CyberOptics Semiconductor, Inc.

AGS200

February 21, 2008

Report No. CYBR0077.1

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2008Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Issue Date: February 21, 2008
CyberOptics Semiconductor, Inc.
Model: AGS200

	Emission	s	
Test Description	Specification	Test Method	Pass/Fail
Spurious Radiated Emissions	FCC 15.247 (DTS):2007	ANSI C63.4:2003 KDB No. 558074	Pass

Modifications made to the product
See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada.

Approved By:

Ethan Schoonover, Sultan Lab Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 05/05/03

Revision Number	Description	Date	Page Number
00	None		

FCC: Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP: Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada: Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS 212, Issue 1 (Provisional) and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements.

CAB: Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

TÜV Product Service: Included in TUV Product Service Group's Listing of Recognized Laboratories. It qualifies in connection with the TUV Certification after Recognition of Agent's Testing Program for the product categories and/or standards shown in TUV's current Listing of CARAT Laboratories, available from TUV. A certificate was issued to represent that this laboratory continues to meet TUV's CARAT Program requirements. Certificate No. USA0604C.

TÜV Rheinland: Authorized to carryout EMC tests by order and under supervision of TÜV Rheinland. This authorization is based on "Conditions for EMC-Subcontractors" of November 1992.

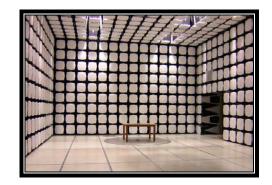
NEMKO: Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

Australia/New Zealand: The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI: Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, C-2687, T-289, and R-2318, Irvine: R-1943, C-2766, and T-298, Sultan: R-871, C-1784, and T-294).

BSMI: Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement. License No.SL2-IN-E-1017.

GOST: Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification


MIC: Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/scope.asp

California – Orange County Facility Labs OC01 – OC13

41 Tesla Ave. Irvine, CA 92618 (888) 364-2378 Fax: (503) 844-3826

Oregon – Evergreen Facility Labs EV01 – EV11

22975 NW Evergreen Pkwy. Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: (503) 844-3826

Washington – Sultan Facility Labs SU01 – SU07

14128 339th Ave. SE Sultan, WA 98294 (888) 364-2378

Party Requesting the Test

Company Name:	CyberOptics Semiconductor, Inc.
Address:	13555 SW Millikan Way
City, State, Zip:	Beaverton, OR 97005
Test Requested By:	Greg Huntzinger
Model:	AGS200
First Date of Test:	February 18, 2008
Last Date of Test:	February 19, 2008
Receipt Date of Samples:	February 18, 2008
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

WaferSenseTM AGS200 measures gaps that are critical to the outcome of semiconductor processes such as thin-film deposition, sputtering and etch. AGS200 contains a Bluetooth transceiver to speed equipment setup and maintenance.

Testing Objective:

These tests were selected to satisfy FCC 15.247 radiated spurious emissions requirements.

EUT Photo

Configurations

Revision 9/21/05

CONFIGURATION 1 CYBR0077

Software/Firmware Running during test	
Description	Version
Bluetest3	3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - Wafer	CyberOptics Semiconductor, Inc.	AGS200	SFE72290051

Modifications

Revision 4/28/03

	Equipment modifications									
Item	Date	Test	Modification	Note	Disposition of EUT					
1	2/18/2008 2/19/2008	Radiated Spurious Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.					

RADIATED SPURIOUS EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting Bluetooth GFSK modulation, DH5, low Channel

Transmitting Bluetooth GFSK modulation, DH5, mid Channel

Transmitting Bluetooth GFSK modulation, DH5, High Channel

POWER SETTINGS INVESTIGATED

Battery

FREQUENCY RANGE IN	/ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	25 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAT	12/7/2007	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	1/16/2008	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	12/29/2006	16
Antenna, Biconilog	EMCO	3141	AXE	1/15/2008	24
EV01 Cables		Bilog Cables	EVA	10/23/2007	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	1/3/2008	13
Antenna, Horn	EMCO	3115	AHC	8/24/2006	24
EV01 Cables		Double Ridge Horn Cables	EVB	1/3/2008	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	6/22/2007	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	6/22/2007	13
Antenna, Horn	ETS	3160-08	AHV	NCR	0
EV01 Cables		Standard Gain Horns Cables	EVF	10/23/2007	13
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	7/25/2007	13
Antenna, Horn	EMCO	3160-09	AHG	NCR	0
EV01 Cables		6GHz Standard Gain Horn C	EVD	7/25/2007	13

MEASUREMEN'	T BANDWIDTHS			
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data
	(MHz)	(kHz)	(kHz)	(kHz)
	0.01 - 0.15	1.0	0.2	0.2
	0.15 - 30.0	10.0	9.0	9.0
	30.0 - 1000	100.0	120.0	120.0
	Above 1000	1000.0	N/A	1000.0
ı	Measurements were made us	sing the bandwidths and dete	ctors specified. No video filte	er was used.

MEASUREMENT UNCERTAINTY

Measurement uncertainty is used to reflect the accuracy of the measured result as compared with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. In the case of transient tests our test equipment has been demonstrated by calibration to provide at least a 95% confidence that it complies with the test specification requirements. The measurement uncertainty for any test is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.4:2003). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

RADIATED SPURIOUS EMISSIONS **EMC** EMI 2006.11.2 EUT: AGS200 Serial Number: SFE72290051 Work Order: CYBR0077 Date: 02/18/08 Customer: CyberOptics Semiconductor, Inc. Attendees: Greg Huntzinger Temperature: 24 Humidity: 23% Barometric Pres.: 30.07 Project: None Tested by: Rod Peloquin TEST SPECIFICATIONS Power: Battery Job Site: EV01 ANSI C63,4:2003 KDB No. 558074 FCC 15.247 (DTS):2007 TEST PARAMETERS Test Distance (m) Antenna Height(s) (m) 1 - 4 COMMENTS EUT OPERATING MODES Transmitting Bluetooth GFSK modulation, DH5, High Channel DEVIATIONS FROM TEST STANDARD No deviations. Rolly be Feling Run# Configuration # 1 Results Pass 80.0 70.0 60.0 50.0 dBuV/m 40.0 30.0 20.0 10.0 0.0 $2400.000 \quad 2410.000 \quad 2420.000 \quad 2430.000 \quad 2440.000 \quad 2450.000 \quad 2460.000 \quad 2470.000 \quad 2480.000 \quad 2490.000 \quad 2500.000 \quad 2480.000 \quad 2480.000$ MHz Distance Compared to Adjustment (dB) Frea Amplitude Factor Azimuth Height Distance Attenuation Polarity Detector Adjusted Spec. Limit (dBuV) (dB) dBuV/m dBuV/m (MHz) (dB) (dB) (degrees) (meters) (meters) Comments 2483.500 26.7 2.2 3.0 H-Horn 48.9 EUT on side 49.0 1.0 20.0 0.0 -5.1 2483.500 25.3 2.2 34.0 1.0 3.0 20.0 H-Horn ΑV 0.0 47.5 54.0 -6.5 EUT vertical 25.2 24.7 1.4 1.1 2483.500 2.2 235.0 3.0 20.0 V-Horn ΑV 0.0 47.4 54.0 -6.6 EUT horizontal -7.1 V-Horn 54.0 2483.508 2.2 6.0 3.0 20.0 ΑV 46.9 EUT on side 0.0 2483.500 24.0 213.0 2.6 20.0 H-Horn ΑV 46.2 54.0 EUT horizontal 3.0 0.0 2484.927 23.9 2.2 335.0 1.1 3.0 20.0 V-Horn ΑV 46.1 54.0 -7.9 EUT vertical 2483.567 42.8 38.6 2.2 2.2 47.0 1.0 3.0 20.0 H-Horn PΚ 0.0 65.0 74.0 -9.0 EUT on side 2483.730 6.0 20.0 V-Horn PK 60.8 74.0 -13.2 EUT on side 1.1 3.0 0.0 2483.615 38.4 2.2 34.0 1.0 3.0 20.0 H-Horn PΚ 0.0 60.6 74.0 -13.4 EUT vertical

2483.573

2483 957

2483.983

38.2

37.9

37.5

2.2

2.2

2.2

235.0

335.0

213.0

1 1

2.6

3.0

3.0

3.0

20.0

20.0

20.0

V-Horn

V-Horn

H-Horn

PK PK

PΚ

0.0

0.0

0.0

60.4

60.1

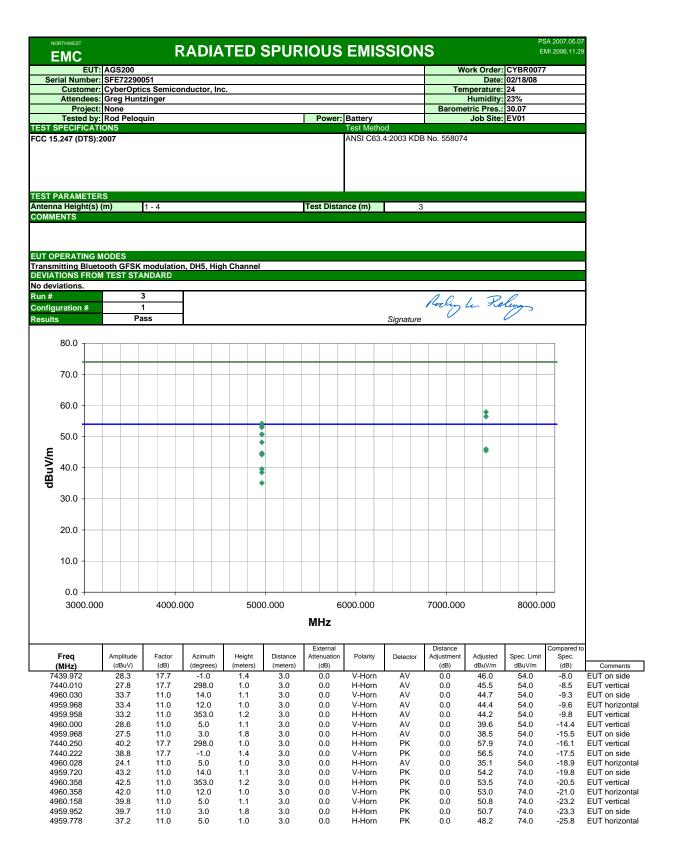
59.7

74.0

74 0

74.0

-13.6


-139

-14.3

EUT horizontal

EUT vertical

EUT horizontal

RADIATED SPURIOUS EMISSIONS EMI 2006.11.29 **EMC** EUT: AGS200 Work Order: CYBR0077 Serial Number: SFE72290051 Customer: CyberOptics Semiconductor, Inc. Date: 02/19/08 Temperature: 24 Humidity: 23% Barometric Pres.: 30.07 Attendees: Greg Huntzinger Project: None Tested by: Rod Peloquin TEST SPECIFICATIONS Power: Battery Job Site: EV01 ANSI C63.4:2003 KDB No. 558074 FCC 15.247 (DTS):2007 TEST PARAMETERS Antenna Height(s) (m) Test Distance (m) 1 - 4 COMMENTS EUT OPERATING MODES Transmitting Bluetooth GFSK modulation, DH5, mid Channel DEVIATIONS FROM TEST STANDARD No deviations. Run# Rochy la Reley Configuration # Results Pass Signature 80.0 70.0 60.0 • 50.0 . dBuV/m • 40.0 30.0 20.0 10.0 0.0 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 MHz Amplitude Factor Azimuth Distance Polarity Spec. Limit Frea Height Attenuation Detector Adjustment Adjusted Spec. dBuV/m dBuV/m (dBuV) (dB) (meters) (dB) (dB) (dB) Comments (MHz) (degrees) (meters) 35.1 10.5 353.0 H-Horn 45.6 54.0 -8.4 **EUT** vertical 4882.018 34.6 10.5 15.0 1.0 3.0 0.0 V-Horn ΑV 0.0 45.1 54.0 -8.9 EUT on side 7322.965 27.5 17.1 331.0 1.0 3.0 0.0 H-Horn AV 0.0 44.6 54.0 -9.4 EUT vertical 27.4 7323.022 17.1 355.0 1.3 3.0 0.0 V-Horn AV PK 0.0 44.5 54.0 -9.5 EUT on side V-Horn 39.5 3.0 7322.550 17.1 355.0 1.3 0.0 0.0 56.6 74.0 -17.4 EUT on side 39.4 H-Horn 7322.498 PΚ 74.0 -17.5 EUT vertical 17.1 331.0 1.0 3.0 0.0 0.0 56.5 4881.968 43.9 10.5 353.0 1.2 3.0 0.0 H-Horn PΚ 0.0 54.4 74.0 -19.6 EUT vertical

V-Horn

EUT on side

4881.728

NORTHWE			F	RADIA	TED :	SPUR	lous	EMIS	SSION	S			SA 2007.05.0 MI 2006.11.2
		AGS200								W	ork Order:	CYBR007	7
Serial N		SFE72290	051									02/19/08	
				onductor, Inc	C.					Ter	nperature:		
		Greg Hunt	zinger								Humidity:		
	Project:						_			Barome	tric Pres.:		
		Rod Peloc	uin				Power:	Battery			Job Site:	EV01	
ST SPEC C 15.247								Test Meth	od 8.4:2003 KDE				
	, -,												
ST PARA													
enna He		m)	1 - 4				Test Dista	nce (m)	3				
T OPERA nsmitting VIATION: deviation	g Blueto		modulatic	on, DH5, low	Channel								
n #			5							10	, ,	0	
nfiguratio	on#		1	1						Rocky	he the	leng	
sults			ass	1					Signature	0		0	
				1					- 0				
80.0	Λ												
80.0	٠ T												
70.	$_{\alpha}$ \Box												
70.0	0 +												
60.0	0 +												-
					+								
50.0	0 +												
_													
₩//n g p					•								
3 40.0	o 												
മ്													
ਰ													
30.0	ი 🗕												
50.0	٠												
20.0	ا ا												
20.0	٦												
10.0	ا ا												
10.0	٠ 1												
0.0	۰ ــــــــــــــــــــــــــــــــــــ												
	000.000		4000.	000	E004	0.000		200 000		7000 000		8000.0	100
30	JUU.UUU	'	4000.	UUU	5000	0.000	6	000.000		7000.000		5000.C	iuu
							MHz						
							External			Distance			Compared to
				Azimuth	Height	Distance	Attenuation	Polarity	Detector	Adjustment	Adjusted	Spec. Limit	Spec.
Freq		Amplitude	Factor										
(MHz	z)	(dBuV)	(dB)	(degrees)	(meters)	(meters)	(dB)			(dB)	dBuV/m	dBuV/m	(dB)
(MHz 4803.9	z) 990	(dBuV) 34.4	(dB) 10.1	(degrees) 10.0	(meters) 1.1	3.0	0.0	V-Horn	AV	0.0	44.5	54.0	-9.5
(MHz 4803.9 4804.0	z) 990 905	(dBuV) 34.4 34.3	(dB) 10.1 10.1	(degrees) 10.0 11.0	(meters) 1.1 1.1	3.0 3.0	0.0	H-Horn	AV	0.0	44.5 44.4	54.0 54.0	-9.5 -9.6
(MHz 4803.9	2) 990 905 715	(dBuV) 34.4	(dB) 10.1	(degrees) 10.0	(meters) 1.1	3.0	0.0			0.0	44.5	54.0	-9.5

RADIATED SPURIOUS EMISSIONS EMI 2006.11.29 **EMC** EUT: AGS200 Serial Number: SFE72290051 Work Order: CYBR0077 Date: 02/19/08 Customer: CyberOptics Semiconductor, Inc. Temperature: 24 Attendees: Greg Huntzinger Humidity: 23% Project: None Barometric Pres.: 30.07 Tested by: Rod Peloquin TEST SPECIFICATIONS Power: Battery Job Site: EV01 ANSI C63.4:2003 KDB No. 558074 FCC 15.247 (DTS):2007 TEST PARAMETERS Test Distance (m) Antenna Height(s) (m) 1 - 4 COMMENTS EUT OPERATING MODES Transmitting Bluetooth GFSK modulation, DH5 DEVIATIONS FROM TEST STANDARD No deviations. Run# 6 Rochy la Feling Configuration # Results Pass Signature 80.0 70.0 60.0 50.0 dBuV/m \$ 40.0 30.0 20.0 10.0 0.0 8200.000 9200.000 10200.000 11200.000 12200.000 13200.000 14200.000 15200.000 16200.000 17200.000 MHz Amplitude Factor Distance Polarity Frea Azimuth Height Attenuation Detector Adjustmen Adjusted Spec. Limit Spec. dBuV/m (dBuV) (dB) (dB) (dB) dBuV/m (dB) Comments (MHz) (degrees) (meters) (meters) 33.7 -3.2 312.0 3.0 0.0 0.0 30.5 54.0 High channel 1.1 12399.470 32.5 -3.2 19.0 1.0 3.0 0.0 V-Horn ΑV 0.0 54.0 -24.7 High channel 12205.540 32.5 -4.7 65.0 1.0 3.0 0.0 H-Horn AV 0.0 27.8 54.0 -26.2 Mid channel 12205.700 32.2 -4.7 345.0 1.0 3.0 0.0 V-Horn ΑV 0.0 27.5 54.0 -26.5 Mid channel Low channel 12010.480 32.7 -6.1 350.0 1.0 3.0 0.0 H-Horn ΑV 0.0 26.6 54.0 -27.4 12010.550 32.1 344.0 V-Horn ΑV 54.0 -28.0 Low channel -6.1 1.0 3.0 0.0 0.0 26.0 12399.610 47.1 -3.2 312.0 1.1 3.0 0.0 H-Horn PΚ 0.0 43.9 74.0 -30.1 High channel 12400.590 45.3 -3.2 19.0 1.0 3.0 0.0 V-Horn PΚ 0.0 42.1 74.0 -31.9 High channel 12205.850 46.6 -4.7 65.0 1.0 3.0 0.0 H-Horn PΚ 0.0 41.9 74.0 -32.1 Mid channel

12204.830

12010.340

12010.460

45.3

46.4

45.9

-4.7

-6.1

-6.1

345.0

350.0

344.0

1.0

1.0

1.0

3.0

3.0

3.0

0.0

0.0

0.0

V-Horn

H-Horn

V-Horn

PΚ

PΚ

PΚ

0.0

0.0

0.0

74.0 74.0

74.0

-33.4

-33.7

-34.2

Mid channel

Low channel

Low channel

40.6

40.3

39.8

RADIATED SPURIOUS EMISSIONS

RADIATED SPURIOUS EMISSIONS

