

Solectron Design and Engineering
 21 Richardson Side rd
 Kanata ON K2K 2C1 • Canada
Tel 613 271-5322
Fax 613 271-2581
<http://www.solectrontechnicalctr.com/>

Denis Lalonde
 Radio Compliance Discipline
 Leader

December 9, 2004

American TCB, Inc.
 6731 Whittier Avenue
 Suite C110
 McLean, VA 22101

Re: FCCID: SQD-WCAP6220CSU & IC:5340A-6220CSU

Dear Sir or Madam:

This is the FCC Part 15 and Industry Canada RSS-210 MPE report for the MTI Co. WLAN 6220 Corporate Service Unit.

Test Specification

The system was tested to the limits of the following requirement:

Table 1: RF Exposure Requirement

Requirement	Part / Section
FCC Part 1	1.1310
RSS-210	14.

RSS-210 makes reference to the RSS-102 requirements.

Limits

The specification levels are listed in Table 2.

Table 2: RF Exposure Limit

Frequency Range (MHz)	FCC and RSS 102 General Exposure Limit (mW/cm ²)
2412 to 2462	1.0

RF Exposure Evaluation

Table 3 and Table 4 demonstrate the results of RF exposure calculations:

Table 3: EIRP Calculations

Peak Power (W)	ET-PR12 Antenna gain	EIRP (W)
0.0195 (12.9 dBm)	15.8 (12 dBi)	0.308 (24.9 dBm)

Table 4: RF Exposure Evaluation

Power Density at 20 cm (mW/cm ²)	FCC and Industry Canada RF Exposure limit (mW/cm ²)
0.061	1

The power density was calculated using the following equation.

$$S = (P \times G) / (4 \times \pi \times R^2)$$

where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Evaluation Conclusion and Attestation

The MTI Co. WLAN 6220 Access Point Unit meets the FCC Part 15 and Industry Canada RSS 102 maximum permissible requirements.

Please call me or write if you have any questions or comments.

Regards,

Denis Lalonde

email: denislalonde@solectron.com

Solectron Design and Engineering