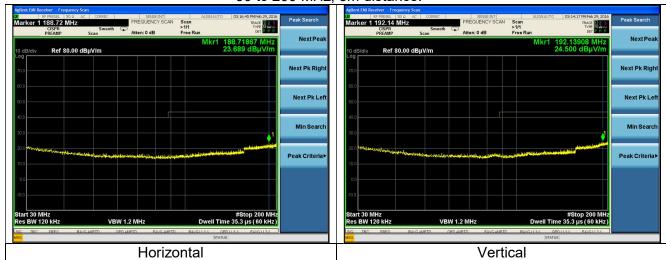
- 1. H: Horizontal, V: Vertical, S: Side, F: Flat.
- 2. Refer to exhibit 5.5 on explanation of how data is reported

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 15 of 31

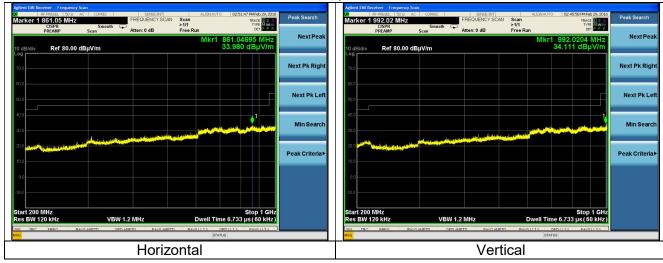
^{1.} Refer to exhibit 5.5 on explanation of how data is reported.

Band Edge Emissions

Frequency (MHz)	Peak Field strength (dBuV/m)	Peak Limit (dBuV/m)	Margin (dB)
2391.6	57.2	74.0	16.8
2483.6	51.2	74.0	22.8

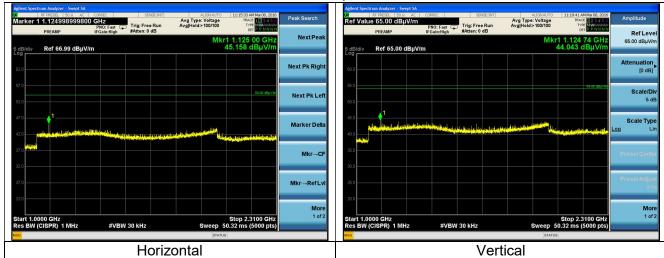

	Frequency (MHz)	Average Field strength (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)
	2391.2	35.0	54.0	19.0
ĺ	2499.9	35.1	54.0	18.9

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 16 of 31

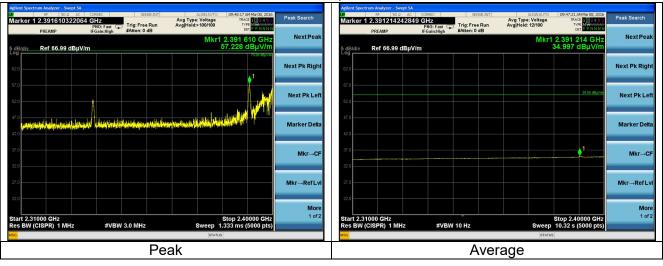

5.7 - Screen Captures.

The screen captures below are those using the Peak detector of the analyzer.

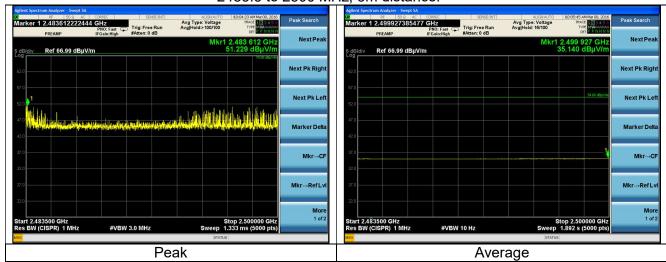
30 to 200 MHz, 3m distance.



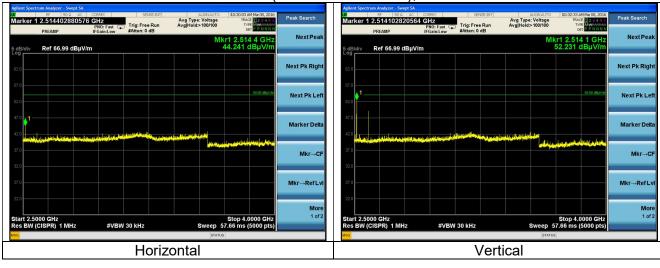
200 to 1000 MHz, 3m distance.


Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 17 of 31

1000 to 2310 MHz, 3m distance.


Note: Emission at 1.125 GHz is not a function of the EUT.

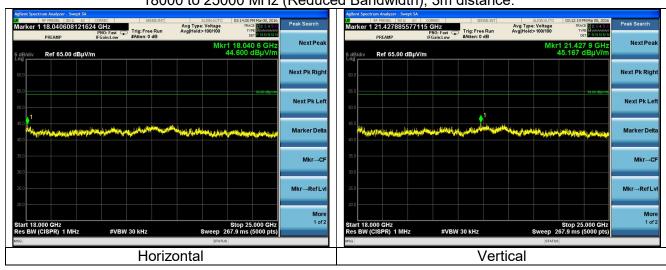
2310 to 2400 MHz, 3m distance.



Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 18 of 31

2483.5 to 2500 MHz, 3m distance.

2500 to 4000 MHz (Reduced Bandwidth), 3m distance.



Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 19 of 31

4000 to 18000 MHz (Reduced Bandwidth), 3m distance.

18000 to 25000 MHz (Reduced Bandwidth), 3m distance.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 20 of 31

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15, Industry Canada RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), Line Impedance Stabilization Network (LISN). The AC power supply was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a and then to EMI receiver System. The LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1-1, Section 6, Table 8, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 and RSS GEN for Conducted Emissions. See the Data Charts and Graphs for more details of the test results.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 21 of 31

6.5 Limits of Conducted Emissions at the AC Mains Ports

Frequency Range	Class B Limits (dBµV)		Measuring
(MHz)	Quasi-Peak	Average	Bandwidth
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz
0.5 - 5.0	56	46	VBW ≥ 9 kHz for QP
5.0 – 30	60	50	VBW = 1 Hz for Average
* The limit decrea logarithm of the fre			

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 22 of 31

6.6 CONDUCTED EMISSIONS TEST DATA CHART

Manufacturer:	Lair	Laird Technologies				
Date(s) of Test:	3/10	0/16 – 3/11/16				
Project Engineer:	Sha	ne Dock				
Test Engineer:	Sha	ne Dock				
Voltage:	3.6/	1.8 VDC				
Operation Mode:	Cor	Continuously Transmitting, Modulated				
Environmental	Ten	Temperature: 73°F				
Conditions in the Lab:	Rela	ative Humidity: 40 %	%			
Test Location:	Χ	X AC Mains Test area				Chamber
EUT Placed On:	Χ	X 40cm from Vertical Ground Plane 10				10cm Spacers
EUT Placed Off.	Χ	80cm above Ground Plane			Other:	
Measurements:		Pre-Compliance	•	Preliminary	Х	Final
Detectors Used:		Peak	X	Quasi-Peak	X	Average

Line	Frequency (MHz)	Q-Peak Reading (dBμV)	Q-Peak Limit (dBμV)	Quasi- Peak Margin (dB)	Average Reading (dBµV)	Average Limit (dΒμV)	Average Margin (dB)
1	0.154	36.6	65.8	29.2	17.9	55.8	37.9
1	0.208	32.6	63.3	30.7	15.3	53.3	38.0
1	0.379	27.9	58.3	30.4	13.2	48.3	35.1
2	0.150	36.9	66.0	29.1	18.2	56.0	37.8
2	0.199	33.2	63.6	30.4	15.5	53.6	38.1
2	0.334	28.6	59.3	30.7	13.6	49.3	35.7

Notes:

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 23 of 31

¹⁾ The emissions listed are characteristic of the power supply used, and did not change by the EUT.

6.7 Screen Captures - Conducted Emissions Test

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.107 and RSS GEN.

Line 1

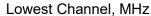
Line 2

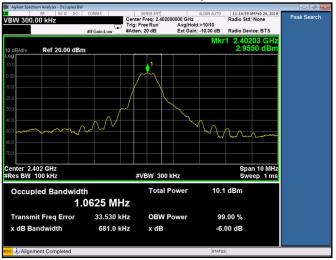
Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 24 of 31

EXHIBIT 7. 99% BANDWIDTH

Test Engineer(s): Shane Dock

7.1 - Method of Measurements

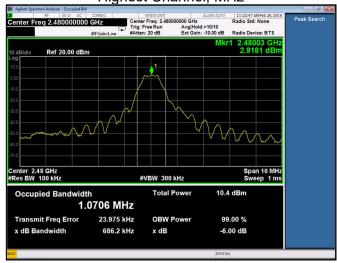

ANSI C63.10 2013 Section 11.8


7.2 - Test Data

Channel (MHz)	99% Bandwidth (MHz)
2402.0	1.063
2440.0	1.066
2480.0	1.071

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 25 of 31

7.3 - Screen Captures



Middle Channel, MHz

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 26 of 31

Highest Channel, MHz

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 27 of 31

EXHIBIT 8. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

Test Engineer(s): Shane Dock

The power and frequency stability of the device was examined as a function of the input voltage available to the EUT using the procedure described in ANSI 63.10, section 6.8. A Spectrum Analyzer was used to measure the power and frequency at the appropriate frequency markers. Power was supplied by an external bench-type DC power supply and was varied between 1.8VDC to 3.6VDC. This range was specified by the manufacturer.

	1.8 VDC	3.3 VDC	3.6 VDC	
Channel	Frequency (Hz)	Frequency (Hz)	Frequency (Hz)	Frequency Drift (Hz)
Channel 2	2402032080	2402031750	2402030420	1660
Channel 40	2440029920	2440025920	2440029750	4000
Channel 80	2480032920	2480036420	2480030250	6170

The EUT has better than 100 PPM frequency stability.

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle.

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 28 of 31

APPENDIX A - Test Equipment List

Date: 18-Feb-2016 Type Test: Conducted Emissions Job#: C-2401 Prepared By: Shane Customer: Laird Quote #: 316054 No. Asset# Manufacturer Model # Serial# Call Date Call Due Date Equipment Status Description N9038A MXE 26.5GHz Receiver MY51210148 1 EE 960085 5/6/2015 Active Calibration N9038A 5/6/2016 EE 960162 COM-POWER LI-215A 7/24/2015 7/24/2016 Active Calibration 3 EE 960088 8GHz MXE Spectrum Analyzer NGCISRA MY51210138 2/24/2016 2/24/2017 Active Calibration a Laird Business Job#: C-2401 Date: 18-Feb-2016 Type Test: Occupied Bandwidth Prepared By: Shane Dock Customer: Laird Quote #: 316054 No. Asset# Call Date Cal Due Date Equipment Status EKD01D010720 5800373 2 EE 960087 44GHz EXA Spectrum Analyzer N9010A MY53400296 12/18/2015 12/18/2016 Active Calibration **₹LSR** a Laird Business Type Test: Radiated Emissions Job#: C-2401 Date: 18-Feb-2016 Prepared By: Shane Dock Customer: Laird Quote #: 316054 No. Asset# Serial# Call Date Model # Cal Due Date Equipment Status Description Manufacturer AA 960005 Biconical Antenna FMCO 93110B 9601-2280 1/14/2016 1/14/2017 Active Calibration 3 AA 960004 Log Periodic Antenna EMCO 93146 9512-4276 8/18/2015 8/18/2016 Active Calibration 4 EE 960085 N9038A MXE 26.5GHz Receiver N9038A MY51210148 5/6/2015 5/6/2016 Active Calibration Agilent 2.4GHz High Pass Filter HPF-L-14186 4/15/2015 Active Calibration 6 AA 960143 Gore EKD01D01048.0 5546519 6/26/2015 6/26/2017 Active Calibration AA 960144 Phasetex Gore EKD01D010720 5800373 Verification Verification System AA 960007 Double Ridge Horn Antenna EMCO 9311-4138 8/4/2015 8/4/2016 3115 Active Calibration EE 960160 0.8-21GHz LNA Mini-Circuits ZVA-213X-S+ 977711030 8/4/2015 8/4/2016 Active Calibration 10 AA 960158 Double Ridge Horn Antenna ETS Lindgrer 3117 109300 2/4/2016 2/4/2017 Active Calibration EM26-S1S1-120 11 AA 960162 **EM Series Cable** MegaPhase 12024301 001 6/30/2015 6/30/2016 Active Calibration 12 AA 960153 2.4GHz High Pass Filter 7272-04 4/15/2015 4/15/2016 13 RENTAL Hom Antenna 18-40GHz SAS-574 11/30/2015 11/30/2016 Active Calibration Project Engineer Same Sink Holum

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 29 of 31

<u>APPENDIX B - Test Standards: CURRENT PUBLICATION DATES RADIO</u>

STANDARD#	DATE	Am. 1	Am. 2
ANSI C63.4	2014		
ANSI C63.10	2013		
FCC 47 CFR, Parts 0-15, 18,			
90, 95	2016		
RSS GEN	2014		
RSS 210	2010		

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 30 of 31

APPENDIX C - Uncertainty Statement

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Temperature/Humidity	Thermo-hygrometer	0.64° / 2.88 %RH

Prepared For: Laird Technologies	EUT: RM191-SM	LSR
Report #: 316054A	Model #: RM191-SM	Template: 15.249
LSR Job #: C-2401	Serial #: See Section 2.2	Page 31 of 31