

FCC Test Report

APPLICANT : iMozen Group INC.
EQUIPMENT : Handheld mobile computer
BRAND NAME : iMozen Group INC.
MODEL NAME : TC605AW
FCC ID : SPYTC605AW
STANDARD : 47 CFR Part 15 Subpart B
CLASSIFICATION : Certification
TEST DATE(S) : Dec. 13, 2023 ~ Dec. 25, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

Jason Jia

Approved by: Jason Jia

Sportun International Inc. (Kunshan)

**No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300
People's Republic of China**

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1. GENERAL DESCRIPTION.....	5
1.1. Applicant.....	5
1.2. Manufacturer	5
1.3. Product Feature of Equipment Under Test	5
1.4. Product Specification of Equipment Under Test	6
1.5. Modification of EUT	6
1.6. Test Location.....	7
1.7. Test Software	7
1.8. Applicable Standards	7
2. TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	8
2.1. Test Mode	8
2.2. Connection Diagram of Test System	9
2.3. Support Unit used in test configuration and system.....	10
2.4. EUT Operation Test Setup	10
3. TEST RESULT.....	11
3.1. Test of AC Conducted Emission Measurement	11
3.2. Test of Radiated Emission Measurement	15
4. LIST OF MEASURING EQUIPMENT	20
5. MEASUREMENT UNCERTAINTY	21

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	Under limit 8.91 dB at 0.154 MHz
3.2	15.109	Radiated Emission	< 15.109 limits	PASS	Under limit 11.42 dB at 60.07 MHz

Conformity Assessment Condition:

The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. Please refer to each test results in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1. Applicant

iMozen Group INC.

6 F., No. 288, Sec. 6, Civic Blvd., Xinyi Dist., Taipei City 110417, Taiwan (R.O.C.)

1.2. Manufacturer

iMozen Group INC.

6 F., No. 288, Sec. 6, Civic Blvd., Xinyi Dist., Taipei City 110417, Taiwan (R.O.C.)

1.3. Product Feature of Equipment Under Test

Product Feature	
Equipment	Handheld mobile computer
Brand Name	iMozen Group INC.
Model Name	TC605AW
FCC ID	SPYTC605AW
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11ax HE20/HE40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80/VHT160 WLAN 5GHz 802.11ax HE20/HE40/HE80/HE160 WLAN 6GHz 802.11a/ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE NFC
SN Code	Conduction: 8993B25F for Sample 1 A4B65CAF for Sample 2 Radiation: A671234400335 for Sample 1 A671234700028 for Sample 2 A671234400444 for Sample 3
HW Version	V4
SW Version	ST6919A_20231220121856
EUT Stage	Identical Prototype

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
2. There are three types of EUT, the differences could be referred to the TC605AW_Operational Description of Product Equality Declaration which is exhibit separately. According to the difference, we choose sample 1 to full test and the sample 2/3 is verified for the difference.

1.4. Product Specification of Equipment Under Test

Standards-related Product Specification	
Tx Frequency	802.11b/g/n/ax: 2400 MHz ~ 2483.5 MHz 802.11a/n/ac/ax: 5150 MHz ~ 5250 MHz; 5250 MHz ~ 5350 MHz; 5470 MHz ~ 5725 MHz; 5725 MHz ~ 5850 MHz 802.11a/ax: 5925 MHz ~ 7125 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC : 13.56 MHz
Rx Frequency	802.11b/g/n/ax: 2400 MHz ~ 2483.5 MHz 802.11a/n/ac/ax: 5150 MHz ~ 5250 MHz; 5250 MHz ~ 5350 MHz; 5470 MHz ~ 5725 MHz; 5725 MHz ~ 5850 MHz 802.11a/ax: 5925 MHz ~ 7125 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC : 13.56 MHz
Antenna Type	BT/WLAN 2.4G (Ant.2): IFA Antenna WLAN 5G/6G (Ant.3): IFA Antenna WLAN 2.4/5G/6G (Ant.4): PIFA Antenna NFC: Loop Antenna
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) 802.11ax: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM /1024QAM) Bluetooth LE : GFSK Bluetooth (1Mbps) : GFSK Bluetooth (2Mbps) : $\pi/4$ -DQPSK Bluetooth (3Mbps) : 8-DPSK NFC: ASK

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Test Location

Sportun International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sportun International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158		
Test Site No.	Sportun Site No.	FCC Designation No.	FCC Test Firm Registration No.
	CO01-KS 03CH02-KS	CN1257	314309

1.7. Test Software

Item	Site	Manufacturer	Name	Version
1.	03CH02-KS	AUDIX	E3	6.2009-8-24a1
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

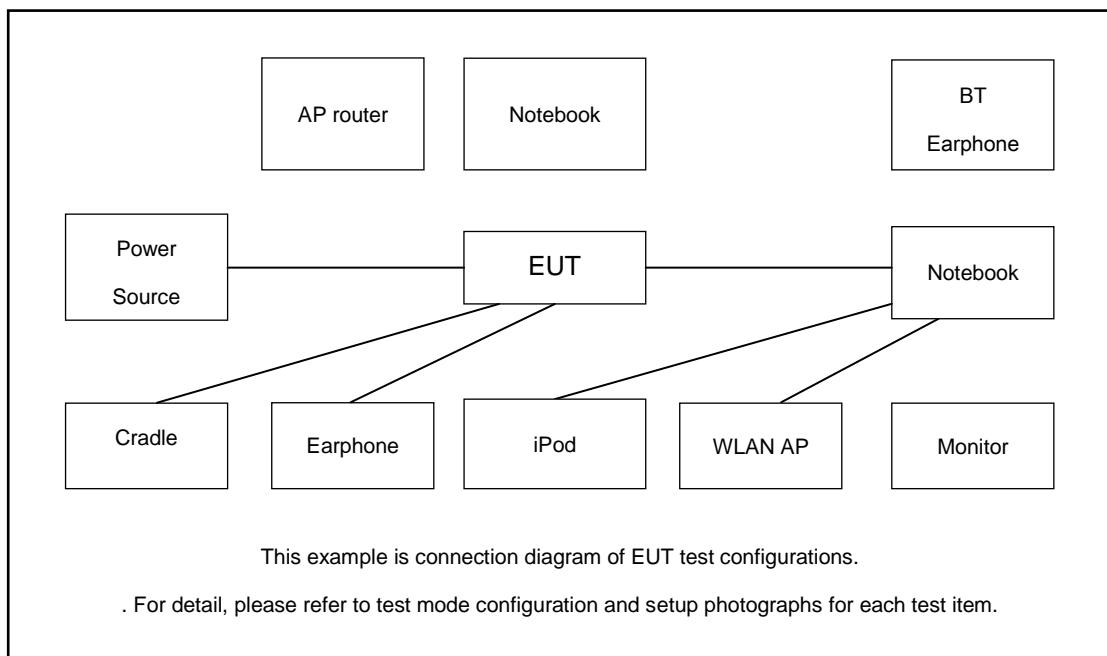
- 47 CFR Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.


Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest frequency or to 40 GHz, whichever is lower).

Test Items	Function Type
AC Conducted Emission	Mode 1: Bluetooth Idle + WLAN (2.4G) Idle + Camera(Rear) + Battery + USB Cable (Charging from Adapter) for Sample 1 Mode 2: Bluetooth Idle + WLAN (5G) Idle + Camera(Front) + Battery + USB Cable (Charging from Adapter) for Sample 1 Mode 3: Bluetooth Idle + WLAN 6E Idle + MPEG4(Run Color Bar) + Battery + USB Cable (Data Link with Notebook) + EUT (eMMC) USB Data Link to PC/NB for Sample 1 Mode 4: Bluetooth Idle + WLAN (2.4G) Idle + NFC On + Battery + USB Cable (Data Link with Notebook) + PC/NB USB Data Link to EUT (eMMC) for Sample 1 Mode 5: Bluetooth Idle + WLAN (5G) Idle + scanning + Battery + USB Cable (Data Link with Notebook) + EUT (SD) USB Data Link to PC/NB for Sample 1 Mode 6: Bluetooth Idle + WLAN 6E Idle + MPEG4(Run Color Bar) + Battery + USB Cable (Data Link with Notebook) + PC/NB USB Data Link to EUT (SD) for Sample 1 Mode 7: Bluetooth Idle + WLAN 6E Idle + scanning + Battery + USB Cable (Data Link with Notebook) + EUT (eMMC) USB Data Link to PC/NB for Sample 2
Radiated Emissions	Mode 1: Bluetooth Idle + WLAN (2.4G) Idle + Camera(Rear) + Battery + USB Cable (Charging from Adapter) for Sample 1 Mode 2: Bluetooth Idle + WLAN (5G) Idle + Camera(Front) + Earphone + Battery for Sample 1 Mode 3: Bluetooth Idle + WLAN 6E Idle + MPEG4(Run Color Bar) + Battery + USB Cable (Data Link with Notebook) + EUT (eMMC) USB Data Link to PC/NB for Sample 1 Mode 4: Bluetooth Idle + WLAN (2.4G) Idle + NFC On + Battery + USB Cable (Data Link with Notebook) + PC/NB USB Data Link to EUT (eMMC) for Sample 1 Mode 5: Bluetooth Idle + WLAN (5G) Idle + scanning + Battery + USB Cable (Data Link with Notebook) + EUT (SD) USB Data Link to PC/NB for Sample 1 Mode 6: Bluetooth Idle + WLAN 6E Idle + Camera(Rear) + Battery + USB Cable (Data Link with Notebook) + PC/NB USB Data Link to EUT (SD) for Sample 1 Mode 7: Bluetooth Idle + WLAN (2.4G) Idle + scanning + Battery + USB Cable (Data Link with Notebook) + EUT (eMMC) USB Data Link to PC/NB for Sample 2 Mode 8: Bluetooth Idle + WLAN (2.4G) Idle + Camera(Rear) + Battery + USB Cable (Data Link with Notebook) + EUT(SD) USB Data Link to PC/NB for Sample 3

Remark:

1. The worst case of AC is mode 3; only the test data of this mode is reported.
2. The worst case of RE is mode 1; only the test data of this mode is reported.
3. Data Link with Notebook means data application transferred mode between EUT and Notebook.

2.2.Connection Diagram of Test System

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application

2.3. Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Signal Generator	R&S	SMBV100A	N/A	N/A	N/A
2.	Notebook	Lenovo	V130-14IKB001	N/A	N/A	N/A
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	shielded cable DC O/P 1.8m Unshielded AC I/P cable 1.8m
4.	Hard disk	KINGSHARE	KSP6120G	N/A	N/A	N/A
5.	Hard Disk	Lenovo	F310	DoC	Shielded, 1.2m	N/A
6.	Bluetooth Earphone	Lenovo	thinkplus-BH3	N/A	N/A	N/A
7.	Bluetooth Earphone	XIAOMI	LYEJ02LM	N/A	N/A	N/A
8.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
9.	WLAN AP	TP-Link	TL-WDR5600	N/A	N/A	N/A
10.	SD Card	SanDisk	Uitra	N/A	N/A	N/A
11.	SD Card	Kingston	8GB	N/A	N/A	N/A

2.4. EUT Operation Test Setup

The EUT was attached to the Bluetooth earphone or WLAN AP, and the following programs installed in the EUT were programmed during the test.

1. Data application is transferred between notebook and EUT via USB cable.
2. Turn on camera to capture images.
3. Turn on MPEG4 function.
4. Turn on NFC function
5. Turn on scanning function to scan barcode.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

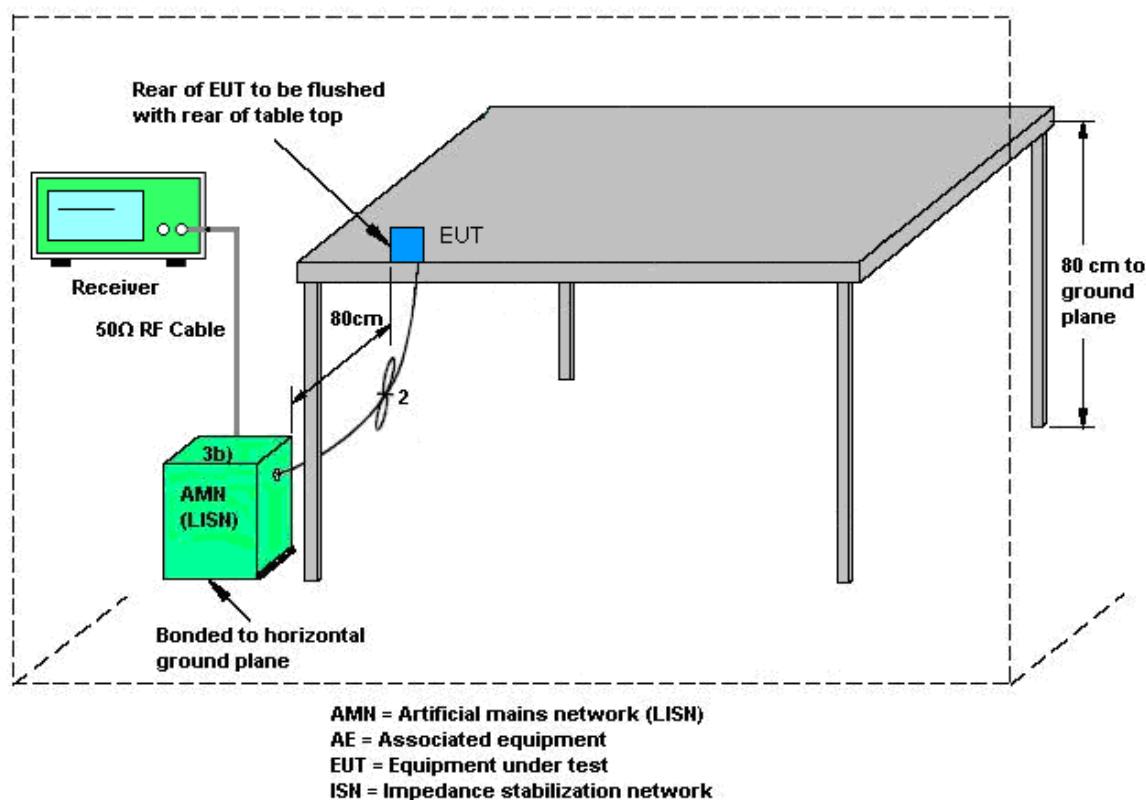
3.1.1 Limits of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B Limit>

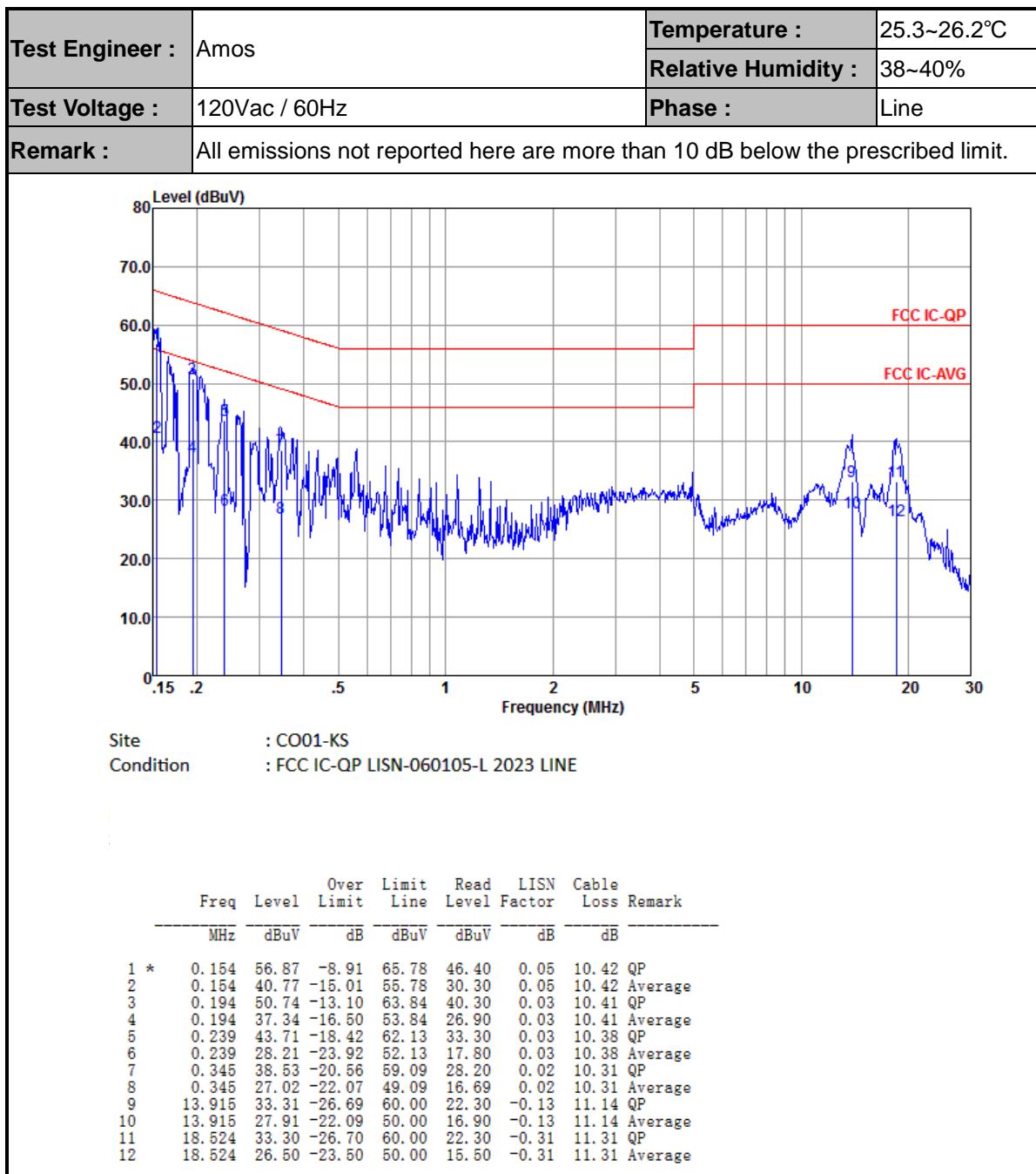
Frequency of emission (MHz)	Conducted limit (dBuV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

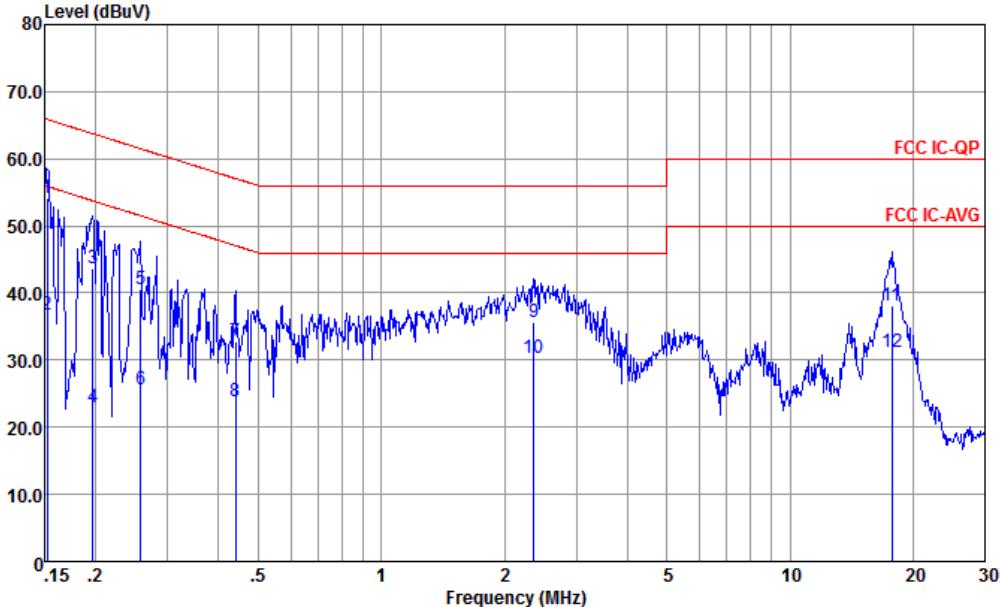

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure


1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
6. Both sides of AC line were checked for maximum conducted interference.
7. The frequency range from 150 kHz to 30 MHz was searched.
8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup



3.1.5 Test Result of AC Conducted Emission

Test Engineer :	Amos	Temperature :	25.3~26.2°C																																																																																																																														
		Relative Humidity :	38~40%																																																																																																																														
Test Voltage :	120Vac / 60Hz	Phase :	Neutral																																																																																																																														
Remark :	All emissions not reported here are more than 10 dB below the prescribed limit.																																																																																																																																
Site	: CO01-KS																																																																																																																																
Condition	: FCC IC-QP LISN-060105-N 2023 NEUTRAL																																																																																																																																
<table border="1"> <thead> <tr> <th></th> <th>Freq</th> <th>Level</th> <th>Over Limit</th> <th>Limit Line</th> <th>Read Level</th> <th>LISN Factor</th> <th>Cable Loss</th> <th>Remark</th> </tr> <tr> <th></th> <th>MHz</th> <th>dBμV</th> <th>dB</th> <th>dBμV</th> <th>dBμV</th> <th>dB</th> <th>dB</th> <th></th> </tr> </thead> <tbody> <tr><td>1 *</td><td>0.152</td><td>54.06</td><td>-11.81</td><td>65.87</td><td>43.60</td><td>0.04</td><td>10.42</td><td>QP</td></tr> <tr><td>2</td><td>0.152</td><td>36.76</td><td>-19.11</td><td>55.87</td><td>26.30</td><td>0.04</td><td>10.42</td><td>Average</td></tr> <tr><td>3</td><td>0.197</td><td>43.76</td><td>-20.00</td><td>63.76</td><td>33.30</td><td>0.05</td><td>10.41</td><td>QP</td></tr> <tr><td>4</td><td>0.197</td><td>23.06</td><td>-30.70</td><td>53.76</td><td>12.60</td><td>0.05</td><td>10.41</td><td>Average</td></tr> <tr><td>5</td><td>0.258</td><td>40.56</td><td>-20.95</td><td>61.51</td><td>30.21</td><td>-0.01</td><td>10.36</td><td>QP</td></tr> <tr><td>6</td><td>0.258</td><td>25.66</td><td>-25.85</td><td>51.51</td><td>15.31</td><td>-0.01</td><td>10.36</td><td>Average</td></tr> <tr><td>7</td><td>0.440</td><td>32.79</td><td>-24.28</td><td>57.07</td><td>22.60</td><td>-0.06</td><td>10.25</td><td>QP</td></tr> <tr><td>8</td><td>0.440</td><td>23.79</td><td>-23.28</td><td>47.07</td><td>13.60</td><td>-0.06</td><td>10.25</td><td>Average</td></tr> <tr><td>9</td><td>2.358</td><td>35.55</td><td>-20.45</td><td>56.00</td><td>25.60</td><td>-0.12</td><td>10.07</td><td>QP</td></tr> <tr><td>10</td><td>2.358</td><td>30.25</td><td>-15.75</td><td>46.00</td><td>20.30</td><td>-0.12</td><td>10.07</td><td>Average</td></tr> <tr><td>11</td><td>17.755</td><td>38.19</td><td>-21.81</td><td>60.00</td><td>27.10</td><td>-0.20</td><td>11.29</td><td>QP</td></tr> <tr><td>12</td><td>17.755</td><td>31.29</td><td>-18.71</td><td>50.00</td><td>20.20</td><td>-0.20</td><td>11.29</td><td>Average</td></tr> </tbody> </table>					Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark		MHz	dB μ V	dB	dB μ V	dB μ V	dB	dB		1 *	0.152	54.06	-11.81	65.87	43.60	0.04	10.42	QP	2	0.152	36.76	-19.11	55.87	26.30	0.04	10.42	Average	3	0.197	43.76	-20.00	63.76	33.30	0.05	10.41	QP	4	0.197	23.06	-30.70	53.76	12.60	0.05	10.41	Average	5	0.258	40.56	-20.95	61.51	30.21	-0.01	10.36	QP	6	0.258	25.66	-25.85	51.51	15.31	-0.01	10.36	Average	7	0.440	32.79	-24.28	57.07	22.60	-0.06	10.25	QP	8	0.440	23.79	-23.28	47.07	13.60	-0.06	10.25	Average	9	2.358	35.55	-20.45	56.00	25.60	-0.12	10.07	QP	10	2.358	30.25	-15.75	46.00	20.30	-0.12	10.07	Average	11	17.755	38.19	-21.81	60.00	27.10	-0.20	11.29	QP	12	17.755	31.29	-18.71	50.00	20.20	-0.20	11.29	Average
	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark																																																																																																																									
	MHz	dB μ V	dB	dB μ V	dB μ V	dB	dB																																																																																																																										
1 *	0.152	54.06	-11.81	65.87	43.60	0.04	10.42	QP																																																																																																																									
2	0.152	36.76	-19.11	55.87	26.30	0.04	10.42	Average																																																																																																																									
3	0.197	43.76	-20.00	63.76	33.30	0.05	10.41	QP																																																																																																																									
4	0.197	23.06	-30.70	53.76	12.60	0.05	10.41	Average																																																																																																																									
5	0.258	40.56	-20.95	61.51	30.21	-0.01	10.36	QP																																																																																																																									
6	0.258	25.66	-25.85	51.51	15.31	-0.01	10.36	Average																																																																																																																									
7	0.440	32.79	-24.28	57.07	22.60	-0.06	10.25	QP																																																																																																																									
8	0.440	23.79	-23.28	47.07	13.60	-0.06	10.25	Average																																																																																																																									
9	2.358	35.55	-20.45	56.00	25.60	-0.12	10.07	QP																																																																																																																									
10	2.358	30.25	-15.75	46.00	20.30	-0.12	10.07	Average																																																																																																																									
11	17.755	38.19	-21.81	60.00	27.10	-0.20	11.29	QP																																																																																																																									
12	17.755	31.29	-18.71	50.00	20.20	-0.20	11.29	Average																																																																																																																									

Note:

1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
2. Over Limit(dB) = Level(dB μ V) – Limit Line(dB μ V)

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

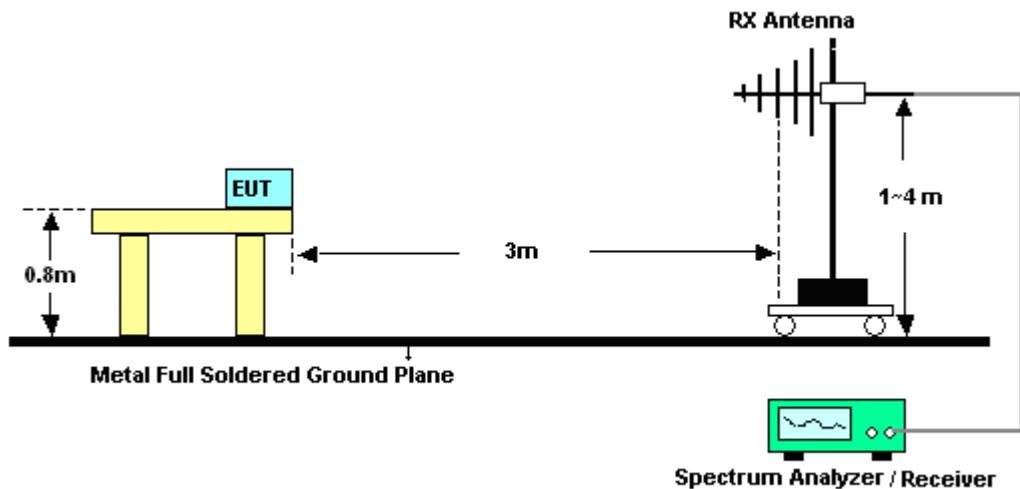
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B Limit>

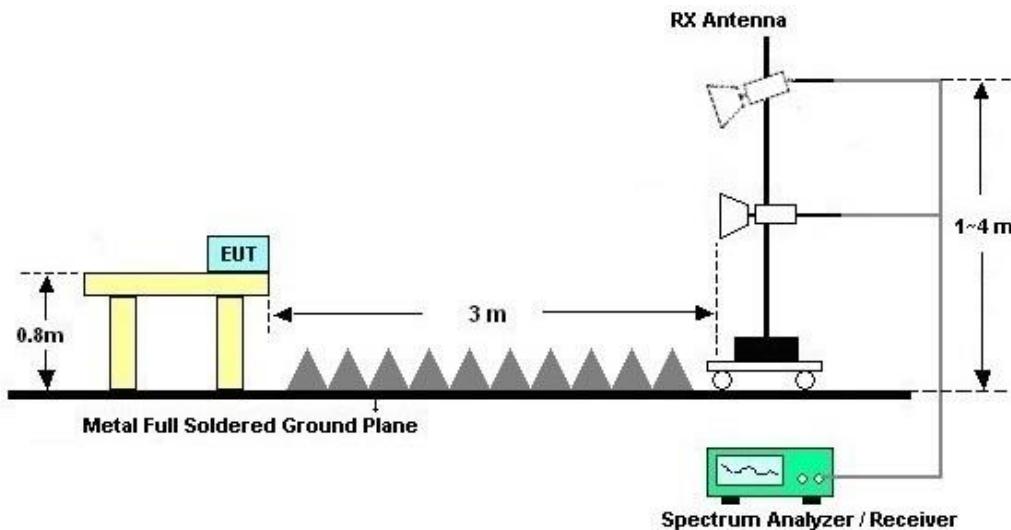
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

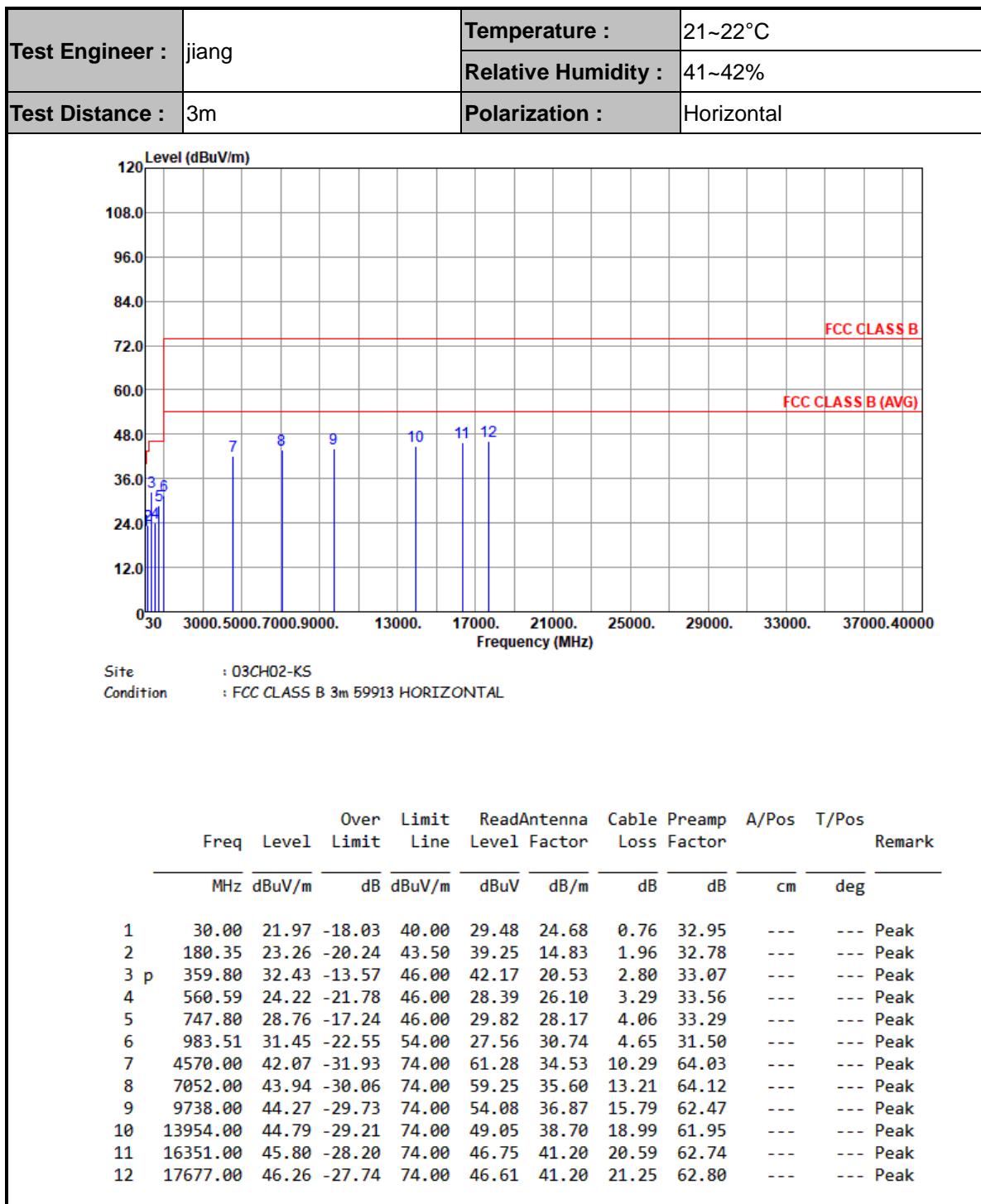


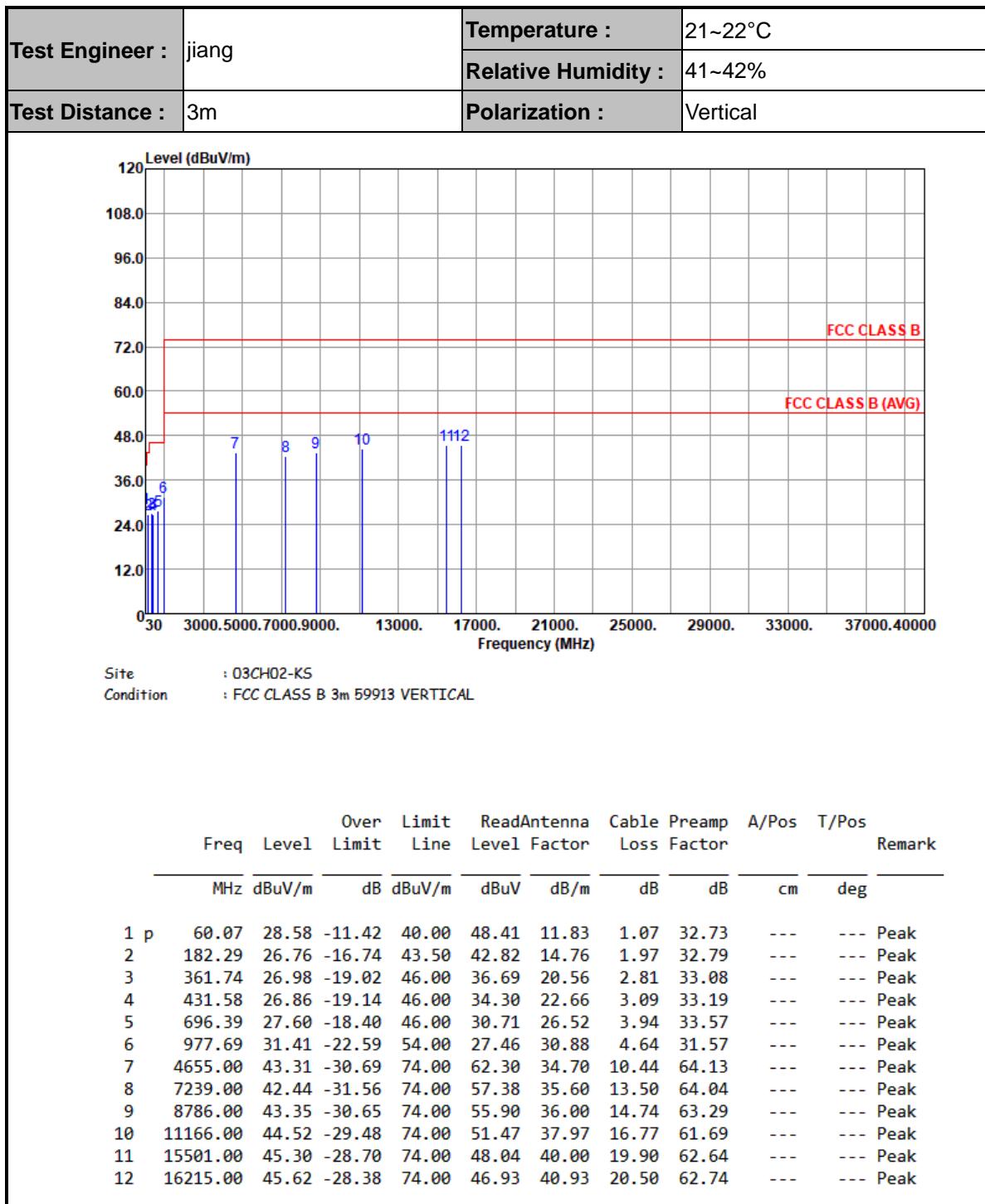
3.2.3. Test Procedures


1. The EUT was placed on a turntable with 0.8 meter above ground.
2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
4. The table was rotated 360 degrees to determine the position of the highest radiation.
5. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
6. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
7. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
8. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
9. Emission level (dB μ V/m) = 20 log Emission level (μ V/m)
10. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
11. Exploratory radiated emissions testing of handheld and/or body-worn devices shall include rotation of the EUT through three orthogonal axes (X/Y/Z Plane) to determine the orientation (attitude) that maximizes the emissions.

3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz




For radiated emissions above 1GHz

3.2.5. Test Result of Radiated Emission

Note:

1. Level(dB μ V/m) = Read Level(dB μ V) + Antenna Factor(dB/m) + Cable Loss(dB) - Preamp Factor(dB)
2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz; Max 30dBm	Oct. 10, 2023	Dec. 13, 2023	Oct. 09, 2024	Radiation (03CH02-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G, MAX 30dB	Oct. 10, 2023	Dec. 13, 2023	Oct. 09, 2024	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 23, 2022	Dec. 13, 2023	Dec. 22, 2023	Radiation (03CH02-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Oct. 23, 2023	Dec. 13, 2023	Oct. 22, 2024	Radiation (03CH02-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 08, 2023	Dec. 13, 2023	Jan. 07, 2024	Radiation (03CH02-KS)
Amplifier	EM	EM18G40GGA	060852	18~40GHz	Jan. 05, 2023	Dec. 13, 2023	Jan. 04, 2024	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 06, 2023	Dec. 13, 2023	Jul. 05, 2024	Radiation (03CH02-KS)
Amplifier	EM	EM01G18G	060806	1GHz~18GHz	Oct. 10, 2023	Dec. 13, 2023	Oct. 09, 2024	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	616010002473	N/A	NCR	Dec. 13, 2023	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Dec. 13, 2023	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Dec. 13, 2023	NCR	Radiation (03CH02-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 16, 2023	Dec. 25, 2023	May 15, 2024	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 11, 2023	Dec. 25, 2023	Oct. 10, 2024	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 16, 2023	Dec. 25, 2023	May 15, 2024	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP000000811	AC 0V~300V, 45Hz~1000Hz	Oct. 11, 2023	Dec. 25, 2023	Oct. 10, 2024	Conduction (CO01-KS)

NCR: No Calibration Required

5. Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	2.94 dB
--	---------

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.04 dB
--	---------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.16 dB
--	---------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.96 dB
--	---------