



# FCC SAR Test Report

**APPLICANT** : iMozen Group INC.  
**EQUIPMENT** : Handheld mobile computer  
**BRAND NAME** : iMozen Group INC.  
**MODEL NAME** : TC605AW  
**FCC ID** : SPYTC605AW  
**STANDARD** : FCC 47 CFR Part 2 (2.1093)

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.



Approved by: Si Zhang

**Sportun International Inc. (Kunshan)**  
No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300  
People's Republic of China



## Table of Contents

|                                                         |    |
|---------------------------------------------------------|----|
| 1. Statement of Compliance .....                        | 4  |
| 2. Administration Data .....                            | 5  |
| 3. Data Reuse Approach .....                            | 6  |
| 3.1 Introduction Section.....                           | 6  |
| 3.2 Model Difference Information .....                  | 6  |
| 3.3 Reference detail Section .....                      | 6  |
| 4. Guidance Applied .....                               | 7  |
| 5. Equipment Under Test (EUT) Information .....         | 8  |
| 5.1 General Information.....                            | 8  |
| 6. Proximity Sensor Triggering Test.....                | 9  |
| 7. RF Exposure Limits.....                              | 10 |
| 7.1 Uncontrolled Environment.....                       | 10 |
| 7.2 Controlled Environment.....                         | 10 |
| 8. Specific Absorption Rate (SAR) .....                 | 11 |
| 8.1 Introduction .....                                  | 11 |
| 8.2 SAR Definition .....                                | 11 |
| 9. System Description and Setup.....                    | 12 |
| 9.1 E-Field Probe .....                                 | 13 |
| 9.2 Data Acquisition Electronics (DAE) .....            | 13 |
| 9.3 Phantom.....                                        | 14 |
| 9.4 Device Holder.....                                  | 15 |
| 10. Measurement Procedures.....                         | 16 |
| 10.1 Spatial Peak SAR Evaluation .....                  | 16 |
| 10.2 Power Reference Measurement.....                   | 17 |
| 10.3 Area Scan.....                                     | 17 |
| 10.4 Zoom Scan.....                                     | 18 |
| 10.5 Volume Scan Procedures.....                        | 18 |
| 10.6 Power Drift Monitoring .....                       | 18 |
| 11. Test Equipment List .....                           | 19 |
| 12. System Verification .....                           | 20 |
| 12.1 Tissue Simulating Liquids.....                     | 20 |
| 12.2 Tissue Verification .....                          | 20 |
| 12.3 System Performance Check Results.....              | 21 |
| 13. RF Exposure Positions .....                         | 22 |
| 13.1 Ear and handset reference point .....              | 22 |
| 13.2 Definition of the cheek position .....             | 23 |
| 13.3 Definition of the tilt position .....              | 24 |
| 13.4 Body Worn Accessory .....                          | 25 |
| 13.5 Product Specific 10g SAR Exposure .....            | 26 |
| 13.6 Wireless Router .....                              | 26 |
| 14. Conducted RF Output Power (Unit: dBm) .....         | 27 |
| 15. Antenna Location .....                              | 29 |
| 16. Spot Check SAR Test Results .....                   | 30 |
| 16.1 Head SAR .....                                     | 31 |
| 16.2 Hotspot SAR .....                                  | 31 |
| 16.3 Body Worn Accessory SAR .....                      | 32 |
| 16.4 Product specific 10g SAR .....                     | 32 |
| 17. Simultaneous Transmission Analysis .....            | 33 |
| 17.1 Head Exposure Conditions.....                      | 34 |
| 17.2 Hotspot Exposure Conditions .....                  | 34 |
| 17.3 Body-Worn Accessory Exposure Conditions .....      | 34 |
| 17.4 Product specific 10g SAR Exposure Conditions ..... | 34 |
| 18. Uncertainty Assessment.....                         | 35 |
| 19. References .....                                    | 37 |
| Appendix A. Plots of System Performance Check           |    |
| Appendix B. Plots of High SAR Measurement               |    |
| Appendix C. DASY Calibration Certificate                |    |
| Appendix D. Test Setup Photos                           |    |
| Appendix E. Conducted RF Output Power Table             |    |



## Revision History



## 1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **iMazen Group INC., Handheld mobile computer, TC605AW**, are as follows.

| Equipment Class | Frequency Band |                  | Head (Separation 0mm) | Hotspot (Separation 10mm) | Body-worn (Separation 15mm) | Highest Simultaneous Transmission 1g SAR (W/kg) |
|-----------------|----------------|------------------|-----------------------|---------------------------|-----------------------------|-------------------------------------------------|
|                 |                |                  | 1g SAR (W/kg)         |                           |                             |                                                 |
|                 | WLAN           | 2.4GHz WLAN      | 1.15                  | 0.29                      | 0.40                        | 1.15                                            |
| DTS             |                | 5GHz WLAN        | 1.16                  | 0.30                      | 1.00                        | 1.16                                            |
| NII             |                | 6GHz WLAN        | 0.52                  |                           | 0.17                        | 0.76                                            |
| 6CD             | Bluetooth      | 2.4GHz Bluetooth | 0.38                  | 0.28                      | 0.21                        | 0.76                                            |
| DSS             |                |                  |                       |                           |                             |                                                 |

| Highest 10g SAR Summary |                |                      |                                                  |                      |                                                  |
|-------------------------|----------------|----------------------|--------------------------------------------------|----------------------|--------------------------------------------------|
| Equipment Class         | Frequency Band |                      | Product Specific 10g SAR (W/kg) (Separation 0mm) |                      | Highest Simultaneous Transmission 10g SAR (W/kg) |
|                         |                |                      | 5GHz WLAN                                        |                      |                                                  |
| NII                     | WLAN           | 5GHz WLAN            | 2.15                                             |                      | 2.15                                             |
| 6CD                     |                | 6GHz WLAN            | 0.26                                             |                      | 0.26                                             |
| DXX                     | NFC            |                      | <0.10                                            |                      | 0.79                                             |
| Equipment Class         | Frequency Band | Head                 | Body-worn                                        | Product Specific     | Measured APD (W/m^2)                             |
|                         |                | Measured APD (W/m^2) | Measured APD (W/m^2)                             | Measured APD (W/m^2) |                                                  |
| 6CD                     | 6GHz WLAN      | 2.53                 | 0.95                                             | 3.84                 |                                                  |
| Date of Testing:        |                |                      | 2023/12/13~2023/12/30                            |                      |                                                  |

### Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

### Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.



## 2. Administration Data

Sportun International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

| Testing Laboratory |                                                                                                                                                |                     |                                |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------|
| Test Firm          | Sportun International Inc. (Kunshan)                                                                                                           |                     |                                |
| Test Site Location | No. 1098, Pengxi North Road, Kunshan Economic Development Zone<br>Jiangsu Province 215300 People's Republic of China<br>TEL : +86-512-57900158 |                     |                                |
| Test Site No.      | Sportun Site No.                                                                                                                               | FCC Designation No. | FCC Test Firm Registration No. |
|                    | SAR01-KS                                                                                                                                       | CN1257              | 314309                         |

| Applicant    |                                                                                      |
|--------------|--------------------------------------------------------------------------------------|
| Company Name | iMozen Group INC.                                                                    |
| Address      | 6 F., No. 288, Sec. 6, Civic Blvd., Xinyi Dist., Taipei City 110417, Taiwan (R.O.C.) |

| Manufacturer |                                                                                      |
|--------------|--------------------------------------------------------------------------------------|
| Company Name | iMozen Group INC.                                                                    |
| Address      | 6 F., No. 288, Sec. 6, Civic Blvd., Xinyi Dist., Taipei City 110417, Taiwan (R.O.C.) |



### 3. Data Reuse Approach

#### 3.1 Introduction Section

This application re-uses data collected on a similar device, FCC ID: SPYTC605AN (reference model) and FCC ID: SPYTC605AW (variant model). Due to the same design are identical between parent model and variant model, SAR data reuse is requested and spot check data in this report is used to justify the SAR data reuse.

Per KDB 484596 D01 v02r02, the deviation of variant model 1g SAR and 10g SAR spot check result was no larger than 3 dB, the WLAN/BT maximum SAR summary was always choose the higher SAR between parent model and variant model.

The applicant should take full responsibility that the test data as referenced in this report represent compliance for this FCC ID: SPYTC605AW

#### 3.2 Model Difference Information

The **main** difference between FCC ID: SPYTC605AN and FCC ID: SPYTC605AW is as below:

- Removed WWAN bands.

Other differences and all the details of similarity and difference can be found in the confidential documents (TC605AW\_Operational Description of Product Equality Declaration).

#### 3.3 Reference detail Section

| Rule Part   | Equipment Class | Wireless Technology | Frequency Band (MHz) | FCC ID (Reference) | Type Grant/Permissive Change | Reference Title | FCC ID Filling (Variant) | Test on the variant |
|-------------|-----------------|---------------------|----------------------|--------------------|------------------------------|-----------------|--------------------------|---------------------|
| Part 2.1093 | DTS             | BLE/ Wi-Fi          | 2400~2483.5          | SPYTC605AN         | Original Grant               | FA3N2109-02     | SPYTC605AW               | Spot check          |
|             | NII             | Wi-Fi               | 5150 ~ 5250          | SPYTC605AN         | Original Grant               | FA3N2109-02     | SPYTC605AW               | Spot check          |
|             |                 |                     | 5250 ~ 5350          |                    |                              |                 |                          |                     |
|             | DSS             | Bluetooth           | 5470 ~ 5725          |                    |                              |                 |                          |                     |
|             |                 |                     | 5725 ~ 5850          |                    |                              |                 |                          |                     |
|             | 6CD             | Wi-Fi               | 2400~2483.5          | SPYTC605AN         | Original Grant               | FA3N2109-02B    | SPYTC605AW               | Spot check          |
|             | DXX             | NFC                 | 5925 ~ 7125          | SPYTC605AN         | Original Grant               | FA3N2109-02A    | SPYTC605AW               | Spot check          |
|             | 13.56           | SPYTC605AN          | Original Grant       | FA3N2109-02A       | SPYTC605AW                   | Spot check      |                          |                     |



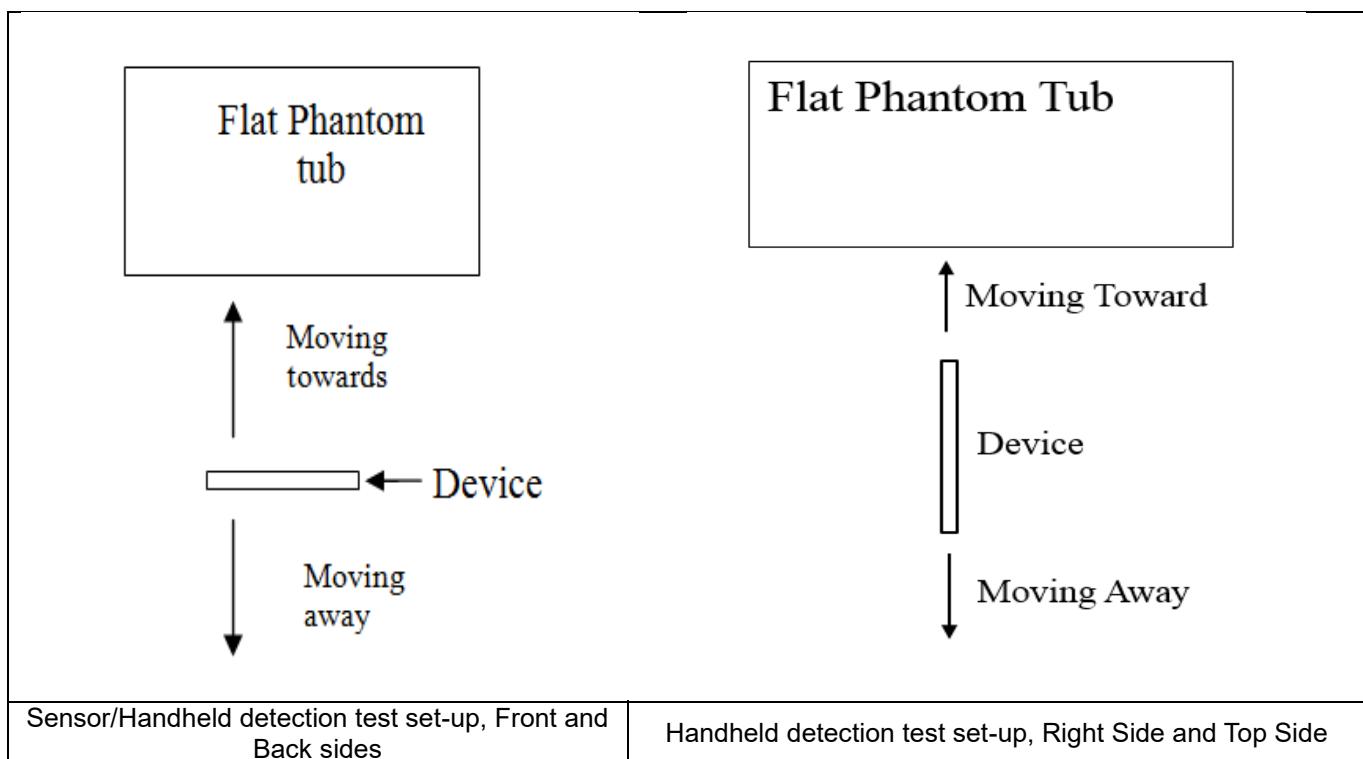
## **4. Guidance Applied**

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- IEC/IEEE 62209-1528:2020
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01
- FCC KDB 484596 D01 Referencing Test Data v02r02



## 5. Equipment Under Test (EUT) Information


### 5.1 General Information

| Product Feature & Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipment Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Handheld mobile computer                                                                                                                                                                                                                                                                                                                                                                                                              |
| Brand Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iMozen Group INC.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Model Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TC605AW                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FCC ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPYTC605AW                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample 1: A671234400299<br>Sample 2: A671234400424                                                                                                                                                                                                                                                                                                                                                                                    |
| Wireless Technology and Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz<br>WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz<br>WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz<br>WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz<br>WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz<br>WLAN 6GHz U-NII-5: 5925 MHz ~ 6425 MHz<br>WLAN 6GHz U-NII-6: 6425 MHz ~ 6525 MHz<br>WLAN 6GHz U-NII-7: 6525 MHz ~ 6875 MHz<br>WLAN 6GHz U-NII-8: 6875 MHz ~ 7125 MHz<br>Bluetooth: 2402 MHz ~ 2480 MHz<br>NFC: 13.56 MHz |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WLAN 2.4GHz 802.11b/g/n HT20/HT40<br>WLAN 2.4GHz 802.11ax HE20/HE40<br>WLAN 5GHz 802.11a/n HT20/HT40<br>WLAN 5GHz 802.11ac/ax VHT20/VHT40/VHT80/ VHT160/HE20/HE40/HE80/HE160<br>WLAN 6GHz 802.11a/ax HE20/HE40/HE80/HE160<br>Bluetooth BR/EDR/LE NFC: ASK                                                                                                                                                                             |
| HW Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V4                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SW Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ST6919A_20231220121856                                                                                                                                                                                                                                                                                                                                                                                                                |
| GSM / (E)GPRS Transfer mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.                                                                                                                                                                                                                                                                    |
| EUT Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identical Prototype                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Remark:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1. This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications.<br>2. This device 5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only). WLAN6GHz has no hotspot function.<br>3. The 2.4GHz/5GHz/6GHz WLAN can transmit in SISO and MIMO antenna mode.<br>4. The device implements proximity sensor /receiver detection/hotspot mode for SAR compliance at different exposure conditions (head, body-worn, hotspot, extremity). Details about the sensor detection are provided in the operational description. And the device will invoke corresponding work scenarios power level base on frequency bands/antennas, which can refer to power table at appendix E.<br>5. For WLAN when transmit simultaneous with BT, power reduction will be activated to head, body-worn and extremity. For WLAN when transmit simultaneous with BT and Proximity sensors trigger, power reduction will be activated to body-worn and Handheld.<br>6. Power density test report for WLAN6GHz U-NII-5/6/7/8 will be separately submitted. About co-located SAR with Bluetooth always chose higher SAR of WLAN5G U-NII-1/2A/2C/3 and WLAN6GHz U-NII-5/6/7/8.<br>7. There are three samples, the different between them refer to the TC605AW Operational Description of Product Equality Declaration which is exhibit separately. According to the differences, sample 1 was chosen to perform full SAR testing and sample 2 verified the worst case of sample 1. For sample 3, only memory suppliers are different, the differences do not affect the test, so sample 3 is not tested. |                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## 6. Proximity Sensor Triggering Test

### <Proximity Sensor Triggering Distance>:

1. Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed and the tissue-equivalent medium for (2450MHz) frequency was used for proximity sensor triggering testing.
2. Capacitive proximity sensors placed coincident with antenna elements at the top and bottom ends of the phone are utilized to determine when the device comes in proximity of the user's body /handheld at the front/back/top/right of the device.
3. The sensors can use to detect the proximity of the user's body or a finger or handheld state at front/back/ top /right sides of the device use a detection threshold distance. When front/back/ top /right sides of body/handheld condition are detected reduced power will be active. The trigger distance shown in the sections below.
4. For verification of compliance of power reduction scheme, additional SAR testing with EUT transmitting at full RF power at a conservative trigger distance -1mm was performed:



### <Sensor for ANT 2+4>

| Position | Proximity Sensor Triggering Distance (mm) |             |                |             |                |             |                |             |
|----------|-------------------------------------------|-------------|----------------|-------------|----------------|-------------|----------------|-------------|
|          | Front                                     |             | Back           |             | Right Side     |             | Top Side       |             |
|          | Moving towards                            | Moving away | Moving towards | Moving away | Moving towards | Moving away | Moving towards | Moving away |
| Minimum  | 12                                        | 7           | 17             | 18          | 21             | 16          | 19             | 14          |



## 7. RF Exposure Limits

### 7.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

### 7.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

#### Limits for Occupational/Controlled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.4        | 8.0          | 20.0                           |

#### Limits for General Population/Uncontrolled Exposure (W/kg)

| Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles |
|------------|--------------|--------------------------------|
| 0.08       | 1.6          | 4.0                            |

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.



## 8. Specific Absorption Rate (SAR)

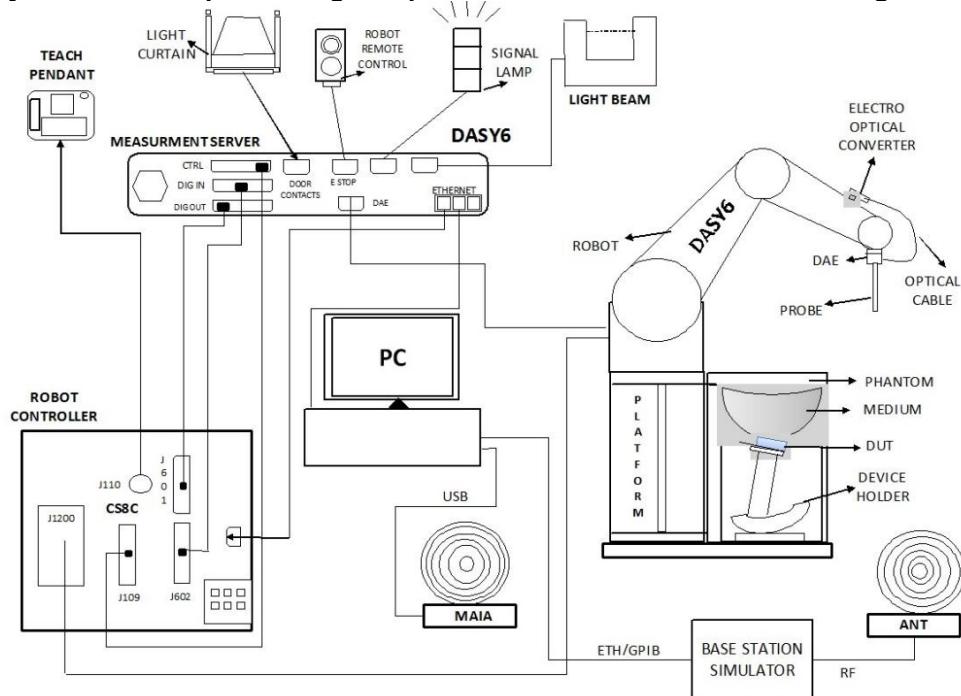
### 8.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

### 8.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy ( $dW$ ) absorbed by (dissipated in) an incremental mass ( $dm$ ) contained in a volume element ( $dv$ ) of a given density ( $\rho$ ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$


SAR is expressed in units of Watts per kilogram (W/kg)

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and  $E$  is the RMS electrical field strength.

## 9. System Description and Setup

The DASY5 system used for performing compliance tests consists of the following items:



- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 or Win10 and the DASY6 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

## 9.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

### <EX3DV4 Probe>

|                      |                                                                                                                                                           |                                                                                    |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| <b>Construction</b>  | Symmetric design with triangular core<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |  |
| <b>Frequency</b>     | 10 MHz – >6 GHz<br>Linearity: $\pm 0.2$ dB (30 MHz – 6 GHz)                                                                                               |                                                                                    |
| <b>Directivity</b>   | $\pm 0.3$ dB in TSL (rotation around probe axis)<br>$\pm 0.5$ dB in TSL (rotation normal to probe axis)                                                   |                                                                                    |
| <b>Dynamic Range</b> | 10 $\mu$ W/g – >100 mW/g<br>Linearity: $\pm 0.2$ dB (noise: typically <1 $\mu$ W/g)                                                                       |                                                                                    |
| <b>Dimensions</b>    | Overall length: 337 mm (tip: 20 mm)<br>Tip diameter: 2.5 mm (body: 12 mm)<br>Typical distance from probe tip to dipole centers: 1 mm                      |                                                                                    |

## 9.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 M $\Omega$ ; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



Photo of DAE

### 9.3 Phantom

#### <SAM Twin Phantom>

|                   |                                                         |                                                                                     |
|-------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------|
| Shell Thickness   | 2 ± 0.2 mm;<br>Center ear point: 6 ± 0.2 mm             |  |
| Filling Volume    | Approx. 25 liters                                       |                                                                                     |
| Dimensions        | Length: 1000 mm; Width: 500 mm; Height: adjustable feet |                                                                                     |
| Measurement Areas | Left Hand, Right Hand, Flat Phantom                     |                                                                                     |

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

#### <ELI Phantom>

|                 |                                                  |                                                                                      |
|-----------------|--------------------------------------------------|--------------------------------------------------------------------------------------|
| Shell Thickness | 2 ± 0.2 mm (sagging: <1%)                        |  |
| Filling Volume  | Approx. 30 liters                                |                                                                                      |
| Dimensions      | Major ellipse axis: 600 mm<br>Minor axis: 400 mm |                                                                                      |

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices or for evaluating transmitters operating at low frequencies. ELI is fully compatible with standard and all known tissue simulating liquids.

## 9.4 Device Holder

### <Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.



Mounting Device for Hand-Held Transmitters



Mounting Device Adaptor for Wide-Phones

### <Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.



Mounting Device for Laptops



## 10. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

- (a) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (b) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

### 10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values from the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g



## 10.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

## 10.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

|                                                                                                        | $\leq 3$ GHz                                                                                                                                                                                                                                                           | $> 3$ GHz                                              |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | $5 \pm 1$ mm                                                                                                                                                                                                                                                           | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm     |
| Maximum probe angle from probe axis to phantom surface normal at the measurement location              | $30^\circ \pm 1^\circ$                                                                                                                                                                                                                                                 | $20^\circ \pm 1^\circ$                                 |
|                                                                                                        | $\leq 2$ GHz: $\leq 15$ mm<br>$2 - 3$ GHz: $\leq 12$ mm                                                                                                                                                                                                                | $3 - 4$ GHz: $\leq 12$ mm<br>$4 - 6$ GHz: $\leq 10$ mm |
| Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$                 | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be $\leq$ the corresponding x or y dimension of the test device with at least one measurement point on the test device. |                                                        |



## 10.4 Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

|                                                                             |                                                       | $\leq 3$ GHz                                                                         | $> 3$ GHz                                                                           |
|-----------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Maximum zoom scan spatial resolution: $\Delta x_{Zoom}$ , $\Delta y_{Zoom}$ |                                                       | $\leq 2$ GHz: $\leq 8$ mm<br>$2 - 3$ GHz: $\leq 5$ mm*                               | $3 - 4$ GHz: $\leq 5$ mm*<br>$4 - 6$ GHz: $\leq 4$ mm*                              |
| Maximum zoom scan spatial resolution, normal to phantom surface             | uniform grid: $\Delta z_{Zoom}(n)$<br><br>graded grid | $\leq 5$ mm                                                                          | $3 - 4$ GHz: $\leq 4$ mm<br>$4 - 5$ GHz: $\leq 3$ mm<br>$5 - 6$ GHz: $\leq 2$ mm    |
|                                                                             |                                                       | $\Delta z_{Zoom}(1)$ : between 1 <sup>st</sup> two points closest to phantom surface | $3 - 4$ GHz: $\leq 3$ mm<br>$4 - 5$ GHz: $\leq 2.5$ mm<br>$5 - 6$ GHz: $\leq 2$ mm  |
| Minimum zoom scan volume                                                    | x, y, z                                               | $\geq 30$ mm                                                                         | $3 - 4$ GHz: $\geq 28$ mm<br>$4 - 5$ GHz: $\geq 25$ mm<br>$5 - 6$ GHz: $\geq 22$ mm |

Note:  $\delta$  is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

\* When zoom scan is required and the *reported* SAR from the *area scan based 1-g SAR estimation* procedures of KDB 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

## 10.5 Volume Scan Procedures

The volume scan is used to assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remains in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

## 10.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.



## 11. Test Equipment List

| Manufacturer    | Name of Equipment             | Type/Model  | Serial Number | Calibration |            |
|-----------------|-------------------------------|-------------|---------------|-------------|------------|
|                 |                               |             |               | Last Cal.   | Due Date   |
| SPEAG           | 2450MHz System Validation Kit | D2450V2     | 1040          | 2023/4/25   | 2024/4/24  |
| SPEAG           | 5000MHz System Validation Kit | D5GHzV2     | 1113          | 2022/9/23   | 2025/9/22  |
| SPEAG           | 6500MHz System Validation Kit | D6.5GHzV2   | 1031          | 2023/2/22   | 2026/2/21  |
| SPEAG           | 13MHz System Validation Kit   | CLA13       | 1020          | 2023/5/11   | 2024/5/10  |
| SPEAG           | Dosimetric E-Field Probe      | EX3DV4      | 7627          | 2023/6/6    | 2024/6/5   |
| SPEAG           | Dosimetric E-Field Probe      | EX3DV4      | 7706          | 2023/1/26   | 2024/1/25  |
| SPEAG           | Data Acquisition Electronics  | DAE4        | 690           | 2023/6/20   | 2024/6/19  |
| SPEAG           | Data Acquisition Electronics  | DAE4        | 1649          | 2023/4/24   | 2024/4/23  |
| SPEAG           | SAM Twin Phantom              | SAM Twin    | TP-1754       | NCR         | NCR        |
| SPEAG           | SAM Twin Phantom              | SAM Twin    | TP-1644       | NCR         | NCR        |
| SPEAG           | ELI4 Phantom                  | ELI V8.0    | TP-2135       | NCR         | NCR        |
| CHIGO           | Thermo-Hygrometer             | HTC-1       | 55012         | 2023/1/8    | 2024/1/7   |
| CHIGO           | Thermo-Hygrometer             | HTC-1       | 55011         | 2023/1/8    | 2024/1/7   |
| SPEAG           | Phone Positioner              | N/A         | N/A           | NCR         | NCR        |
| Agilent         | ENA Series Network Analyzer   | E5071C      | MY46111157    | 2023/7/5    | 2024/7/4   |
| SPEAG           | Dielectric Probe Kit          | DAK-3.5     | 1071          | 2023/2/20   | 2024/2/19  |
| SPEAG           | Dielectric Probe Kit          | DAK-12      | 1173          | 2023/9/20   | 2024/9/19  |
| Keysight        | Preamplifier                  | 83017A      | MY57280111    | 2023/7/5    | 2024/7/4   |
| Anritsu         | Vector Signal Generator       | MG3710A     | 6201682672    | 2023/1/5    | 2024/1/4   |
| Rohde & Schwarz | Signal Generator              | SMB100A     | 100455        | 2023/1/5    | 2024/1/4   |
| Rohde & Schwarz | Vector Signal Generator       | SMBV100A    | 258305        | 2023/1/5    | 2024/1/4   |
| Rohde & Schwarz | Power Meter                   | NRVD        | 102081        | 2023/7/5    | 2024/7/4   |
| Rohde & Schwarz | Power Sensor                  | NRV-Z5      | 100538        | 2023/7/5    | 2024/7/4   |
| Rohde & Schwarz | Power Sensor                  | NRV-Z5      | 100539        | 2023/7/5    | 2024/7/4   |
| Rohde & Schwarz | Power Sensor                  | NRP50S      | 101254        | 2023/4/6    | 2024/4/5   |
| R&S             | BLUETOOTH TESTER              | CBT         | 101246        | 2023/5/15   | 2024/5/14  |
| Rohde & Schwarz | Spectrum Analyzer             | FSV7        | 101631        | 2023/10/11  | 2024/10/10 |
| TES             | DIGITAC THERMOMETER           | 1310        | 220305411     | 2023/1/8    | 2024/1/7   |
| ARRA            | Power Divider                 | A3200-2     | N/A           | Note 1      |            |
| MCL             | Attenuation1                  | BW-S10W5+   | N/A           | Note 1      |            |
| MCL             | Attenuation2                  | BW-S10W5+   | N/A           | Note 1      |            |
| MCL             | Attenuation3                  | BW-S10W5+   | N/A           | Note 1      |            |
| BONN            | POWER AMPLIFIER               | BLMA 0830-3 | 087193A       | Note 1      |            |
| BONN            | POWER AMPLIFIER               | BLMA 2060-2 | 087193B       | Note 1      |            |
| Agilent         | Dual Directional Coupler      | 778D        | 20500         | Note 1      |            |
| Agilent         | Dual Directional Coupler      | 11691D      | MY48151020    | Note 1      |            |

**Note:**

- Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check.
- Referring to KDB 865664 D01v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- The justification data of dipole can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration.

## 12. System Verification

### 12.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 11.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 11.2.

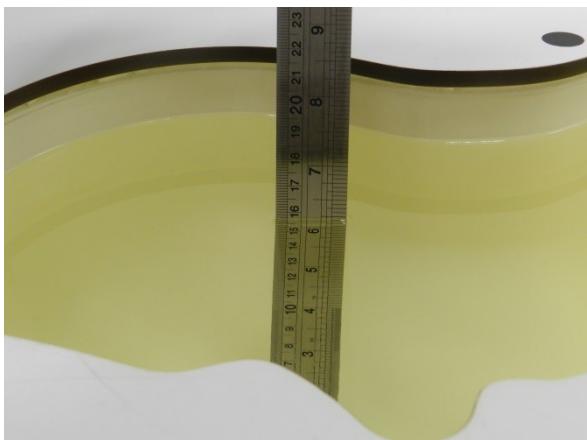



Fig 11.1 Photo of Liquid Height for Head SAR



Fig 11.2 Photo of Liquid Height for Body SAR

### 12.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

| Frequency (MHz)  | Water (%) | Sugar (%) | Cellulose (%) | Salt (%) | Preventol (%) | DGBE (%) | Conductivity ( $\sigma$ ) | Permittivity ( $\epsilon_r$ ) |
|------------------|-----------|-----------|---------------|----------|---------------|----------|---------------------------|-------------------------------|
| For Head         |           |           |               |          |               |          |                           |                               |
| 750              | 41.1      | 57.0      | 0.2           | 1.4      | 0.2           | 0        | 0.89                      | 41.9                          |
| 835              | 40.3      | 57.9      | 0.2           | 1.4      | 0.2           | 0        | 0.90                      | 41.5                          |
| 1800, 1900, 2000 | 55.2      | 0         | 0             | 0.3      | 0             | 44.5     | 1.40                      | 40.0                          |
| 2450             | 55.0      | 0         | 0             | 0        | 0             | 45.0     | 1.80                      | 39.2                          |
| 2600             | 54.8      | 0         | 0             | 0.1      | 0             | 45.1     | 1.96                      | 39.0                          |

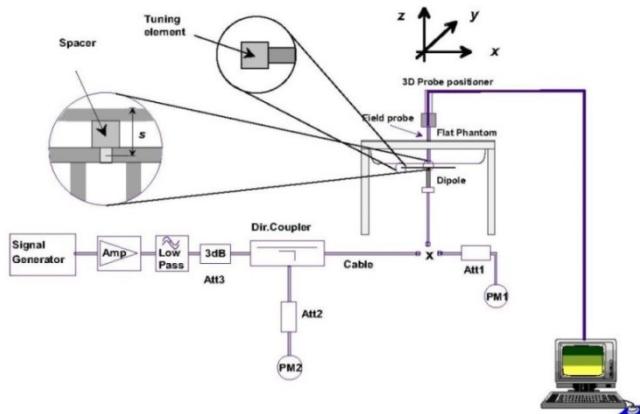
#### Simulating Liquid for 5GHz, Manufactured by SPEAG

| Ingredients        | (% by weight) |
|--------------------|---------------|
| Water              | 64~78%        |
| Mineral oil        | 11~18%        |
| Emulsifiers        | 9~15%         |
| Additives and Salt | 2~3%          |

**<Tissue Dielectric Parameter Check Results>**

| Frequency (MHz) | Head | Liquid Temp. (°C) | Conductivity ( $\sigma$ ) | Permittivity ( $\epsilon_r$ ) | Conductivity Target ( $\sigma$ ) | Permittivity Target ( $\epsilon_r$ ) | Delta ( $\sigma$ ) (%) | Delta ( $\epsilon_r$ ) (%) | Limit (%) | Date       |
|-----------------|------|-------------------|---------------------------|-------------------------------|----------------------------------|--------------------------------------|------------------------|----------------------------|-----------|------------|
| 2450            | Head | 22.8              | 1.744                     | 39.261                        | 1.80                             | 39.20                                | -3.11                  | 0.16                       | $\pm 5$   | 2023/12/29 |
| 5250            | Head | 22.8              | 4.579                     | 35.732                        | 4.71                             | 35.90                                | -2.78                  | -0.47                      | $\pm 5$   | 2023/12/30 |
| 5600            | Head | 22.8              | 4.954                     | 35.112                        | 5.07                             | 35.50                                | -2.29                  | -1.09                      | $\pm 5$   | 2023/12/30 |
| 5750            | Head | 22.8              | 5.113                     | 34.880                        | 5.22                             | 35.40                                | -2.05                  | -1.47                      | $\pm 5$   | 2023/12/30 |
| 6500            | Head | 22.7              | 6.100                     | 35.600                        | 6.07                             | 34.50                                | 0.49                   | 3.19                       | $\pm 5$   | 2023/12/19 |
| 13              | Head | 22.7              | 0.726                     | 54.2                          | 0.75                             | 55.00                                | -3.20                  | -1.45                      | $\pm 5$   | 2023/12/13 |

**12.3 System Performance Check Results**


Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

**<1g SAR>**

| Date       | Frequency (MHz) | Head | Input Power (mW) | Dipole S/N | Probe S/N | DAE S/N | Measured 1g SAR (W/kg) | Targeted 1g SAR (W/kg) | Normalized 1g SAR (W/kg) | Deviation (%) |
|------------|-----------------|------|------------------|------------|-----------|---------|------------------------|------------------------|--------------------------|---------------|
| 2023/12/29 | 2450            | Head | 50               | 1040       | 7627      | 690     | 2.430                  | 52.70                  | 48.6                     | -7.78         |
| 2023/12/30 | 5250            | Head | 50               | 1113       | 7627      | 690     | 3.810                  | 81.50                  | 76.2                     | -6.50         |
| 2023/12/30 | 5600            | Head | 50               | 1113       | 7627      | 690     | 4.180                  | 82.60                  | 83.6                     | 1.21          |
| 2023/12/30 | 5750            | Head | 50               | 1113       | 7627      | 690     | 4.110                  | 80.80                  | 82.2                     | 1.73          |
| 2023/12/19 | 6500            | Head | 50               | 1031       | 7627      | 690     | 15.900                 | 297.00                 | 318                      | 7.07          |
| 2023/12/13 | 13              | Head | 250              | 1020       | 7706      | 1649    | 0.141                  | 0.563                  | 0.564                    | 0.71          |

**<10g SAR>**

| Date       | Frequency (MHz) | Head | Input Power (mW) | Dipole S/N | Probe S/N | DAE S/N | Measured 10g SAR (W/kg) | Targeted 10g SAR (W/kg) | Normalized 10g SAR (W/kg) | Deviation (%) |
|------------|-----------------|------|------------------|------------|-----------|---------|-------------------------|-------------------------|---------------------------|---------------|
| 2023/12/29 | 2450            | Head | 50               | 1040       | 7627      | 690     | 1.190                   | 24.60                   | 23.8                      | -3.25         |
| 2023/12/30 | 5250            | Head | 50               | 1113       | 7627      | 690     | 1.120                   | 23.30                   | 22.4                      | -3.86         |
| 2023/12/30 | 5600            | Head | 50               | 1113       | 7627      | 690     | 1.260                   | 23.70                   | 25.2                      | 6.33          |
| 2023/12/30 | 5750            | Head | 50               | 1113       | 7627      | 690     | 1.240                   | 23.00                   | 24.8                      | 7.83          |
| 2023/12/19 | 6500            | Head | 50               | 1031       | 7627      | 690     | 2.680                   | 54.80                   | 53.6                      | -2.19         |
| 2023/12/13 | 13              | Head | 250              | 1020       | 7706      | 1649    | 0.092                   | 0.347                   | 0.368                     | 5.14          |


**Fig 11.3.1 System Performance Check Setup**

**Fig 11.3.2 Setup Photo**

## 13. RF Exposure Positions

### 13.1 Ear and handset reference point

Figure 12.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 12.1.2. The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 12.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 12.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

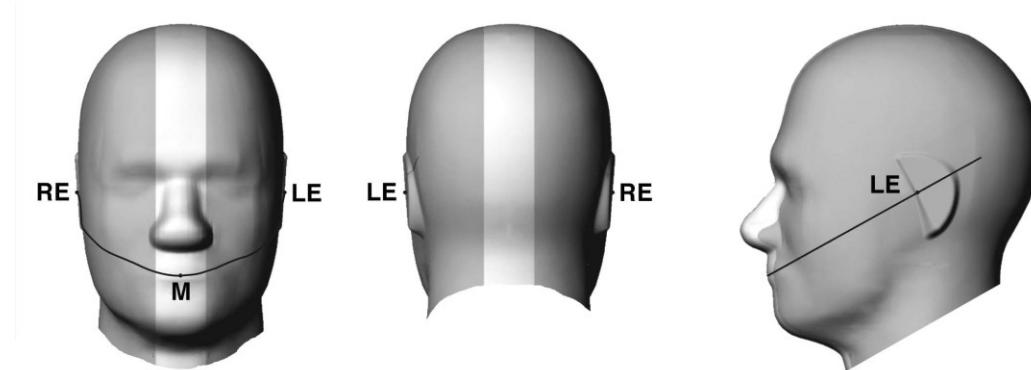



Fig 12.1.1 Front, back, and side views of SAM twin phantom

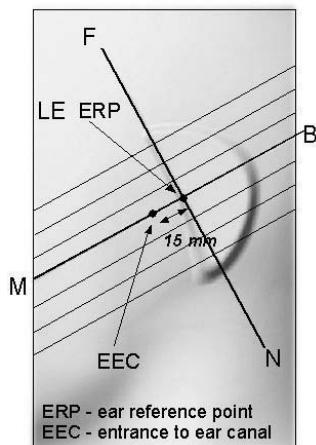
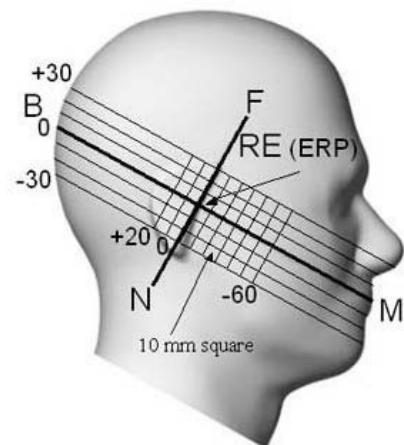
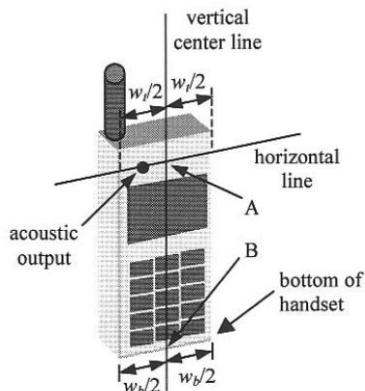
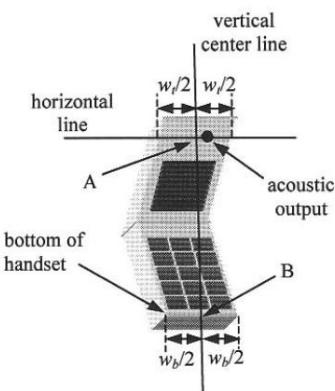
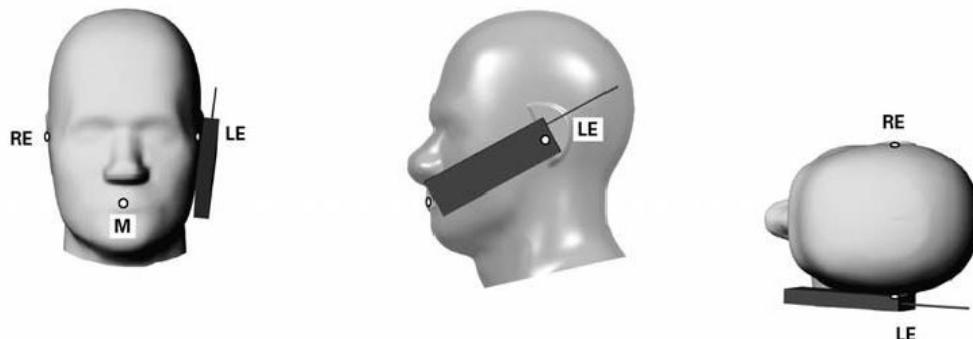



Fig 12.1.2 Close-up side view of phantom showing the ear region.



Fig 12.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

### 13.2 Definition of the cheek position


1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width  $w_t$  of the handset at the level of the acoustic output (point A in Figure 12.2.1 and Figure 12.2.2), and the midpoint of the width  $w_b$  of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 12.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 12.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 12.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 12.2.3. The actual rotation angles should be documented in the test report.



**Fig 12.2.1 Handset vertical and horizontal reference lines—“fixed case”**



**Fig 12.2.2 Handset vertical and horizontal reference lines—“clam-shell case”**



**Fig 12.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.**

### 13.3 Definition of the tilt position

1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
3. Rotate the handset around the horizontal line by 15°.
4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 12.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

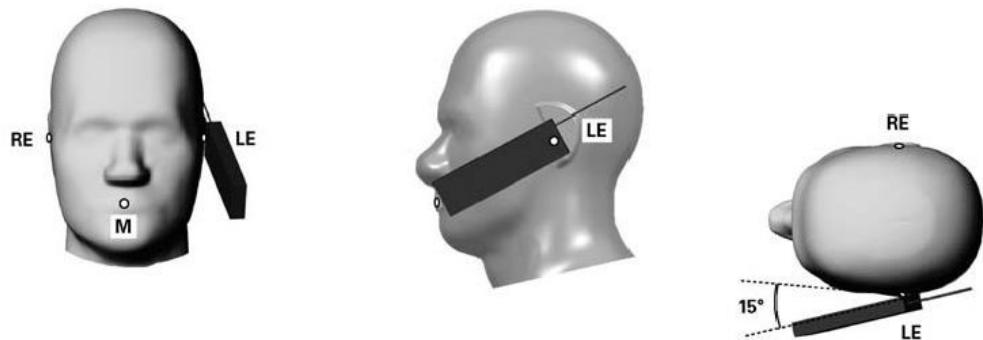



Fig 12.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

### 13.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 11.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is  $> 1.2 \text{ W/kg}$ , the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

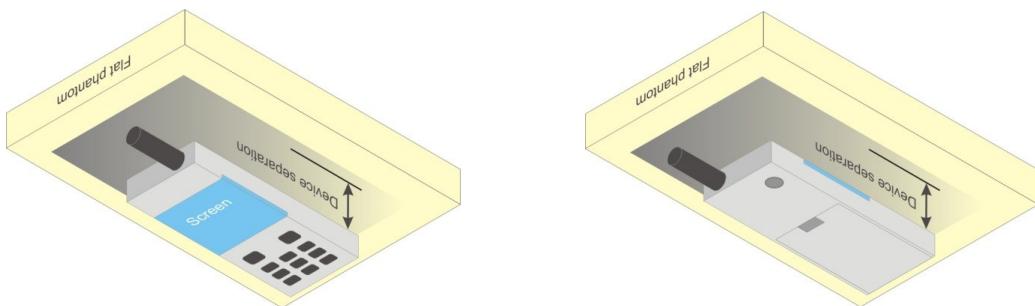



Fig 12.4 Body Worn Position



### 13.5 Product Specific 10g SAR Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm, that can provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets and support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at  $\leq 25$  mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.<sup>6</sup> The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR  $> 1.2$  W/kg.

### 13.6 Wireless Router

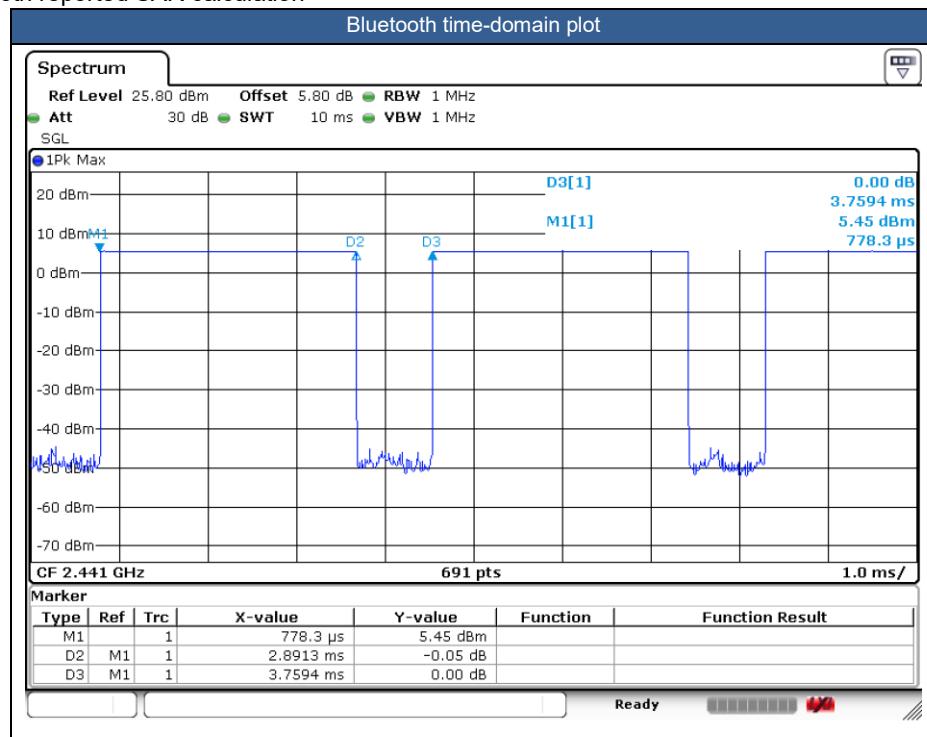
Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets ( $L \times W \geq 9$  cm  $\times 5$  cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.



## 14. Conducted RF Output Power (Unit: dBm)

The detailed conducted power table can refer to Appendix E.


### <WLAN Conducted Power>

#### General Note:

1. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration. Additional output power measurements were not necessary.
2. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
3. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
4. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
5. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
  - a. When the reported SAR of the initial test position is  $\leq 0.4$  W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
  - b. When the reported SAR of the test position is  $> 0.4$  W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closest/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is  $\leq 0.8$  W/kg or all required test position are tested.
  - c. For all positions/configurations, when the reported SAR is  $> 0.8$  W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is  $\leq 1.2$  W/kg or all required channels are tested.
6. 802.11 ax supports both full tone size mode and partial tone size mode, after verification on partial tone size mode that partial size tone mode power will not be higher than full tone size mode, therefore, full tone mode power was chosen to be measured in this report.
7. The 2.4GHz/5GHz/6GHz WLAN can transmit in SISO and MIMO antenna mode.
8. SISO and MIMO all supported by WLAN2.4GHz/WLAN5GHz, for SISO mode power is less than per chain power of MIMO mode. For WLAN SISO & MIMO mode, the whole testing has assessed only MIMO mode by referring to their higher conducted power, so only chose MIMO mode to perform SAR testing.
9. For the conducted power measurement is MIMO chains transmitting simultaneously and measured the separately conducted power for both chains and then based on the conducted power of two antennas respectively to calculate sum of the power for MIMO mode.

**<2.4GHz Bluetooth>****General Note:**

1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power.
2. The Bluetooth duty cycle are 76.91% as following figure, Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation





## **15. Antenna Location**

The detailed antenna location information can refer to SAR Test Setup Photos.



## 16. Spot Check SAR Test Results

### Spot Check General Note:

1. According to section 3.3, spot check conducted power test against the variant project based on the worst-case SAR condition from the original project was performed in this filing to demonstrate the test data from original project remains representative for the variant project. Detail Conducted power measurement referred to appendix E.
2. SAR spot check verification on the worst cases from the original model was performed to demonstrate the test data from original model remains representative for the variant model.
3. Per KDB 484596 D01 v02r02, the variant filings must demonstrate that the referenced test data remain valid for the variant device by including spot-check measurements that meet the following criteria:
  - a. Spot-check measurements shall be made in correspondence to the worst-case scenario reported in the reference device filing, i.e., for those conditions that are the closest to non-compliance
  - b. Spot-check measurements, while being always compliant with the applicable rule part(s) for the test under consideration, may show a deviation  $d_{dB}$  from the reference data no larger than 3 dB:
$$d_{dB} = | VdB - RdB | \leq 3 \text{ dB} \quad (1)$$
where between  $VdB$ , the variant spot-check level in dB, and  $RdB$  is the corresponding measurement level in dB for the reference model.
4. The Spot check results showed that deviation of the SAR results did not exceed 3 dB, therefore referring to the guidance in the KDB inquiry, SAR data reuse is justified.
5. 1st as parent model, 2nd as variant model.



## 16.1 Head SAR

| Plot No. | No. | Band       | Mode                | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 1g SAR (W/kg) | Reported 1g SAR (W/kg) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|------------|---------------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|------------------------|------------------------|---------------|--------------------------------|
| WLAN/BT  |     |            |                     |               |          |            |             |     |             |        |                     |                     |                        |              |                           |                  |                        |                        |               |                                |
|          | 1st | WLAN2.4GHz | 802.11b 1Mbps       | Left Cheek    | 0mm      | Ant 2+4(4) | Standalone  | 1   | 2412        | 1      | 14.72               | 16.50               | 1.507                  | 100          | 1.000                     | 0.13             | 0.764                  | 1.151                  |               |                                |
| 01       | 2nd | WLAN2.4GHz | 802.11b 1Mbps       | Left Cheek    | 0mm      | Ant 2+4(4) | Standalone  | 1   | 2412        | 1      | 14.57               | 16.50               | 1.560                  | 100          | 1.000                     | -0.07            | 0.662                  | 1.032                  | -10.34%       | 0.47                           |
|          | 2nd | WLAN2.4GHz | 802.11b 1Mbps       | Left Cheek    | 0mm      | Ant 2+4(4) | Standalone  | 1   | 2412        | 2      | 14.57               | 16.50               | 1.560                  | 100          | 1.000                     | 0.01             | 0.651                  | 1.015                  |               |                                |
|          | 1st | Bluetooth  | 1Mbps               | Left Cheek    | 0mm      | Ant 2      | Full Power  | 39  | 2441        | 1      | 6.62                | 7.00                | 1.091                  | 76.91        | 1.083                     | -0.07            | 0.318                  | 0.376                  | -3.46%        | 0.15                           |
| 02       | 2nd | Bluetooth  | 1Mbps               | Left Cheek    | 0mm      | Ant 2      | Full Power  | 39  | 2441        | 1      | 6.49                | 7.00                | 1.125                  | 76.91        | 1.083                     | -0.15            | 0.298                  | 0.363                  |               |                                |
|          | 1st | WLAN5.3GHz | 802.11a 6Mbps       | Left Cheek    | 0mm      | Ant 3+4(3) | Full power  | 52  | 5260        | 1      | 18.22               | 20.00               | 1.507                  | 99.32        | 1.007                     | -0.03            | 0.555                  | 0.842                  |               |                                |
| 03       | 2nd | WLAN5.3GHz | 802.11a 6Mbps       | Left Cheek    | 0mm      | Ant 3+4(3) | Full power  | 52  | 5260        | 1      | 18.44               | 20.00               | 1.432                  | 99.32        | 1.007                     | -0.07            | 0.539                  | 0.777                  | -7.72%        | 0.35                           |
|          | 2nd | WLAN5.3GHz | 802.11a 6Mbps       | Left Cheek    | 0mm      | Ant 3+4(3) | Full power  | 52  | 5260        | 2      | 18.44               | 20.00               | 1.432                  | 99.32        | 1.007                     | 0.03             | 0.501                  | 0.723                  |               |                                |
|          | 1st | WLAN5.5GHz | 802.11ac-VHT80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(3) | Standalone  | 106 | 5530        | 1      | 17.04               | 18.50               | 1.400                  | 100          | 1.000                     | 0.03             | 0.784                  | 1.097                  |               |                                |
| 04       | 2nd | WLAN5.5GHz | 802.11ac-VHT80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(3) | Standalone  | 106 | 5530        | 1      | 17.22               | 18.50               | 1.343                  | 100          | 1.000                     | 0.03             | 0.768                  | 1.031                  | -6.02%        | 0.27                           |
|          | 2nd | WLAN5.5GHz | 802.11ac-VHT80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(3) | Standalone  | 106 | 5530        | 2      | 17.22               | 18.50               | 1.343                  | 100          | 1.000                     | 0.01             | 0.758                  | 1.018                  |               |                                |
|          | 1st | WLAN5.8GHz | 802.11ac-VHT80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(4) | Standalone  | 155 | 5775        | 1      | 11.43               | 13.00               | 1.435                  | 100          | 1.000                     | -0.01            | 0.811                  | 1.164                  |               |                                |
| 05       | 2nd | WLAN5.8GHz | 802.11ac-VHT80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(4) | Standalone  | 155 | 5775        | 1      | 11.36               | 13.00               | 1.459                  | 100          | 1.000                     | -0.05            | 0.795                  | 1.160                  | -0.34%        | 0.01                           |
|          | 2nd | WLAN5.8GHz | 802.11ac-VHT80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(4) | Standalone  | 155 | 5775        | 2      | 11.36               | 13.00               | 1.459                  | 100          | 1.000                     | 0.01             | 0.789                  | 1.151                  |               |                                |

| Plot No. | No. | Band     | Mode               | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 1g SAR (W/kg) | Reported 1g SAR (W/kg) | Measured APD (W/m <sup>2</sup> ) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|----------|--------------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|------------------------|------------------------|----------------------------------|---------------|--------------------------------|
|          | 1st | WLAN6GHz | 802.11ax-HE80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(3) | Full power  | 215 | 7025        | 1      | 16.32               | 18.00               | 1.472                  | 100          | 1.000                     | 0.03             | 0.353                  | 0.520                  | 2.53                             |               |                                |
| 06       | 2nd | WLAN6GHz | 802.11ax-HE80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(3) | Full power  | 215 | 7025        | 1      | 16.41               | 18.00               | 1.442                  | 100          | 1.000                     | 0.02             | 0.300                  | 0.433                  | 1.69                             | -16.73%       | 0.80                           |
|          | 2nd | WLAN6GHz | 802.11ax-HE80 MCS0 | Left Cheek    | 0mm      | Ant 3+4(3) | Full power  | 215 | 7025        | 2      | 16.41               | 18.00               | 1.442                  | 100          | 1.000                     | 0.05             | 0.286                  | 0.412                  | 1.53                             |               |                                |

## 16.2 Hotspot SAR

| Plot No. | No. | Band       | Mode                | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 1g SAR (W/kg) | Reported 1g SAR (W/kg) | Measured APD (W/m <sup>2</sup> ) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|------------|---------------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|------------------------|------------------------|----------------------------------|---------------|--------------------------------|
| WLAN/BT  |     |            |                     |               |          |            |             |     |             |        |                     |                     |                        |              |                           |                  |                        |                        |                                  |               |                                |
|          | 1st | WLAN2.4GHz | 802.11b 1Mbps       | Back          | 10mm     | Ant 2+4(4) | Hotspot     | 1   | 2412        | 1      | 12.72               | 14.50               | 1.507                  | 100          | 1.000                     | -0.12            | 0.192                  | 0.289                  |                                  | -4.84%        | 0.22                           |
| 07       | 2nd | WLAN2.4GHz | 802.11b 1Mbps       | Back          | 10mm     | Ant 2+4(4) | Hotspot     | 1   | 2412        | 1      | 12.53               | 14.50               | 1.574                  | 100          | 1.000                     | -0.1             | 0.175                  | 0.275                  |                                  |               |                                |
|          | 1st | Bluetooth  | 1Mbps               | Back          | 10mm     | Ant 2      | Full power  | 39  | 2441        | 1      | 6.62                | 7.00                | 1.091                  | 76.91        | 1.083                     | -0.06            | 0.238                  | 0.281                  |                                  | -1.78%        | 0.08                           |
| 08       | 2nd | Bluetooth  | 1Mbps               | Back          | 10mm     | Ant 2      | Full power  | 39  | 2441        | 1      | 6.49                | 7.00                | 1.125                  | 76.91        | 1.083                     | -0.01            | 0.227                  | 0.276                  |                                  |               |                                |
|          | 1st | WLAN5.2GHz | 802.11ac-VHT80 MCS0 | Back          | 10mm     | Ant 3+4(4) | Hotspot     | 42  | 5210        | 1      | 9.36                | 11.00               | 1.459                  | 100          | 1.000                     | 0.07             | 0.203                  | 0.296                  |                                  | -1.01%        | 0.04                           |
| 09       | 2nd | WLAN5.2GHz | 802.11ac-VHT80 MCS0 | Back          | 10mm     | Ant 3+4(4) | Hotspot     | 42  | 5210        | 1      | 9.37                | 11.00               | 1.455                  | 100          | 1.000                     | 0.05             | 0.201                  | 0.293                  |                                  |               |                                |
|          | 1st | WLAN5.8GHz | 802.11ac-VHT80 MCS0 | Back          | 10mm     | Ant 3+4(3) | Hotspot     | 155 | 5775        | 1      | 11.22               | 13.00               | 1.507                  | 100          | 1.000                     | 0.03             | 0.193                  | 0.291                  |                                  | -6.87%        | 0.31                           |
| 10       | 2nd | WLAN5.8GHz | 802.11ac-VHT80 MCS0 | Back          | 10mm     | Ant 3+4(3) | Hotspot     | 155 | 5775        | 1      | 11.44               | 13.00               | 1.432                  | 100          | 1.000                     | 0.01             | 0.189                  | 0.271                  |                                  |               |                                |



## 16.3 Body Worn Accessory SAR

| Plot No. | No. | Band       | Mode          | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 1g SAR (W/kg) | Reported 1g SAR (W/kg) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|------------|---------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|------------------------|------------------------|---------------|--------------------------------|
| WLAN/BT  |     |            |               |               |          |            |             |     |             |        |                     |                     |                        |              |                           |                  |                        |                        |               |                                |
|          | 1st | WLAN2.4GHz | 802.11b 1Mbps | Back          | 15mm     | Ant 2+4(4) | Full power  | 1   | 2412        | 1      | 16.27               | 18.00               | 1.489                  | 100          | 1.000                     | -0.06            | 0.268                  | 0.399                  | -2.76%        | 0.12                           |
| 11       | 2nd | WLAN2.4GHz | 802.11b 1Mbps | Back          | 15mm     | Ant 2+4(4) | Full power  | 1   | 2412        | 1      | 16.11               | 18.00               | 1.545                  | 100          | 1.000                     | 0.11             | 0.251                  | 0.388                  |               |                                |
|          | 1st | Bluetooth  | 1Mbps         | Back          | 15mm     | Ant 2      | Full power  | 39  | 2441        | 1      | 6.62                | 7.00                | 1.091                  | 76.91        | 1.083                     | 0.05             | 0.174                  | 0.206                  | -0.49%        | 0.02                           |
| 12       | 2nd | Bluetooth  | 1Mbps         | Back          | 15mm     | Ant 2      | Full power  | 39  | 2441        | 1      | 6.49                | 7.00                | 1.125                  | 76.91        | 1.083                     | 0.03             | 0.168                  | 0.205                  |               |                                |
|          | 1st | WLAN5.3GHz | 802.11a 6Mbps | Back          | 15mm     | Ant 3+4(3) | Full power  | 52  | 5260        | 1      | 18.22               | 20.00               | 1.507                  | 99.32        | 1.007                     | 0.08             | 0.458                  | 0.695                  | -8.92%        | 0.41                           |
| 13       | 2nd | WLAN5.3GHz | 802.11a 6Mbps | Back          | 15mm     | Ant 3+4(3) | Full power  | 52  | 5260        | 1      | 18.44               | 20.00               | 1.432                  | 99.32        | 1.007                     | 0.02             | 0.439                  | 0.633                  |               |                                |
|          | 1st | WLAN5.5GHz | 802.11a 6Mbps | Back          | 15mm     | Ant 3+4(4) | Full power  | 100 | 5500        | 1      | 12.32               | 14.00               | 1.472                  | 99.32        | 1.007                     | 0.04             | 0.671                  | 0.995                  | -1.91%        | 0.08                           |
| 14       | 2nd | WLAN5.5GHz | 802.11a 6Mbps | Back          | 15mm     | Ant 3+4(4) | Full power  | 100 | 5500        | 1      | 12.19               | 14.00               | 1.517                  | 99.32        | 1.007                     | 0.02             | 0.639                  | 0.976                  |               |                                |
|          | 1st | WLAN5.8GHz | 802.11a 6Mbps | Back          | 15mm     | Ant 3+4(3) | Full power  | 149 | 5745        | 1      | 17.61               | 19.00               | 1.377                  | 99.32        | 1.007                     | 0.05             | 0.659                  | 0.914                  | -9.96%        | 0.46                           |
| 15       | 2nd | WLAN5.8GHz | 802.11a 6Mbps | Back          | 15mm     | Ant 3+4(3) | Full power  | 149 | 5745        | 1      | 17.95               | 19.00               | 1.274                  | 99.32        | 1.007                     | -0.06            | 0.642                  | 0.903                  |               |                                |

| Plot No. | No. | Band     | Mode               | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 1g SAR (W/kg) | Reported 1g SAR (W/kg) | Measured APD (W/m^2) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|----------|--------------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|------------------------|------------------------|----------------------|---------------|--------------------------------|
|          | 1st | WLAN6GHz | 802.11ax-HE80 MCS0 | Front         | 15mm     | Ant 3+4(3) | Full power  | 215 | 7025        | 1      | 16.32               | 18.00               | 1.472                  | 100          | 1.000                     | 0.08             | 0.118                  | 0.174                  | 0.947                | -26.44%       | 1.33                           |
| 16       | 2nd | WLAN6GHz | 802.11ax-HE80 MCS0 | Front         | 15mm     | Ant 3+4(3) | Full power  | 215 | 7025        | 1      | 16.41               | 18.00               | 1.442                  | 100          | 1.000                     | 0.05             | 0.089                  | 0.128                  | 0.691                |               |                                |
|          | 2nd | WLAN6GHz | 802.11ax-HE80 MCS0 | Front         | 15mm     | Ant 3+4(3) | Full power  | 215 | 7025        | 2      | 16.41               | 18.00               | 1.442                  | 100          | 1.000                     | -0.02            | 0.072                  | 0.104                  | 0.611                |               |                                |

## 16.4 Product specific 10g SAR

| Plot No. | No. | Band       | Mode          | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 10g SAR (W/kg) | Reported 10g SAR (W/kg) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|------------|---------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|-------------------------|-------------------------|---------------|--------------------------------|
| WLAN/BT  |     |            |               |               |          |            |             |     |             |        |                     |                     |                        |              |                           |                  |                         |                         |               |                                |
|          | 1st | WLAN5.3GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(3) | Full power  | 52  | 5260        | 1      | 18.22               | 20.00               | 1.507                  | 99.32        | 1.007                     | 0.08             | 1.200                   | 1.821                   | -8.90%        | 0.40                           |
| 17       | 2nd | WLAN5.3GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(3) | Full power  | 52  | 5260        | 1      | 18.44               | 20.00               | 1.432                  | 99.32        | 1.007                     | -0.02            | 1.150                   | 1.659                   |               |                                |
|          | 2nd | WLAN5.3GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(3) | Full power  | 52  | 5260        | 2      | 18.44               | 20.00               | 1.432                  | 99.32        | 1.007                     | 0.01             | 1.080                   | 1.558                   | -3.35%        | 0.15                           |
|          | 1st | WLAN5.5GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(4) | Full power  | 100 | 5500        | 1      | 12.32               | 14.00               | 1.472                  | 99.32        | 1.007                     | 0.07             | 1.450                   | 2.150                   |               |                                |
| 18       | 2nd | WLAN5.5GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(4) | Full power  | 100 | 5500        | 1      | 12.19               | 14.00               | 1.517                  | 99.32        | 1.007                     | 0.01             | 1.360                   | 2.078                   |               |                                |
|          | 2nd | WLAN5.5GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(4) | Full power  | 100 | 5500        | 2      | 12.19               | 14.00               | 1.517                  | 99.32        | 1.007                     | 0.02             | 1.290                   | 1.971                   |               |                                |
|          | 1st | WLAN5.8GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(4) | Full power  | 165 | 5825        | 1      | 12.63               | 14.00               | 1.371                  | 99.32        | 1.007                     | 0.01             | 1.250                   | 1.726                   |               |                                |
| 19       | 2nd | WLAN5.8GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(4) | Full power  | 165 | 5825        | 1      | 12.65               | 14.00               | 1.365                  | 99.32        | 1.007                     | 0.01             | 1.130                   | 1.553                   | -10.02%       | 0.46                           |
|          | 2nd | WLAN5.8GHz | 802.11a 6Mbps | Back          | 0mm      | Ant 3+4(4) | Full power  | 165 | 5825        | 2      | 12.65               | 14.00               | 1.365                  | 99.32        | 1.007                     | 0.02             | 1.080                   | 1.484                   |               |                                |

| Plot No. | No. | Band     | Mode               | Test Position | Gap (mm) | Antenna    | Power State | Ch. | Freq. (MHz) | Sample | Average Power (dBm) | Tune-Up Limit (dBm) | Tune-up Scaling Factor | Duty Cycle % | Duty Cycle Scaling Factor | Power Drift (dB) | Measured 10g SAR (W/kg) | Reported 10g SAR (W/kg) | Measured APD (W/m^2) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|-----|----------|--------------------|---------------|----------|------------|-------------|-----|-------------|--------|---------------------|---------------------|------------------------|--------------|---------------------------|------------------|-------------------------|-------------------------|----------------------|---------------|--------------------------------|
|          | 1st | WLAN6GHz | 802.11ax-HE80 MCS0 | Top Side      | 0mm      | Ant 3+4(3) | Full power  | 119 | 6545        | 1      | 12.22               | 14.00               | 1.507                  | 100          | 1.000                     | -0.07            | 0.170                   | 0.256                   | 3.84                 | -25.00%       | 1.25                           |
| 20       | 2nd | WLAN6GHz | 802.11ax-HE80 MCS0 | Top Side      | 0mm      | Ant 3+4(3) | Full power  | 119 | 6545        | 1      | 12.13               | 14.00               | 1.538                  | 100          | 1.000                     | -0.04            | 0.125                   | 0.192                   | 2.61                 |               |                                |
|          | 2nd | WLAN6GHz | 802.11ax-HE80 MCS0 | Top Side      | 0mm      | Ant 3+4(3) | Full power  | 119 | 6545        | 2      | 12.13               | 14.00               | 1.538                  | 100          | 1.000                     | -0.03            | 0.082                   | 0.126                   | 1.98                 |               |                                |

## &lt;NFC SAR&gt;

| Plot No. | Band | Mode | Test Position | Gap (mm) | Freq. (MHz) | Sample | Power Drift (dB) | Measured 10g SAR (W/kg) | Deviation (%) | Deviation d <sub>dB</sub> (dB) |
|----------|------|------|---------------|----------|-------------|--------|------------------|-------------------------|---------------|--------------------------------|
|          | NFC  | ASK  | Back          | 0mm      | 13.56       | 1      | -0.03            | 0.038                   | -13.16%       | 0.61                           |
| 21       | NFC  | ASK  | Back          | 0mm      | 13.56       | 1      | -0.01            | 0.033                   |               |                                |
|          | NFC  | ASK  | Back          | 0mm      | 13.56       | 2      | 0.07             | 0.031                   |               |                                |



## 17. Simultaneous Transmission Analysis

| No. | Simultaneous Transmission Configurations | Portable Handset |           |         |                          |
|-----|------------------------------------------|------------------|-----------|---------|--------------------------|
|     |                                          | Head             | Body-worn | Hotspot | Product specific 10g SAR |
| 1.  | WLAN2.4GHz + Bluetooth                   | Yes              | Yes       | Yes     |                          |
| 2.  | WLAN5GHz + Bluetooth                     | Yes              | Yes       | Yes     |                          |
| 3.  | WLAN6GHz + Bluetooth                     | Yes              | Yes       | Yes     |                          |
| 4.  | WLAN2.4GHz + Bluetooth +NFC              |                  |           |         | Yes                      |
| 5.  | WLAN5GHz + Bluetooth+NFC                 |                  |           |         |                          |
| 6.  | WLAN6GHz + Bluetooth+NFC                 |                  |           |         | Yes                      |

**General Note:**

1. The 2.4GHz/5GHz/6GHz WLAN can transmit in SISO/MIMO mode and MIMO SAR can represent SISO SAR.
2. This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications.
3. This device 5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WLAN Direct (GC/GO), and 5.3GHz / 5.5GHz supports WLAN Direct (GC only). WLAN6GHz has no hotspot function.
4. The worst case 5 GHz WLAN SAR for each configuration was used for SAR summation.
5. According to the EUT characteristic, WLAN 5GHz/6GHz and Bluetooth can transmit simultaneously.
6. According to the EUT characteristic, WLAN 2.4GHz and Bluetooth share the same antenna and cannot transmit simultaneously; WLAN 2.4GHz ant 4 and Bluetooth ant2 can transmit simultaneously.
7. According to the EUT characteristic, WLAN 5GHz/6GHz and WLAN 2.4GHz cannot transmit simultaneously.
8. According to the EUT characteristic, WLAN 5GHz and WLAN 6GHz can't transmit simultaneously.
9. NFC can transmit simultaneously with other Radios in extremity exposure condition.
10. When stand-alone SAR is not required for a transmitter or antenna, its SAR is considered zero in the SAR summing process to assess Multi-band transmission SAR compliance.
11. The maximum SAR summation is calculated based on the same configuration and test position.
12. For simultaneously analysis, since the SAR summation of 3 transmitters can cover others combination of 2 transmitters, therefore in this section did not additional to evaluate 2TX combination of simultaneously transmission.
13. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
  - i) 1g Scalar SAR summation < 1.6W/kg and 10g Scalar SAR summation < 4.0W/kg.
  - ii) SPLSR =  $(\text{SAR1} + \text{SAR2})^{1.5} / (\text{min. separation distance, mm})$ , and the peak separation distance is determined from the square root of  $[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2]$ , where  $(x1, y1, z1)$  and  $(x2, y2, z2)$  are the coordinates of the extrapolated peak SAR locations in the zoom scan.
  - iii) If SPLSR  $\leq 0.04$  for 1g SAR and SPLSR  $\leq 0.10$  for 10g SAR, simultaneously transmission SAR measurement is not necessary.
  - iv) Simultaneously transmission SAR measurement, and the reported multi-band 1g SAR  $< 1.6W/kg$  and 10g SAR  $< 4.0W/kg$ .
14. The WLAN6GHz Sim-Tx analysis guidance with other transmitters was based on SAR test results. The simultaneous transmission and test exemption analysis were compliant with KDB 447498 D01. For the device does not support FR2 or other MPE field measurement, therefore section 17 in the SAR report has no TER analysis according to KDB 987594 requirement.

**Conclusion:**

1. The Spot check results from chapter 16.1 to 16.4 showed that Deviation of the SAR results did not exceed 3dB, SAR data reuse is justified.
2. Simultaneous transmission analysis for all bands and all position are based on maximum SAR results chosen between the original filing and Spot check Verification Data

**17.1 Head Exposure Conditions**

| Exposure Position | 1                     | 2                   | 4                  | 3                   | 1+4<br>Summed | 2+4<br>Summed | 3+4<br>Summed |
|-------------------|-----------------------|---------------------|--------------------|---------------------|---------------|---------------|---------------|
|                   | WLAN2.4GHz<br>Ant 2+4 | WLAN5GHz<br>Ant 3+4 | Bluetooth<br>Ant 2 | WLAN6GHz<br>Ant 3+4 |               |               |               |
|                   | 1g SAR<br>(W/kg)      | 1g SAR<br>(W/kg)    | 1g SAR<br>(W/kg)   | 1g SAR<br>(W/kg)    |               |               |               |
| Right Cheek       | 0.162                 | 0.179               | 0.169              | 0.322               | 0.331         | 0.348         | 0.491         |
| Right Tilted      | 0.151                 | 0.141               | 0.132              | 0.235               | 0.283         | 0.273         | 0.367         |
| Left Cheek        | 0.309                 | 0.322               | 0.376              | 0.381               | 0.685         | 0.698         | 0.757         |
| Left Tilted       | 0.169                 | 0.205               | 0.249              | 0.271               | 0.418         | 0.454         | 0.52          |

**17.2 Hotspot Exposure Conditions**

| Exposure Position | 1                     | 2                   | 4                  | 1+4<br>Summed | 2+4<br>Summed |
|-------------------|-----------------------|---------------------|--------------------|---------------|---------------|
|                   | WLAN2.4GHz Ant<br>2+4 | WLAN5GHz Ant<br>3+4 | Bluetooth Ant<br>2 |               |               |
|                   | 1g SAR<br>(W/kg)      | 1g SAR<br>(W/kg)    | 1g SAR<br>(W/kg)   |               |               |
| Front             | 0.205                 | 0.092               | 0.069              | 0.274         | 0.161         |
| Back              | 0.289                 | 0.296               | 0.281              | 0.570         | 0.577         |
| Left side         | 0.128                 | 0.229               | 0.1                | 0.228         | 0.329         |
| Right side        | 0.099                 | 0.216               | 0.158              | 0.257         | 0.374         |
| Top side          | 0.214                 | 0.219               | 0.103              | 0.317         | 0.322         |
| Bottom side       |                       |                     |                    |               |               |

**17.3 Body-Worn Accessory Exposure Conditions**

| Exposure Position | 1                     | 2                   | 4                  | 3                   | 1+4<br>Summed | 2+4<br>Summed | 3+4<br>Summed |
|-------------------|-----------------------|---------------------|--------------------|---------------------|---------------|---------------|---------------|
|                   | WLAN2.4GHz<br>Ant 2+4 | WLAN5GHz<br>Ant 3+4 | Bluetooth<br>Ant 2 | WLAN6GHz<br>Ant 3+4 |               |               |               |
|                   | 1g SAR<br>(W/kg)      | 1g SAR<br>(W/kg)    | 1g SAR<br>(W/kg)   | 1g SAR<br>(W/kg)    |               |               |               |
| Front             | 0.264                 | 0.179               | 0.024              | 0.174               | 0.288         | 0.203         | 0.198         |
| Back              | 0.274                 | 0.301               | 0.206              | 0.031               | 0.480         | 0.507         | 0.237         |

**17.4 Product specific 10g SAR Exposure Conditions****Remark:**

1. For WLAN2.4GHz/Bluetooth Product specific 10g stand-alone SAR is not required for a transmitter or antenna, due to 1g hotspot SAR is <1.2W/kg.

| Exposure Position | 1                   | 2                 | 4                 | 1+4<br>Summed | 2+4<br>Summed |
|-------------------|---------------------|-------------------|-------------------|---------------|---------------|
|                   | WLAN5GHz Ant<br>3+4 | WLAN6GHz Ant 3+4  | NFC               |               |               |
|                   | 10g SAR<br>(W/kg)   | 10g SAR<br>(W/kg) | 10g SAR<br>(W/kg) |               |               |
| Front             | 0.394               | 0.186             | 0.001             | 0.395         | 0.187         |
| Back              | 0.747               | 0.208             | 0.038             | 0.785         | 0.246         |
| Left side         | 0.467               | 0.019             | 0.001             | 0.468         | 0.020         |
| Right side        | 0.501               | 0.102             | 0.001             | 0.502         | 0.103         |
| Top side          | 0.452               | 0.256             | 0.001             | 0.453         | 0.257         |
| Bottom side       |                     |                   | 0.001             | 0.001         | 0.001         |

**Test Engineer :** Martin Li, Varus Wang, Light Wang, Ricky Gu



## 18. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be  $\leq 30\%$ , for a confidence interval of  $k = 2$ . If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

### Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

### Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

The component of uncertainty may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacturer's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

| Uncertainty Distributions          | Normal      | Rectangular  | Triangular   | U-Shape      |
|------------------------------------|-------------|--------------|--------------|--------------|
| Multi-plying Factor <sup>(a)</sup> | $1/k^{(b)}$ | $1/\sqrt{3}$ | $1/\sqrt{6}$ | $1/\sqrt{2}$ |

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity  
(b)  $k$  is the coverage factor

### Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.



| Uncertainty Budget<br>According to IEC/IEEE 62209-1528<br>(Frequency band: 4 MHz - 10 GHz range) |                       |             |       |            |             |                                   |                                    |
|--------------------------------------------------------------------------------------------------|-----------------------|-------------|-------|------------|-------------|-----------------------------------|------------------------------------|
| Error Description                                                                                | Uncert. Value<br>(±%) | Prob. Dist. | Div.  | (Ci)<br>1g | (Ci)<br>10g | Standard Uncertainty<br>(1g) (±%) | Standard Uncertainty<br>(10g) (±%) |
| <b>Measurement System errors</b>                                                                 |                       |             |       |            |             |                                   |                                    |
| Probe calibration                                                                                | 18.6                  | N           | 2     | 1          | 1           | 9.3                               | 9.3                                |
| Probe calibration drift                                                                          | 1.7                   | R           | 1.732 | 1          | 1           | 1.0                               | 1.0                                |
| Probe linearity and detection Limit                                                              | 4.7                   | R           | 1.732 | 1          | 1           | 2.7                               | 2.7                                |
| Broadband signal                                                                                 | 2.8                   | R           | 1.732 | 1          | 1           | 1.6                               | 1.6                                |
| Probe isotropy                                                                                   | 7.6                   | R           | 1.732 | 1          | 1           | 4.4                               | 4.4                                |
| Other probe and data acquisition errors                                                          | 2.4                   | N           | 1     | 1          | 1           | 2.4                               | 2.4                                |
| RF ambient and noise                                                                             | 1.8                   | N           | 1     | 1          | 1           | 1.8                               | 1.8                                |
| Probe positioning errors                                                                         | 0.006                 | N           | 1     | 0.5        | 0.5         | 0.0                               | 0.0                                |
| Data processing errors                                                                           | 4.0                   | N           | 1     | 1          | 1           | 4.0                               | 4.0                                |
| <b>Phantom and Device Errors</b>                                                                 |                       |             |       |            |             |                                   |                                    |
| Measurement of phantom conductivity ( $\sigma$ )                                                 | 2.5                   | N           | 1     | 0.78       | 0.71        | 2.0                               | 1.8                                |
| Temperature effects (medium)                                                                     | 5.4                   | R           | 1.732 | 0.78       | 0.71        | 2.4                               | 2.2                                |
| Shell permittivity                                                                               | 14.0                  | R           | 1.732 | 0.5        | 0.5         | 4.0                               | 4.0                                |
| Distance between the radiating element of the DUT and the phantom medium                         | 2.0                   | N           | 1     | 2          | 2           | 4.0                               | 4.0                                |
| Repeatability of positioning the DUT or source against the phantom                               | 1.0                   | N           | 1     | 1          | 1           | 1.0                               | 1.0                                |
| Device holder effects                                                                            | 3.6                   | N           | 1     | 1          | 1           | 3.6                               | 3.6                                |
| Effect of operating mode on probe sensitivity                                                    | 2.4                   | R           | 1.732 | 1          | 1           | 1.4                               | 1.4                                |
| Time-average SAR                                                                                 | 1.7                   | R           | 1.732 | 1          | 1           | 1.0                               | 1.0                                |
| Variation in SAR due to drift in output of DUT                                                   | 2.5                   | N           | 1     | 1          | 1           | 2.5                               | 2.5                                |
| Validation antenna uncertainty (validation measurement only)                                     | 0.0                   | N           | 1     | 1          | 1           | 0.0                               | 0.0                                |
| Uncertainty in accepted power (validation measurement only)                                      | 0.0                   | N           | 1     | 1          | 1           | 0.0                               | 0.0                                |
| <b>Correction to the SAR results</b>                                                             |                       |             |       |            |             |                                   |                                    |
| Phantom deviation from target ( $\epsilon', \sigma$ )                                            | 1.9                   | N           | 1     | 1          | 0.84        | 1.9                               | 1.6                                |
| SAR scaling                                                                                      | 0.0                   | R           | 1.732 | 1          | 1           | 0.0                               | 0.0                                |
| <b>Combined Std. Uncertainty</b>                                                                 |                       |             |       |            |             | <b>14.5%</b>                      | <b>14.4%</b>                       |
| <b>Coverage Factor for 95 %</b>                                                                  |                       |             |       |            |             | <b>K=2</b>                        | <b>K=2</b>                         |
| <b>Expanded STD Uncertainty</b>                                                                  |                       |             |       |            |             | <b>29.0%</b>                      | <b>28.8%</b>                       |

**SAR Uncertainty Budget for frequency range 4MHz to 10GHz**



## **19. References**

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] IEC/IEEE 62209-1528:2020, "Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)", Oct. 2020
- [5] SPEAG DASY System Handbook
- [6] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [7] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [8] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [9] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [10] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [11] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [12] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [13] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [14] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [15] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [16] FCC KDB 484596 D01 v02r02, "Test Reductions Via Data Referencing", Dec. 2023

-----THE END-----