

FCC DFS Test Report

FCC ID	:	SQG-WB50NBT
Equipment	:	Wireless 802.11abgn + BT4.1 intelligent module
Model No.	:	WB50NBT
Brand Name	:	Laird Technologies
Applicant	:	Laird Technologies
Address	:	W66N220 Commerce Court, Cedarburg, Wisconsin 53012, USA
Standard	:	47 CFR FCC Part 15.407
Received Date	:	Dec. 30, 2015
Tested Date	:	Dec. 30, 2015
Operating Mode	:	Client Without Radar Detection

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang¹/ Manager

Table of Contents

1	GENERAL DESCRIPTION
1.1	Information5
1.2	Support Equipment List
1.3	The Equipment List6
1.4	Testing Condition
1.5	Test Standards
2	TECHNICAL REQUIREMENTS FOR DFS7
2.1	Applicability of DFS Requirements
2.2	DFS Detection Thresholds and Response Requirement
2.3	Radar Test Waveforms9
3	DFS TEST RESULT13
3.1	DFS Detection Threshold levels
3.2	In-Service Monitoring14
3.3	Non-Associated
4	TEST LABORATORY INFORMATION18

Release Record

Report No.	Version	Description	Issued Date
FZ631002	Rev. 01	Initial issue	Apr. 15, 2016
FZ631002	Rev. 02	Modified address of applicant.	May 03, 2016

Summary of Test Results

FCC	Rules	Description of Test	Result
FCC 15.407	KDB 905462 D02	Non-Occupancy Period	Pass
FCC 15.407	KDB 905462 D02	Channel Closing Transmission Time	Pass
FCC 15.407	KDB 905462 D02	Channel Move Time	Pass

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

Frequency Range (GHz)	5.15~5.25, 5.25~5.35, 5.47~5.725
Wireless Function	11a / HT20 / HT40
Operating Mode at DFS Band	Client without radar detection and ad hoc function
Firmware / Software Version	3.5.2.3-2

1.1.2 Antenna Details

Ant.	Model	Туре	Connector	Operating Frequ	encies (MHz) / An	tenna Gain (dBi)
No.	Woder	туре	Connector	5150~5250	5250~5350	5470~5725
1	Laird MAF94051	Dipole	RP-SMA	2.4	2.6	3.4
2	Laird NanoBlade-IP04	PCB Dipole	IPEX MHF	3.9	3.9	4
3	Laird MAF95310 Mini NanoBlade Flex	PCB Dipole	IPEX MHF	3.38	3.38	3.38
4	Ethertronics WLAN_1000146	Isolated Magnetic Dipole	IPEX MHF	3.5	3.5	3.5

1.2 Support Equipment List

	Support Equipment List					
No.	Equipment	Brand Name	Model Name	FCC ID		
1	AP (Master)	Netgear	R6100	PY312400225		
2	Notebook	DELL	LATITUDE-E6430	9ZFB4X1		
3	Notebook	DELL	LATITUDE-E5420	B6FV9T1		

1.3 The Equipment List

(DF01-WS)				
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
R&S	FSV 7	101607	Dec. 10, 2015	Dec. 09, 2016
HUBER+SUHNER	SUCOFLEX_104	MY15686/4	Dec. 18, 2015	Dec. 17, 2016
HUBER+SUHNER	SUCOFLEX_104	296081/4	Dec. 18, 2015	Dec. 17, 2016
HUBER+SUHNER	SUCOFLEX_104	500199/4	Dec. 18, 2015	Dec. 17, 2016
HUBER+SUHNER	SUCOFLEX_104	500202/4	Dec. 18, 2015	Dec. 17, 2016
HUBER+SUHNER	SUCOFLEX_104	296088/4	Dec. 18, 2015	Dec. 17, 2016
HUBER+SUHNER	SUCOFLEX_104	329023/4	Dec. 18, 2015	Dec. 17, 2016
HUBER+SUHNER	SUCOFLEX_104	329021/4	Dec. 18, 2015	Dec. 17, 2016
R&S	SMJ100A	100498	Dec. 18, 2015	Dec. 17, 2016
	Manufacturer R&S HUBER+SUHNER HUBER+SUHNER HUBER+SUHNER HUBER+SUHNER HUBER+SUHNER HUBER+SUHNER	ManufacturerModel No.R&SFSV 7HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104HUBER+SUHNERSUCOFLEX_104	ManufacturerModel No.Serial No.R&SFSV 7101607HUBER+SUHNERSUCOFLEX_104MY15686/4HUBER+SUHNERSUCOFLEX_104296081/4HUBER+SUHNERSUCOFLEX_104500199/4HUBER+SUHNERSUCOFLEX_104500202/4HUBER+SUHNERSUCOFLEX_104296088/4HUBER+SUHNERSUCOFLEX_104329023/4HUBER+SUHNERSUCOFLEX_104329021/4	Manufacturer Model No. Serial No. Calibration Date R&S FSV 7 101607 Dec. 10, 2015 HUBER+SUHNER SUCOFLEX_104 MY15686/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 296081/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 296081/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 500199/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 500202/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 296088/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 329023/4 Dec. 18, 2015 HUBER+SUHNER SUCOFLEX_104 329021/4 Dec. 18, 2015

1.4 **Testing Condition**

Test Item	Test Site	Ambient Condition	Tested By
DFS	DF01-WS	20°C / 67%	Jack Li

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407 FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v01r02 FCC KDB 905462 D03 UNII Clients Without Radar Detection New Rules v01r01 FCC KDB 905462 D06 802 11 Channel Plans v01

2 Technical Requirements for DFS

2.1 Applicability of DFS Requirements

2.1.1 Applicability of DFS Requirements Prior to use of a Channel

	Operational Mode			
Requirement	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

2.1.2 Applicability of DFS Requirements during Normal Operation

	Operational Mode		
Requirement	Master or Client With Radar Detection	Client Without Radar Detection	
DFS Detection Threshold	Yes	Not required	
Channel Closing Transmission Time	Yes	Yes	
Channel Move Time	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	

Additional requirements for devices	Operational Mode		
with multiple bandwidth modes	Master or Client With Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	

Note: Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequencies between the bonded 20 MHz channel blocks.

2.2 DFS Detection Thresholds and Response Requirement

Below table provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection.

Maximum Transmit Power	Value (See Notes 1 , 2 and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm / MHz	-62 dBm
EIRP < 200 milliwatt and that do not meet the power spectral density requirement	-64 dBm
Net 4 This is the leader the inert of the	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

DFS Response Requirement Values

Parameter	Value
Non-occupancy period	Minimum 30 minutes.
Channel Availability Check Time	60 seconds.
Channel Move Time	10 seconds. (See Note 1.)
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (See Notes 1 and 2.)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3.)

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

2.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

2.3.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note1	See Note1
1		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\operatorname{Roundup} \left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}. \\ \begin{pmatrix} \frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \operatorname{sec}}} \end{pmatrix} \right\}$	60%	30
		Test B: 15 unique PRI values randomly selected within the range of 518-3066 μ sec, with a minimum increment of 1 μsec, excluding PRI values selected in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types 1-4)			80%	120
	ort Pulse Radar Typ	be 0 should be used	for the detection ba	ndwidth test, chanr	nel move time, and

channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous in Tests A or B.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Pulse Repetition Intervals Values for Test A

2.3.2 Long Pulse Radar Test Waveform

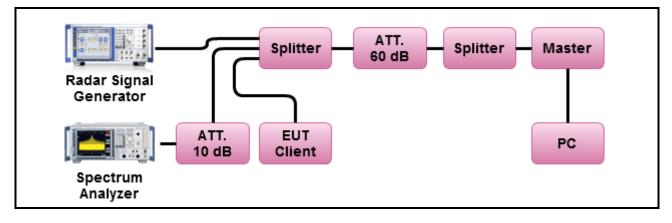
Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

2.3.3 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:


The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely

2.3.4 Radar waveform generation

A single R&S SMU200A Vector Signal Generator is used for the DFS signal generation. This instrument is capable of generating all the above waveforms with Pulse Sequencer Software. The R&S Pulse Sequencer Software comes as a stand-alone PC based software with preconfigured project files for DFS. It simplifies the generation of all required waveforms and offers a one box solution

2.3.5 DFS Test Setup

2.3.6 Channel Loading/Data Streaming

IP Based (Load Based) - stream the test file from the Master to the Client.
The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.
Minimum channel loading of approximately 17 %

3 DFS test result

3.1 DFS Detection Threshold levels

Master DFS Threshold Level

DFS Threshold level: -60.1 dBm

The Interference **Radar Detection Threshold Level** is $(-64dBm) + (2.9 [dBi]) + \{1 dB\}= -60.1 dBm$. That had been taken into account the master output power range and antenna gain.

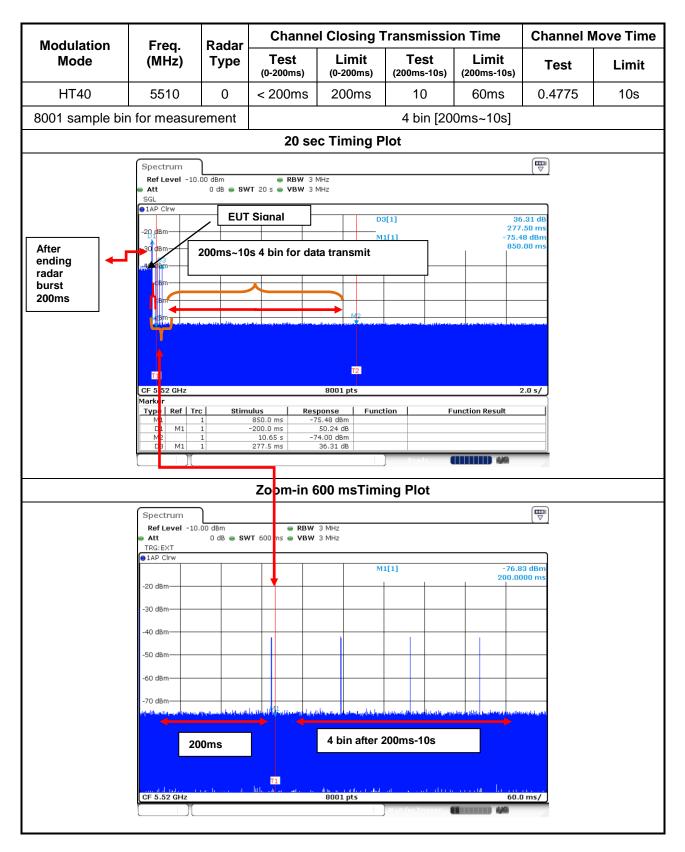
Without Data Traffic Plot (Noise Plot)	Master Data Traffic Plot				
Spectrum 🕎	Spectrum 🔆				
Ref Level -10.00 dBm ■ RBW 3 MHz Att 0 dB SWT 20 s ■ VBW 3 MHz SGL SGL SGL SGL SGL SGL	RefLevel -10.00 dBm RBW 3 MHz Att 0 dB SWT 20 s VBW 3 MHz SGL SGL SGL SGL				
●1AP Cirw M1[1] -72.65 dBm	●1AP Cirw M1[1] -50.96 dBm				
-20 dBm	-20 dBm				
-30 dBm	-30 dBm				
-40 dBm	-40 dBm				
-50 dBm	-50 dBm				
-60 dBm	nonessas yn neu yn n Neu yn neu yn				
-70 dBm					
CF 5.52 GHz 8001 pts 2.0 s/	CF 5.52 GHz 8001 pts 2.0 s/				
Client(EUT) Data Traffic Plot	Calibration Radar # 0 detection threshold level				
Spectrum 🕎	Spectrum 🕎				
Spectrum Image: bit in the system Ref Lavel -10.00 dBm ● RBW 3 MHz ● Att 0 dB ● SWT 20 5 ● VBW 3 MHz	Spectrum RefLevel -10.00 dBm ● RBW 3 MHz Att 0 dB ● SWT 50 ms ● VBW 3 MHz				
Spectrum Imm Ref Level -10.00 dBm ■ RBW 3 MHz Att 0 dB SWT 20 s SGL Off GIAP Cirw Imm	Spectrum Image: Spectrum Rof Level -10.00 dBm Image: RBW 3 MHz Att 0 db Image: SWT 50 ms Image: VBW 3 MHz TRG: VID Image: SWT 50 ms Image: VBW 3 MHz TRG: VID Image: SWT 50 ms Ima				
Spectrum Image: Constraint of the system of t	Spectrum Image: Constraint of the system of t				
Spectrum Image: Construction of the sector of	Spectrum Image: Constraint of the system of th				
Spectrum Image: Constraint of the system of th	Spectrum Image: Constraint of the second secon				
Spectrum Image: Constraint of the sector of t	Spectrum Image: Constraint of the second seco				
Spectrum Image: Constraint of the system of th	Spectrum Image: Constraint of the second secon				
Spectrum Image: Constraint of the system of th	Spectrum Image: Constraint of the second seco				
Spectrum Image: Constraint of the second secon	Spectrum Image: Constraint of the second secon				
Spectrum Image: Constraint of the second secon	Spectrum Image: Constraint of the second secon				
Spectrum Image: Constraint of the system of th	Spectrum Image: Constraint of the second secon				
Spectrum Image: Constraint of the system of th	Spectrum Image: Construction of the second sec				
Spectrum Image: Constraint of the system of th	Spectrum Image: Constraint of the second secon				

3.2 In-Service Monitoring

3.2.1 In-service Monitoring Limit

In-service Monitoring Limit				
Channel Move Time 10 sec				
Channel Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 sec periods.			
Non-occupancy period	Minimum 30 minutes			

3.2.2 Test Procedures


Г

Test Method
Refer as FCC KDB 905642 D02, clause 7.8.3 verified during In-Service Monitoring; Channel Closing Transmission Time, Channel Move Time. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). Compare the Channel Move Time and Channel Closing Transmission Time limits.
Refer as FCC KDB 905642 D02, clause 7.8.3 verified during In-Service Monitoring; Non-Occupancy Period. Client Device will associate with the EUT. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel for duration greater than 10 seconds. Measure and record the transmissions from the EUT during the observation time (Non-Occupancy Period). Compare the Non-Occupancy Period limits.

1

3.2.3 Test Result of Channel Closing Transmission and Channel Move Time

3.2.4 Test Result of Non-Occupancy

	Non-Occup	ancy Period Result				
Modulation		Non	Non-Occupancy Period			
Mode	Freq. (MHz)	Measured	Limit	Result		
HT40	5510	>30min	30min	Complied		
	2000 se	ec Timing Plot				
	Spectrum Ref Level -10.00 dBm RBW 3 Att 0 dB SWT 2000 s VBW 3 SGL IAP Clrw IAP Clrw					
	-30 dBm-	M2[1] M1[1]	-73.41 dBm 1845.750 s -24.39 dBm 45.750 s			
	0 dBm					
	0 dBm		MD			
	11		Т2			
	CF 5.52 GHz	8001 pts	200.0 s/			

3.3 Non-Associated

Non-Associated Test Result						
Modulation Mode	Freq. (MHz) Observation time		Freq. (MHz) Observation t		ion time	Result
HT40	5510	30 Mir	30 Minutes			
	2000 se	c Timing Plot				
SGL	I -10.00 dBm					
● 1AP Clrw		M1[1]	-73.68 dBm 1800.000 s			
-20 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
	n here we want in the born out of a family of a point of the source of the	aantaaliyseen, poinentaliin ja rajamataala mataatiin tijaat	n and her development of the day of the second			
			71			
CF 5.52 G	iz i	8001 pts Ready	200.0 s/			

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—