

Page: 1 of 33

FCC Test Report

FCC ID : SQG-MT320

Equipment : WiFi 6 + Bluetooth 5.4 Module

Model No. : Sona MT320

Brand Name : Laird Connectivity

Applicant : Laird Connectivity LLC

Address : W66N220 Commerce Court, Cedarburg, WI

53012 United States Of America

Standard : 47 CFR FCC Part 15.407

Received Date : Sep. 25, 2023

Tested Date : Oct. 17 ~ Dec. 08, 2023

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Chen / Assistant Manager

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	13
1.3	Test Setup Chart	13
1.4	The Equipment List	15
1.5	Test Standards	16
1.6	Reference Guidance	16
1.7	Deviation from Test Standard and Measurement Procedure	16
1.8	Measurement Uncertainty	17
2	TEST CONFIGURATION	18
2.1	Testing Facility	18
2.2	The Worst Test Modes and Channel Details	19
2.3	Directional gain	22
3	TRANSMITTER TEST RESULTS	23
3.1	Emission Bandwidth	23
3.2	Conducted Output Power	24
3.3	Power Spectral Density	26
3.4	Unwanted Emissions	28
3.5	Frequency Stability	31
3.6	AC Power Line Conducted Emissions	32
4	TEST I ABORATORY INFORMATION	33

Appendix A. Emission Bandwidth

Appendix B. Conducted Output Power

Appendix C. Power Spectral Density

Appendix D. Unwanted Emissions

Appendix E. Frequency Stability

Appendix F. AC Power Line Conducted Emissions

Release Record

Report No.	Version	Description	Issued Date
FR392501AN	Rev. 01	Initial issue	Jan. 23, 2024
FR392501AN	Rev. 02	Product name changed	Feb. 08, 2024

Report No.: FR392501AN Page: 3 of 33

Report Version: Rev. 02

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.393MHz 33.19 (Margin -14.80dB) - AV	Pass
15.407(b) 15.209	Unwanted Emissions	[dBuV/m at 3m]: 17475.00MHz 60.67 (Margin -7.53dB) - PK	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	Conducted Output Power	Max Power [dBm]: Non-beamforming mode 5150~5250MHz: 20.26 5250~5350MHz: 20.21 5470~5725MHz: 22.56 5725~5850MHz: 22.78 Beamforming mode 5150~5250MHz: 17.07 5250~5350MHz: 17.20 5470~5725MHz: 19.55 5725~5850MHz: 19.77	Pass
15.407(a)	Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR392501AN Page: 4 of 33

Report Version: Rev. 02

1 General Description

1.1 Information

1.1.1 Product Details

The two configurations of the EUT are shown on the following:

Brand Name Model Name		Description
Laird Connactivity	Sona MT320	MT320-SC (MHF4 connector on module)
Laird Connectivity	3011a W 1 320	MT320-ST (RF trace variant)

Report No.: FR392501AN Page: 5 of 33

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
5150-5250 5250-5350 5470-5725 5725-5850	а	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	6-54 Mbps	
5150-5250 5250-5350 5470-5725 5725-5850	n (HT20)	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	MCS 0-15	
5150-5250 5250-5350 5470-5725 5725-5850	n (HT40)	5190-5230 5270-5310 5510-5710 5755-5795	38-46 [2] 54-62 [2] 102-142 [6] 151-159 [2]	2	MCS 0-15	
5150-5250 5250-5350 5470-5725 5725-5850	ac (VHT20)	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	MCS 0-9	
5150-5250 5250-5350 5470-5725 5725-5850	ac (VHT40)	5190-5230 5270-5310 5510-5710 5755-5795	38-46 [2] 54-62 [2] 102-142 [6] 151-159 [2]	2	MCS 0-9	
5150-5250 5250-5350 5470-5725 5725-5850	ac (VHT80)	5210 5290 5530~5690 5775	42 [1] 58 [1] 106-138 [3] 155 [1]	2	MCS 0-9	
5150-5250 5250-5350 5470-5725 5725-5850	ax (HE20)	5180-5240 5260-5320 5500-5720 5745-5825	36-48 [4] 52-64 [4] 100-144 [12] 149-165 [5]	2	MCS 0-11	
5150-5250 5250-5350 5470-5725 5725-5850	ax (HE40)	5190-5230 5270-5310 5510-5710 5755-5795	38-46 [2] 54-62 [2] 102-142 [6] 151-159 [2]	2	MCS 0-11	
5150-5250 5250-5350 5470-5725 5725-5850	ax (HE80)	5210 5290 5530~5690 5775	42 [1] 58 [1] 106-138 [3] 155 [1]	2	MCS 0-11	

Note 1: OFDM/OFDMA- BPSK, QPSK, 16QAM, 64QAM, 256QAM and 1024QAM modulation.

Report No.: FR392501AN Page: 6 of 33

Note 2: 802.11ac/an/ax supports beamforming function.

Note 3: 802.11ax supports full RU and partial RU configuration. Test results of full RU configuration are recorded in this report. Refers to report no.: FR392501-1AN for test results of partial RU configuration.

1.1.3 Antenna Details

Ant.	Manufacturer	acturer Model Part Number Type Connector	Gain	(dBi)			
No.	Wanulacturer	Wodei	Part Number	Туре	Connector	2.4GHz	5GHz
1	Laird Connectivity	FlexMIMO 6E	EFD2471A3S-10 MH4L	PIFA	MHF4L	2.2	3.8
2	Laird Connectivity	FlexPIFA 6E	EFB2471A3S-10 MH4L	PIFA	MHF4L	2.2	3.9
3	Laird Connectivity	Mini NanoBlade Flex 6 GHz	EMF2471A3S-10 MH4L	PCB Dipole	MHF4L	2.4	4.4
4	Joymax Electronics	Dipole 6E	TWX-100BRS3B	Dipole	RP-SMA	2	4

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 3.3Vdc from host

1.1.5 Accessories

N/A

Report No.: FR392501AN Page: 7 of 33

1.1.6 Channel List

802.11a / n HT20 /	ac VHT20 / ax HE20	802.11n HT40 / ac	VHT40 / ax HE40
Channel	Frequency(MHz)	Channel	Frequency(MHz)
36	5180	38	5190
40	5200	46	5230
44	5220	54	5270
48	5240	62	5310
52	5260	102	5510
56	5280	110	5550
60	5300	118	5590
64	5320	126	5630
100	5500	134	5670
104	5520	142	5710
108	5540	151	5755
112	5560	159	5795
116	5580	802.11ac VH	Г80 / ax HE80
120	5600	42	5210
124	5620	58	5290
128	5640	106	5530
132	5660	122	5610
136	5680	138	5690
140	5700	155	5775
144	5720		
149	5745		
153	5765		
157	5785		
161	5805		
165	5825		

1.1.7 Test Tool and Duty Cycle

Test Tool	QATool, version: 0.0.2.85		
	Mode	Duty Cycle (%)	Duty Factor (dB)
	11a	87.67%	0.57
Duty Cycle and Duty Factor	ax HE20-OFDMA	84.24%	0.74
	ax HE40-OFDMA	73.10%	1.36
	ax HE80-OFDMA	56.35%	2.49

Report No.: FR392501AN Page: 8 of 33

1.1.8 Power Index of Test Tool

SC Module

Modulation Mode	Test Frequency (MHz)	Power Index
11a	5180	8.5
11a	5200	9.5
11a	5240	13
11a	5260	12.5
11a	5300	10.5
11a	5320	9
11a	5500	9.5
11a	5580	13.5
11a	5700	11
11a	5720	13.5
11a	5745	15.5
11a	5785	15.5
11a	5825	15.5
ax HE20-OFDMA	5180	9
ax HE20-OFDMA	5200	11.5
ax HE20-OFDMA	5240	14
ax HE20-OFDMA	5260	14
ax HE20-OFDMA	5300	12
ax HE20-OFDMA	5320	10
ax HE20-OFDMA	5500	11
ax HE20-OFDMA	5580	15.5
ax HE20-OFDMA	5700	11
ax HE20-OFDMA	5720	16
ax HE20-OFDMA	5745	16.5
ax HE20-OFDMA	5785	16.5
ax HE20-OFDMA	5825	16.5

Page: 9 of 33

Modulation Mode	Test Frequency (MHz)	Power Index
ax HE40-OFDMA	5190	9
ax HE40-OFDMA	5230	12
ax HE40-OFDMA	5270	12
ax HE40-OFDMA	5310	9.5
ax HE40-OFDMA	5510	11
ax HE40-OFDMA	5590	15.5
ax HE40-OFDMA	5670	13
ax HE40-OFDMA	5710	16.5
ax HE40-OFDMA	5755	15.5
ax HE40-OFDMA	5795	16.5
ax HE80-OFDMA	5210	6.5
ax HE80-OFDMA	5290	7
ax HE80-OFDMA	5530	10
ax HE80-OFDMA	5610	13.5
ax HE80-OFDMA	5690	16.5
ax HE80-OFDMA	5775	14

Page: 10 of 33

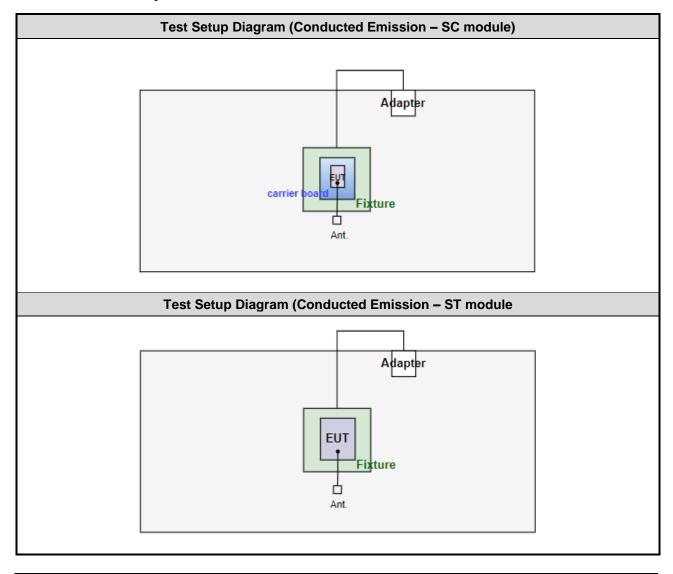
ST Module

Modulation Mode	Test Frequency (MHz)	Power Index
11a	5180	8.5
11a	5200	9.5
11a	5240	13
11a	5260	12.5
11a	5300	10
11a	5320	9.5
11a	5500	9
11a	5580	13.5
11a	5700	11
11a	5720	13.5
11a	5745	15.5
11a	5785	15.5
11a	5825	15.5
ax HE20-OFDMA	5180	9
ax HE20-OFDMA	5200	11
ax HE20-OFDMA	5240	14
ax HE20-OFDMA	5260	14
ax HE20-OFDMA	5300	11
ax HE20-OFDMA	5320	9
ax HE20-OFDMA	5500	10.5
ax HE20-OFDMA	5580	15
ax HE20-OFDMA	5700	11
ax HE20-OFDMA	5720	15.5
ax HE20-OFDMA	5745	16.5
ax HE20-OFDMA	5785	16.5
ax HE20-OFDMA	5825	16.5

Page: 11 of 33

Modulation Mode	Test Frequency (MHz)	Power Index
ax HE40-OFDMA	5190	9
ax HE40-OFDMA	5230	12
ax HE40-OFDMA	5270	12
ax HE40-OFDMA	5310	9
ax HE40-OFDMA	5510	10.5
ax HE40-OFDMA	5590	15.5
ax HE40-OFDMA	5670	13
ax HE40-OFDMA	5710	16.5
ax HE40-OFDMA	5755	15.5
ax HE40-OFDMA	5795	16.5
ax HE80-OFDMA	5210	6.5
ax HE80-OFDMA	5290	7
ax HE80-OFDMA	5530	9.5
ax HE80-OFDMA	5610	13.5
ax HE80-OFDMA	5690	16
ax HE80-OFDMA	5775	14

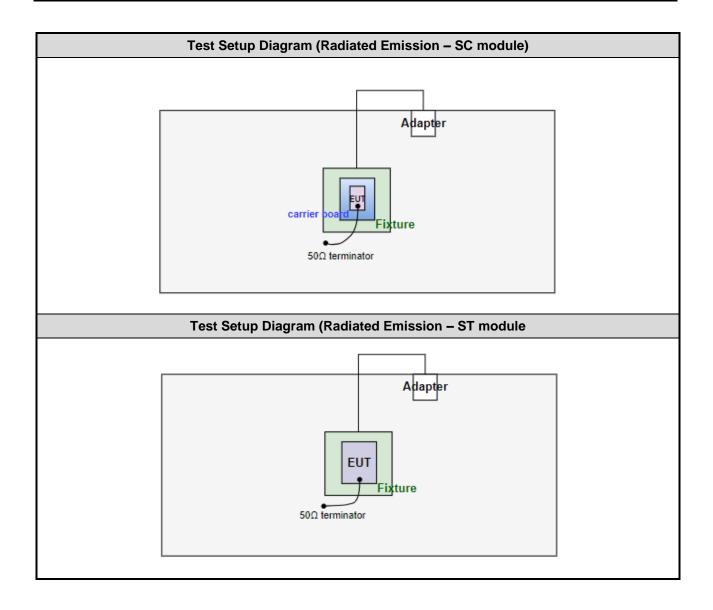
Page: 12 of 33



Local Support Equipment List 1.2

	Support Equipment List							
No.	No. Equipment Brand Model FCC ID Remarks							
1	Laptop	DELL	Latitude 5400	DoC				
2	Fixture				Provided by applicant.			
3	Fixture's adapter				Provided by applicant. I/P: 100-240Vac,1.5A,50-60Hz O/P: 5.0V 3.0A			
4	Carrier board				Provided by applicant.			
5	50Ω terminator							

Note: The support laptop was disconnected from EUT and was removed from testing table after sending command to EUT to transmit continuously.


Test Setup Chart 1.3

Report No.: FR392501AN Report Version: Rev. 02

Page: 13 of 33

Page: 14 of 33

1.4 The Equipment List

Test Item	Conducted Emission						
Test Site	Conduction room 1 / (CO01-WS)						
Tested Date	Dec. 08, 2023						
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101658	Feb. 17, 2023	Feb. 16, 2024		
LISN	R&S	ENV216	101579	May. 09, 2023	May. 08, 2024		
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127667	Jan .03, 2023	Jan .02, 2024		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 11, 2023	Oct. 10, 2024		
50 ohm terminal (Support Unit)	NA	50	01	Jun. 14, 2023	Jun. 13, 2024		
Measurement Software	AUDIX	e3	6.120210k	NA	NA		
Note: Calibration Inter	rval of instruments liste	d above is one year.			•		

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03Cl	H01-WS)				
Tested Date	Oct. 20 ~ Oct. 25, 2023					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101657	Mar. 03, 2023	Mar. 02, 2024	
Spectrum Analyzer	R&S	FSV40	101498	Nov. 21, 2022	Nov. 20, 2023	
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 01, 2022	Oct. 31, 2023	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 31, 2023	Jul. 30, 2024	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Nov. 25, 2022	Nov. 24, 2023	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 27, 2022	Oct. 26, 2023	
Preamplifier	EMC	EMC02325	980225	Jun. 28, 2023	Jun. 27, 2024	
Preamplifier	EMC	EMC118A45SE	980898	Jul. 14, 2023	Jul. 13, 2024	
Preamplifier	EMC	EMC184045SE	980903	Jul. 17, 2023	Jul. 16, 2024	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 03, 2023	Oct. 02, 2024	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 03, 2023	Oct. 02, 2024	
LF cable 11M	EMC	EMCCFD400-NW-NW-1 1000	200801	Oct. 03, 2023	Oct. 02, 2024	
LF cable 1M	EMC	EMCCFD400-NM-NM-1 000	160502	Oct. 03, 2023	Oct. 02, 2024	
RF Cable	EMC	EMC104-35M-35M-8000	210920	Oct. 03, 2023	Oct. 02, 2024	
RF Cable	EMC	EMC104-35M-35M-3000	210922	Oct. 03, 2023	Oct. 02, 2024	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Note: Calibration Inter	rval of instruments liste	d above is one year.				

Page: 15 of 33

Report No.: FR392501AN

Report Version: Rev. 02

Test Item	RF Conducted				
Test Site	(TH01-WS)				
Tested Date	Oct. 17 ~ Nov. 28, 2	2023			
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until
Spectrum Analyzer	R&S	FSV40	101910	Apr. 14, 2023	Apr. 13, 2024
Power Meter	Anritsu	ML2495A	1241001	Jan. 11, 2023	Jan. 10, 2024
Power Sensor	Anritsu	MA2411B	1911228	Jan. 11, 2023	Jan. 10, 2024
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Jun. 21, 2023	Jun. 20, 2024
AC POWER SOURCE	APC	AFC-500W	F312060012	Dec. 09, 2022	Dec. 08, 2023
Attenuator	Pasternack	PE7005-10	10-2	Oct. 05, 2023	Oct. 04, 2024
HIGHPASS FILTER 7-18G	K&L	11SH10-7000/T18000-O/OP	18	Oct. 05, 2023	Oct. 04, 2024
LOWPASS FILTER	WI	WLKS1100-12SS	2	Oct. 05, 2023	Oct. 04, 2024
LOWPASS FILTER	WI	WLKS5000-12SS	1	Oct. 05, 2023	Oct. 04, 2024
Measurement Software	Sporton	SENSE-15407_NII	V5.11	NA	NA
Note: Calibration Interval of instruments listed above is one year.					

1.5 Test Standards

47 CFR FCC Part 15.407 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01

1.7 Deviation from Test Standard and Measurement Procedure

None

Report No.: FR392501AN Page: 16 of 33

Report Version: Rev. 02

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.130 Hz			
Conducted power	±0.808 dB			
Frequency error	±1x10 ⁻⁹			
Power density	±0.583 dB			
Conducted emission	±2.715 dB			
AC conducted emission	±2.92 dB			
Unwanted Emission ≤ 1GHz	±3.41 dB			
Unwanted Emission > 1GHz	±4.59 dB			
Time	±0.1%			
Temperature	±0.4 °C			

Page: 17 of 33

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corporation
Test Site	CO01-WS, 03CH01-WS, TH01-WS
Address of Test Site	No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

FCC Designation No.: TW2732FCC site registration No.: 181692

➤ ISED#: 10807A

➤ CAB identifier: TW2732

Report No.: FR392501AN Page: 18 of 33

2.2 The Worst Test Modes and Channel Details

	Freq	uency band 5150~5350 MHz	z / 5470~5	725 MHz			
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test method	Mode	Test Configuration	Note
Non-beamforming mod	de						
AC Power Line Conducted Emissions	ax HE40-OFDMA	5710	MCS 0	Conducted	TX	1	-
Unwanted Emissions ≤1GHz	ax HE40-OFDMA	5710	MCS 0	Radiated	TX	1, 2	Note 2
	11a	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	6 Mbps				
	ax HE20-OFDMA	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0	Radiated	TX	1	Note 2
Unwanted Emissions >1GHz	ax HE40-OFDMA	5190 / 5230 / 5270 / 5310 / 5510 / 5590 / 5670 / 5710	MCS 0				
	ax HE80-OFDMA	5210 / 5290 / 5530 / 5610 / 5690	MCS 0				
	ax HE80-OFDMA ax HE40-OFDMA ax HE80-OFDMA	5210 5270 5610	MCS 0	Radiated	TX	2	Note 2
Unwanted Emissions ≤1GHz	ax HE40-OFDMA	5710	MCS 0	Conducted	TX	1, 2	-
	11a	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	6 Mbps				
Unwanted Emissions >1GHz	ax HE20-OFDMA	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0	Conducted	TX	1	-
	ax HE40-OFDMA	5190 / 5230/ 5270 / 5310 / 5510 / 5590 / 5670 / 5710	MCS 0				
	ax HE80-OFDMA	5210 / 5290 / 5530 / 5610 / 5690	MCS 0				
	11a ax HE80-OFDMA	5200 / 5700 5290	MCS 0	Conducted	TX	2	-

Page: 19 of 33

Report No.: FR392501AN

Report Version: Rev. 02

	Freq	uency band 5150~5350 MHz	z / 5470~5	725 MHz			
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test method	Mode	Test Configuration	Note
	11a	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	6 Mbps				
Conducted Output Power	ax HE20-OFDMA	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0	Conducted	TX	1, 2	-
	ax HE40-OFDMA	5190 / 5230/ 5270 / 5310 / 5510 / 5590 / 5670 / 5710	MCS 0				
	ax HE80-OFDMA	5210 / 5290 / 5530 / 5610 / 5690	MCS 0				
	11a	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	6 Mbps	Conducted		1	-
Emission Bandwidth Power Spectral Density	ax HE20-OFDMA	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0		TX		
	ax HE40-OFDMA	5190 / 5230/ 5270 / 5310 / 5510 / 5590 / 5670 / 5710	MCS 0				
	ax HE80-OFDMA	5210 / 5290 / 5530 / 5610 / 5690	MCS 0				
Frequency Stability	Un-modulation	5300		Conducted	TX	1	-
Beamforming mode							
Conducted Output Power	ax HE20-OFDMA	5180 / 5200 / 5240 / 5260 / 5300 / 5320 / 5500 / 5580 / 5700 / 5720	MCS 0				
	ax HE40-OFDMA	5190 / 5230/ 5270 / 5310 / 5510 / 5590 / 5670 / 5710	MCS 0	Conducted	TX	1, 2	-
	ax HE80-OFDMA	5210 / 5290 / 5530 / 5610 / 5690	MCS 0				

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Y-plane** result was found as the worst case and was shown in this report.
- 2. The 50Ω terminator is connected to antenna port of EUT for radiated emission measurement.
- 3. Beamforming mode is calculated not measured. The calculation method is conducted power of non-beamforming 3.01 dB.

Page: 20 of 33

4. Test configurations are listed as below:

Configuration 1: SC Module Configuration 2: ST Module

Report No.: FR392501AN

Report Version: Rev. 02

	Frequency band 5725-5850 MHz							
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test method	Mode	Test Configuration	Note	
Non-beamforming mod	de							
AC Power Line Conducted Emission	ax HE20-OFDMA	5825	MCS 0	Conducted	TX	1	-	
Unwanted Emissions ≤ 1GHz	ax HE20-OFDMA	5825	MCS 0	Radiated	TX	1, 2	Note 2	
Unwanted Emissions >1GHz	11a ax HE20-OFDMA ax HE40-OFDMA ax HE80-OFDMA	5745 / 5785 / 5825 5745 / 5785 / 5825 5755 / 5795 5775	6 Mbps MCS 0 MCS 0 MCS 0	Radiated	TX	1	Note 2	
	11a	5825	6 Mbps	Radiated	TX	2	Note 2	
Unwanted Emissions ≤ 1GHz	ax HE20-OFDMA	5825	MCS 0	Conducted	TX	1, 2	-	
Unwanted Emissions >1GHz	11a ax HE20-OFDMA ax HE40-OFDMA ax HE80-OFDMA	5745 / 5785 / 5825 5745 / 5785 / 5825 5755 / 5795 5775	6 Mbps MCS 0 MCS 0 MCS 0	Conducted	TX	1	-	
	ax HE80-OFDMA	5775	MCS 0	Conducted	TX	2	-	
Conducted Output Power	11a ax HE20-OFDMA ax HE40-OFDMA ax HE80-OFDMA	5745 / 5785 / 5825 5745 / 5785 / 5825 5755 / 5795 5775	6 Mbps MCS 0 MCS 0 MCS 0	Conducted	TX	1, 2	-	
6dB bandwidth Power spectral density	11a ax HE20-OFDMA ax HE40-OFDMA ax HE80-OFDMA	5745 / 5785 / 5825 5745 / 5785 / 5825 5755 / 5795 5775	6 Mbps MCS 0 MCS 0 MCS 0	Conducted	TX	1	-	
Frequency Stability	Un-modulation	5785	-	Conducted	TX	1	-	
Beamforming mode	Beamforming mode							
Conducted Output Power	ax HE20-OFDMA ax HE40-OFDMA ax HE80-OFDMA	5745 / 5785 / 5825 5755 / 5795 5775	MCS 0 MCS 0 MCS 0	Conducted	TX	1, 2	-	

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Y-plane** result was found as the worst case and was shown in this report.
- 2. The 50Ω terminator is connected to antenna port of EUT for radiated emission measurement.
- Beamforming mode is calculated not measured. The calculation method is conducted power of non-beamforming 3.01 dB.
- 4. Test configurations are listed as below:

Configuration 1: SC Module Configuration 2: ST Module

Report No.: FR392501AN Page: 21 of 33

Report Version: Rev. 02

2.3 Directional gain

Directional gain is calculated by following formula from FCC KDB 662911 D01 section F)2)f)(i)

Directional gain = G_{ANT} + Array Gain;

For Power measurement (Non-Beamforming)

Array gain = 0 dB for $N_{ANT} \le 4$;

For Power spectral density / out of band emission (conducted measurement) / Power measurement (Beamforming)

Array gain = $10*log(N_{ANT}/N_{SS}) dB$;

Directional gain is calculated as below

Test item	Gant (dBi)	Array gain (dB)	Directional gain (dBi)
Output power (Non-Beamforming)	4.4	0	4.4
Output power (Beamforming)	4.4	3.01	7.41
Power spectral density	4.4	3.01	7.41
Out of band emission(conducted measurement)	4.4	3.01	7.41

Report No.: FR392501AN Page: 22 of 33

3 Transmitter Test Results

3.1 Emission Bandwidth

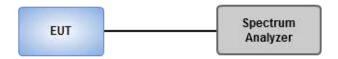
3.1.1 Limit of Emission Bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.1.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.


Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW.
- 2. Set VBW ≥ 3 RBW.
- 3. Sample detection and single sweep mode shall be used.
- 4. Use the 99 % power bandwidth function of the instrument.

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.1.3 Test Setup

3.1.4 Test Results

Ambient Condition	22-23°C / 65-67%	Tested By	Akun Chung

Refer to Appendix A.

Report No.: FR392501AN Page: 23 of 33

3.2 Conducted Output Power

3.2.1 Limit of Conducted Output Power

	Frequency band 5150-5250 MHz			
Operating Mode		Limit		
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)		
	Indoor access point	Conducted Power: 1 W		
	Fixed point-to-point access points	Conducted Power: 1 W		
\boxtimes	Client devices	Conducted Power: 250 mW		

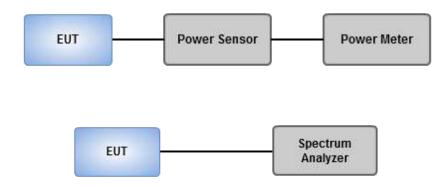
Frequency Band (MHz)		Limit	
	5250 ~ 5350	Conducted Power: 250mW or 11dBm+10 log B	
\boxtimes	5470 ~ 5725	Conducted Power: 250mW or 11dBm+10 log B	
\boxtimes			
Note	Note: "B" is the 26dB emission bandwidth in MHz.		

3.2.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Spectrum analyzer (For channel that extends across the 5.725 GHz boundary)


- 1. Set RBW = 1MHz, VBW = 3MHz, Sweep time = Auto, Detector = RMS.
- 2. Trace average at least 100 traces in power averaging mode.
- 3. Compute power by integrating the spectrum across the 26 dB EBW.
- 4. Add 10 log(1/X, X:duty cycle) if duty cycle is <98%).

Report No.: FR392501AN Page: 24 of 33

Report Version: Rev. 02

3.2.3 Test Setup

3.2.4 Test Results

Ambient Condition	22-23°C / 65-67%	Tested By	Akun Chung
-------------------	------------------	-----------	------------

Refer to Appendix B.

Report No.: FR392501AN

Page: 25 of 33

Report Version: Rev. 02

3.3 Power Spectral Density

3.3.1 Limit of Power Spectral Density

	Frequency band 5150-5250 MHz			
Ope	Operating Mode Limit			
	Outdoor access point	17 dBm / MHz		
	Indoor access point	17 dBm / MHz		
	Fixed point-to-point access points	17 dBm / MHz		
\boxtimes	Client devices	11 dBm / MHz		

Frequency Band (MHz)		Limit
\boxtimes	5250 ~ 5350	11 dBm / MHz
\boxtimes	5470 ~ 5725	11 dBm / MHz
\boxtimes	5725 ~ 5850	30 dBm /500 kHz

Report No.: FR392501AN Page: 26 of 33

3.3.2 Test Procedures

For 5150 ~ 5250 MHz / 5250 ~ 5350 MHz / 5470 ~ 5725 MHz

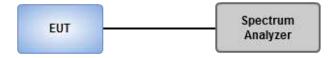
Duty cycle ≥ 98 %

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

Duty cycle < 98 %

- Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add $10 \log(1/x)$, where x is the duty cycle.

For 5725 ~ 5850 MHz


Duty cycle ≥ 98 %

- 1. Set RBW = 500 kHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
- 2. Trace average 100 traces.
- 3. Use the peak marker function to determine the maximum amplitude level.

Duty cycle < 98 %

- 1. Set RBW = 500 kHz, VBW = 3 MHz, Detector = RMS.
- 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
- 3. Perform a single sweep.
- 4. Use the peak marker function to determine the maximum amplitude level.
- 5. Add 10 log(1/x), where x is the duty cycle.

3.3.3 Test Setup

3.3.4 Test Results

Ambient Condition	22-23°C / 65-67%	Tested By	Akun Chung
-------------------	------------------	-----------	------------

Refer to Appendix C.

Report No.: FR392501AN Page: 27 of 33

3.4 Unwanted Emissions

3.4.1 Limit of Unwanted Emissions

Restricted Band Emissions Limit			
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit		
Operating Band	Limit	
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]	
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]	
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]	
5.725 - 5.850 GHz	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.	

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

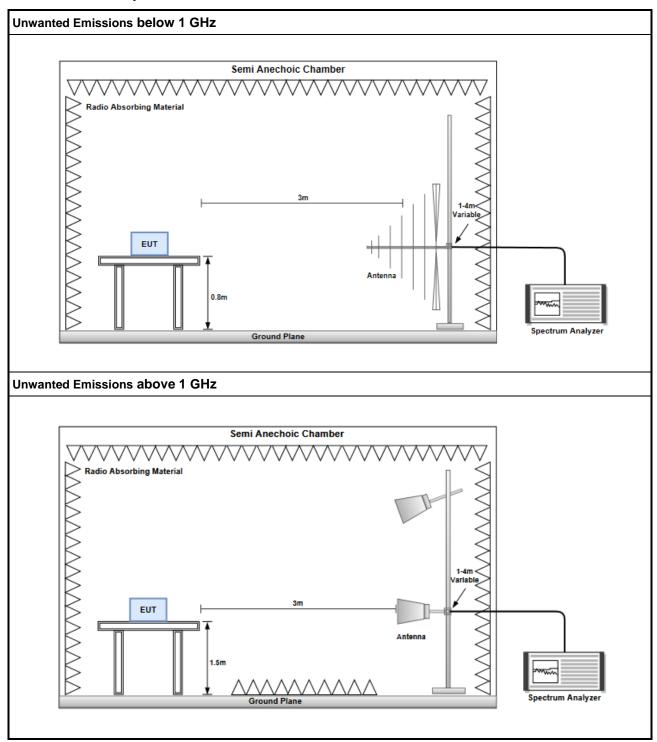
Page: 28 of 33

Report No.: FR392501AN Report Version: Rev. 02

REPORT NO.: FR39250TAN

3.4.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.


Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR392501AN Page: 29 of 33

3.4.3 Test Setup

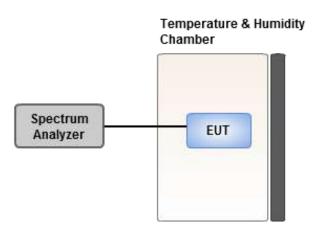
3.4.4 Test Results

Refer to Appendix D.

Report No.: FR392501AN Page: 30 of 33

Report Version: Rev. 02

3.5 Frequency Stability


3.5.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.5.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 20 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under normal and extreme condition for temperature and voltage.

3.5.3 Test Setup

3.5.4 Test Results

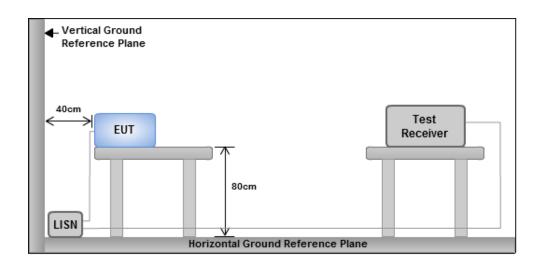
Ambient Condition	22-23°C / 65-67%	Tested By	Akun Chung
-------------------	------------------	-----------	------------

Refer to Appendix E.

Report No.: FR392501AN Page: 31 of 33

Report Version: Rev. 02

3.6 AC Power Line Conducted Emissions


3.6.1 Limit of AC Power Line Conducted Emissions

Conducted Emissions Limit				
Frequency Emission (MHz) Quasi-Peak Average				
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30 60 50				
Note 1: * Decreases with the logarithm of the frequency.				

3.6.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.6.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.6.4 Test Results

Refer to Appendix F.

Report No.: FR392501AN Page: 32 of 33

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

(R.O.C.)

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan

Kwei Shan

Tel: 886-3-271-8666 No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan

City 33381, Taiwan (R.O.C.)

Kwei Shan Site II Tel: 886-3-271-8640

No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC_Service@icertifi.com.tw

--END---

Report No.: FR392501AN Page: 33 of 33