

# CETECOM ICT Services GmbH

Untertuerkheimer Str. 6-10, 66117 Saarbruecken, Germany Phone: +49 (0) 681 598-0  
SAR-Laboratory Phone: +49 (0) 681 598-8454

Fax: -8475



## Accredited testing laboratory

**DAR registration number: DAT-P-176/94-D1**

**Test report no. : 2-4728-01-05/07**  
**Type identification : CH5-E01 and CH5-E02**  
**Test specification : IEEE P1528/D1.2**  
**FCC-ID : SP2-CH5-E01 / SP2-CH5-E02**

## Table of Contents

|           |                                                               |    |
|-----------|---------------------------------------------------------------|----|
| 1         | General Information.....                                      | 3  |
| 1.1       | Notes.....                                                    | 3  |
| 1.1.1     | Statement of Compliance.....                                  | 3  |
| 1.2       | Testing laboratory.....                                       | 4  |
| 1.3       | Details of applicant.....                                     | 4  |
| 1.4       | Application details.....                                      | 4  |
| 1.5       | Test item.....                                                | 5  |
| 1.6       | Test specification(s) .....                                   | 6  |
| 1.6.1     | RF exposure limits .....                                      | 6  |
| 2         | Technical test.....                                           | 7  |
| 2.1       | Summary of test results .....                                 | 7  |
| 2.2       | Test environment.....                                         | 7  |
| 2.3       | Measurement and test set-up .....                             | 7  |
| 2.4       | Measurement system .....                                      | 8  |
| 2.4.1     | System Description .....                                      | 8  |
| 2.4.2     | Test environment .....                                        | 9  |
| 2.4.3     | Probe description .....                                       | 9  |
| 2.4.4     | Phantom description.....                                      | 10 |
| 2.4.5     | Device holder description .....                               | 10 |
| 2.4.6     | Scanning procedure.....                                       | 11 |
| 2.4.7     | Spatial Peak SAR Evaluation.....                              | 12 |
| 2.4.8     | Data Storage and Evaluation.....                              | 13 |
| 2.4.9     | Test equipment utilized.....                                  | 15 |
| 2.4.10    | Tissue simulating liquids: dielectric properties.....         | 16 |
| 2.4.11    | Tissue simulating liquids: parameters .....                   | 17 |
| 2.4.12    | Measurement uncertainty evaluation for SAR test .....         | 18 |
| 2.4.13    | Measurement uncertainty evaluation for system validation..... | 19 |
| 2.4.14    | System validation.....                                        | 20 |
| 2.4.15    | Validation procedure.....                                     | 21 |
| 2.5       | Test results (Head and Body SAR).....                         | 22 |
| 2.5.1     | General description of test procedures.....                   | 23 |
| 2.6       | Test results (conducted power measurement).....               | 24 |
| Annex 1   | System performance verification.....                          | 25 |
| Annex 2   | Measurement results (printout from DASY TM) .....             | 29 |
| Annex 2.1 | GSM 1900 MHz head .....                                       | 29 |
| Annex 2.2 | GSM 1900 MHz body .....                                       | 35 |
| Annex 2.3 | WLAN 2450 MHz head .....                                      | 39 |
| Annex 2.4 | WLAN 2450 MHz body.....                                       | 44 |
| Annex 3   | Photo documentation .....                                     | 47 |
| Annex 3.1 | Liquid depth .....                                            | 58 |
| Annex 3.2 | Z-axis scans.....                                             | 60 |
| Annex 4   | Calibration parameters .....                                  | 62 |

## 1 General Information

## 1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

### 1.1.1 Statement of Compliance

The SAR values found for the CH5-E01 and CH5-E02 GSM/UMTS/WLAN/BT phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1999, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and that positions the handset a minimum of 15 mm from the body. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 2.3 of this test report. A detailed description of the equipment under test can be found in chapter 1.5.

## Test engineer:

2007-11-08

Oleksandr Hnatovskiv

---

Date

Name \_\_\_\_\_

---

**Signature**



## Technical responsibility for area of testing:

2007-11-12

## Thomas Vogler

---

Date:

Name \_\_\_\_\_

### Signature

Thomas Vay

## 1.2 Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Straße 6-10,

66117 Saarbruecken

Germany

Telephone: + 49 681 598 - 0

Fax: + 49 681 598 - 8475

e-mail: [info@ict.cetecom.de](mailto:info@ict.cetecom.de)

Internet: <http://www.cetecom-ict.de>

State of accreditation: The Test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025. DAR registration number: DAT-P-176/94-D1

Test location, if different from CETECOM ICT Services GmbH

Name: ---

Street: ---

Town: ---

Country: ---

Phone: ---

Fax: ---

## 1.3 Details of applicant

Name: Toshiba Information Systems (UK) Ltd.

Mobile Communications Division

Street: Delta House, The Crescent, Southwood Business Park

Town: Farnborough, Hampshire, GU14 0NL

Country: United Kingdom

Contact: Mr. Adrian Coyle

Telephone: +44 1252 532-309

## 1.4 Application details

Date of receipt of application: 2007-07-25

Date of receipt of test item: 2007-10-22

Start/Date of test: 2007-10-23

End of test: 2007-11-06

Person(s) present during the test: ---

### 1.5 Test item

Description of the test item: GSM/UMTS/WLAN/BT phone

Type identification: CH5-E01 and CH5-E02

FCC-ID : SP2-CH5-E01 / SP2-CH5-E02

Serial number: N/A

Manufacturer:

Name: Toshiba Corporation  
 Street: 1-1, Asahigaoka 3-Chome, Hino-Shi  
 Town: Tokyo 191-8555  
 Country: Japan

| additional information on the DUT:      |                                                                                      |                          |
|-----------------------------------------|--------------------------------------------------------------------------------------|--------------------------|
| device type :                           | portable device                                                                      |                          |
| IMEI No :                               | 004401120412511 )*                                                                   |                          |
| exposure category:                      | uncontrolled environment / general population                                        |                          |
| test device production information      | identical prototype                                                                  |                          |
| device operating configurations :       |                                                                                      |                          |
| operating mode(s)                       | GSM, DCS, PCS, UMTS FDD 1, WLAN, Bluetooth                                           |                          |
| modulation                              | GSM/GPRS : GMSK; EGPRS (EDGE) : 8-PSK; WCDMA<br>WLAN: DSSS, OFDM, Bluetooth with EDR |                          |
| GRPS mobile station class :             | B                                                                                    |                          |
| GRPS multislot class :                  | 10                                                                                   | voice mode : ---         |
| EGPRS multislot class                   | 10                                                                                   | voice mode : ---         |
| maximum no. of timeslots in uplink :    | 2                                                                                    |                          |
| operating frequency range(s)            | transmitter frequency range                                                          | receiver frequency range |
| PCS 1900 (tested):                      | 1850.2 MHz ~ 1909.8 MHz                                                              | 1930.2 MHz ~ 1989.8 MHz  |
| DCS 1800                                | 1710 MHz ~ 1785 MHz                                                                  | 1805 MHz ~ 1880 MHz      |
| GSM 900                                 | 880 MHz ~ 915 MHz                                                                    | 925 MHz ~ 960 MHz        |
| UMTS FDD 1                              | 1922.4 MHz ~ 1977.6 MHz                                                              | 2112.4 MHz ~ 2167.6 MHz  |
| WLAN 2450 (tested):                     | 2412 MHz (channel 1) ~ 2462 MHz (channel 11)                                         |                          |
| Power class :                           | 1, tested with power level 0 (1900 MHz band)                                         |                          |
| measured peak output power (conducted): | 1900 PCS band: 30.6 dBm<br>2450 WLAN band: 22.4 dBm<br>2450 Bluetooth: 0.81 dBm      |                          |
| test channels (low – mid – high) :      | 661 (1900 MHz band)<br>6 (2450 MHz band)                                             |                          |
| hardware version :                      | CS                                                                                   |                          |
| software version :                      | 12.07                                                                                |                          |
| antenna type :                          | Integrated antenna                                                                   |                          |
| accessories/body-worn configurations:   | Stereo headset                                                                       |                          |
| battery options :                       | Lithium-ion battery 3.7VDC 1320mAh TS-BTR002                                         |                          |

)\* : test sample type is CH5-E02.

CH5-E01 has identical hardware but different software version with GPS deactivated.

## 1.6 Test specification(s)

**Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01)**

**IEEE P1528/D1.2 (April 21, 2003)**

**RSS-102: Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 2 of November 2005)**

**Canada's Safety Code 6: Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz (99-EHD-237)**

**IEEE Std C95.3 – 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.**

**IEEE Std C95.1 – 1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.**

### 1.6.1 RF exposure limits

| Human Exposure                                         | Uncontrolled Environment<br>General Population | Controlled Environment<br>Occupational |
|--------------------------------------------------------|------------------------------------------------|----------------------------------------|
| <b>Spatial Peak SAR*</b><br>(Brain)                    | <b>1.60 mW/g</b>                               | 8.00 mW/g                              |
| <b>Spatial Average SAR**</b><br>(Whole Body)           | 0.08 mW/g                                      | 0.40 mW/g                              |
| <b>Spatial Peak SAR***</b><br>(Hands/Feet/Ankle/Wrist) | 4.00 mW/g                                      | 20.00 mW/g                             |

Table 1: RF exposure limits

The limit applied in this test report is shown in **bold** letters

#### Notes:

\* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

\*\* The Spatial Average value of the SAR averaged over the whole body.

\*\*\* The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

**Uncontrolled Environments** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

**Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

## 2 Technical test

### 2.1 Summary of test results

|                                                                                                          |                                     |
|----------------------------------------------------------------------------------------------------------|-------------------------------------|
| No deviations from the technical specification(s) were ascertained in the course of the tests performed. | <input checked="" type="checkbox"/> |
| The deviations as specified in 2.5 were ascertained in the course of the tests performed.                | <input type="checkbox"/>            |

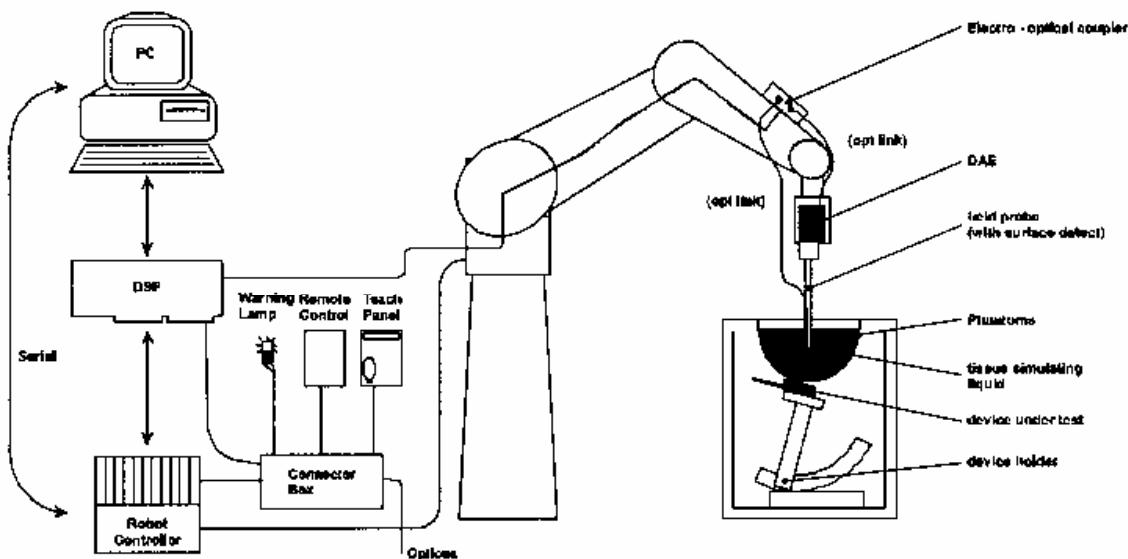
### 2.2 Test environment

General Environment conditions in the test area are as follows:

Ambient temperature: 20°C – 24°C  
Tissue simulating liquid: 20°C – 24°C  
Humidity: 40% – 50%

Exact temperature values for each test are shown in the table(s) under 2.5. and/or on the measurement plots.

### 2.3 Measurement and test set-up


The measurement system is described in chapter 2.4.

The test setup for the system validation can be found in chapter 2.4.14.

A description of positioning and test signal control can be found in chapter 2.5 together with the test results.

## 2.4 Measurement system

### 2.4.1 System Description



The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2000
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

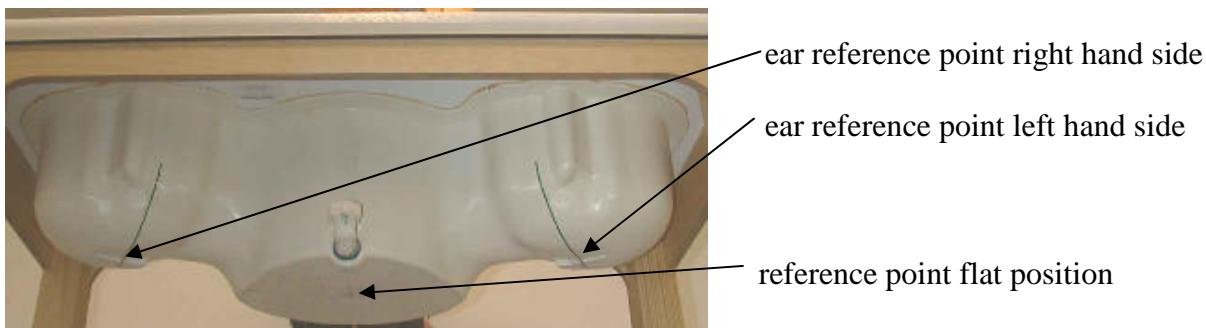
#### 2.4.2 Test environment

The DASY4 measurement system is placed at the head end of a room with dimensions: 5 x 2.5 x 3 m<sup>3</sup>, the SAM phantom is placed in a distance of 75 cm from the side walls and 1.1m from the rear wall. Above the test system a 1.5 x 1.5 m<sup>2</sup> array of pyramid absorbers is installed to reduce reflections from the ceiling.

Picture 1 of the photo documentation shows a complete view of the test environment.

The system allows the measurement of SAR values larger than 0.005 mW/g.

#### 2.4.3 Probe description


Isotropic E-Field Probe ET3DV6 for Dosimetric Measurements

| Technical data according to manufacturer information |                                                                                                                                                                                                                          |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction                                         | Symmetrical design with triangular core<br>Built-in optical fiber for surface detection system<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, e.g., glycoether) |
| Calibration                                          | In air from 10 MHz to 2.5 GHz<br>In head tissue simulating liquid (HSL) at 900 (800-1000) MHz and 1.8 GHz (1700-1910 MHz)<br>(accuracy $\pm$ 9.5%; k=2) Calibration for other liquids and frequencies upon request       |
| Frequency                                            | 10 MHz to 3 GHz (dosimetry); Linearity: $\pm$ 0.2 dB<br>(30 MHz to 3 GHz)                                                                                                                                                |
| Directivity                                          | $\pm$ 0.2 dB in HSL (rotation around probe axis)<br>$\pm$ 0.4 dB in HSL (rotation normal to probe axis)                                                                                                                  |
| Dynamic range                                        | 5 $\mu$ W/g to > 100 mW/g; Linearity: $\pm$ 0.2 dB                                                                                                                                                                       |
| Optical Surface Detection                            | $\pm$ 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces (ET3DV6 only)                                                                                                                       |
| Dimensions                                           | Overall length: 330 mm<br>Tip length: 16 mm<br>Body diameter: 12 mm<br>Tip diameter: 6.8 mm<br>Distance from probe tip to dipole centers: 2.7 mm                                                                         |
| Application                                          | General dosimetry up to 3 GHz<br>Compliance tests of mobile phones<br>Fast automatic scanning in arbitrary phantoms<br>(ET3DV6)                                                                                          |

#### 2.4.4 Phantom description

The used SAM Phantom meets the requirements specified in Edition 01-01 of Supplement C to OET Bulletin 65 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.



#### 2.4.5 Device holder description

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.



Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

#### 2.4.6 Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The „reference“ and „drift“ measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. +/- 5 %.
- The „surface check“ measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above  $\pm 0.1\text{mm}$ ). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within  $\pm 30^\circ$ .)
- The „area scan“ measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension. If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.  
Results of this coarse scan are shown in annex 2.
- A „7x7x7 zoom scan“ measures the field in a volume around the 2D peak SAR value acquired in the previous „coarse“ scan. This is a fine 7x7 grid where the robot additionally moves the probe in 7 steps along the z-axis away from the bottom of the Phantom. Grid spacing for the cube measurement is 5 mm in x and y-direction and 5 mm in z-direction. DASY4 is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex 2. Test results relevant for the specified standard (see chapter 1.6.) are shown in table form in chapter 2.5.
- A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth. A z-axis scan of the measurement with maximum SAR value is shown in annex 2.

## 2.4.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 7 x 7 x 7 points. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

### Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

### Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff ].

### Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

### Advanced Extrapolation

DASY4 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

## 2.4.8 Data Storage and Evaluation

### Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm<sup>2</sup>], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

### Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

|                    |                           |                                                                         |
|--------------------|---------------------------|-------------------------------------------------------------------------|
| Probe parameters:  | - Sensitivity             | Norm <sub>i</sub> , a <sub>i0</sub> , a <sub>i1</sub> , a <sub>i2</sub> |
|                    | - Conversion factor       | ConvF <sub>i</sub>                                                      |
|                    | - Diode compression point | Dcp <sub>i</sub>                                                        |
| Device parameters: | - Frequency               | f                                                                       |
|                    | - Crest factor            | cf                                                                      |
| Media parameters:  | - Conductivity            | $\sigma$                                                                |
|                    | - Density                 | $\rho$                                                                  |

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with  $V_i$  = compensated signal of channel i ( $i = x, y, z$ )  
 $U_i$  = input signal of channel i ( $i = x, y, z$ )  
 $cf$  = crest factor of exciting field (DASY parameter)  
 $dcp_i$  = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:  $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes:  $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with  $V_i$  = compensated signal of channel i ( $i = x, y, z$ )  
 $Norm_i$  = sensor sensitivity of channel i ( $i = x, y, z$ )  
 $[mV/(V/m)^2]$  for E-field Probes  
 $ConvF$  = sensitivity enhancement in solution  
 $a_{ij}$  = sensor sensitivity factors for H-field probes  
 $f$  = carrier frequency [GHz]  
 $E_i$  = electric field strength of channel i in V/m  
 $H_i$  = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with  $SAR$  = local specific absorption rate in mW/g  
 $E_{tot}$  = total field strength in V/m  
 $\sigma$  = conductivity in [mho/m] or [Siemens/m]  
 $\rho$  = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with  $P_{pwe}$  = equivalent power density of a plane wave in mW/cm<sup>2</sup>  
 $E_{tot}$  = total electric field strength in V/m  
 $H_{tot}$  = total magnetic field strength in A/m

**2.4.9 Test equipment utilized**

This table gives a complete overview of the SAR measurement equipment

Devices used during the test described in chapter 2.5. are marked

|                                     | Manufacturer                    | Device                               | Type             | Serial number | Date of last calibration )* |
|-------------------------------------|---------------------------------|--------------------------------------|------------------|---------------|-----------------------------|
| <input checked="" type="checkbox"/> | Schmid & Partner Engineering AG | Dosimetric E-Field Probe             | ET3DV6           | 1558          | August 23, 2007             |
| <input type="checkbox"/>            | Schmid & Partner Engineering AG | Dosimetric E-Field Probe             | ET3DV6           | 1559          | January 17, 2007            |
| <input type="checkbox"/>            | Schmid & Partner Engineering AG | 900 MHz System Validation Dipole     | D900V2           | 102           | August 23, 2007             |
| <input type="checkbox"/>            | Schmid & Partner Engineering AG | 1800 MHz System Validation Dipole    | D1800V2          | 287           | August 21, 2007             |
| <input checked="" type="checkbox"/> | Schmid & Partner Engineering AG | 1900 MHz System Validation Dipole    | D1900V2          | 5d009         | August 21, 2007             |
| <input checked="" type="checkbox"/> | Schmid & Partner Engineering AG | 2450 MHz System Validation Dipole    | D2450V2          | 710           | August 20, 2007             |
| <input checked="" type="checkbox"/> | Schmid & Partner Engineering AG | Data acquisition electronics         | DAE3V1           | 413           | January 18, 2007            |
| <input checked="" type="checkbox"/> | Schmid & Partner Engineering AG | Software                             | DASY 4 V4.5      | ---           | N/A                         |
| <input checked="" type="checkbox"/> | Schmid & Partner Engineering AG | Phantom                              | SAM              | ---           | N/A                         |
| <input checked="" type="checkbox"/> | Rohde & Schwarz                 | Universal Radio Communication Tester | CMU 200          | 106826        | March 14, 2007              |
|                                     |                                 |                                      |                  |               |                             |
| <input checked="" type="checkbox"/> | Hewlett Packard)*               | Network Analyser 300 kHz to 6 GHz    | 8753C            | 2937U00269    | March 13, 2007              |
| <input checked="" type="checkbox"/> | Hewlett Packard)*               | Network Analyser 300 kHz to 6 GHz    | 85047A           | 2936A00872    | March 13, 2007              |
| <input checked="" type="checkbox"/> | Hewlett Packard                 | Dielectric Probe Kit                 | 85070C           | US99360146    | N/A                         |
|                                     |                                 |                                      |                  |               |                             |
| <input checked="" type="checkbox"/> | Hewlett Packard                 | Signal Generator                     | 8665A            | 2833A00112    | February 9, 2007            |
| <input checked="" type="checkbox"/> | Amplifier Research              | Amplifier                            | 25S1G4 (25 Watt) | 20452         | N/A                         |
| <input checked="" type="checkbox"/> | Agilent                         | Power Meter                          | 438A             | 2804U01006    | February 2, 2007            |
| <input checked="" type="checkbox"/> | Agilent                         | Power Meter Sensor                   | 8482A            | 2703A03025    | February 2, 2007            |

)\* : Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

**2.4.10 Tissue simulating liquids: dielectric properties**

The following materials are used for producing the tissue-equivalent materials.

(liquids used for tests described in chapter 2.5. are marked with ):

| Ingredients<br>(% of weight) | Frequency (MHz)              |                              |                              |                               |                                          |                                          |
|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------------------|------------------------------------------|
| frequency band               | <input type="checkbox"/> 450 | <input type="checkbox"/> 835 | <input type="checkbox"/> 900 | <input type="checkbox"/> 1800 | <input checked="" type="checkbox"/> 1900 | <input checked="" type="checkbox"/> 2450 |
| Tissue Type                  | Head                         | Head                         | Head                         | Head                          | Head                                     | Head                                     |
| Water                        | 38.56                        | 41.45                        | 40.92                        | 52.64                         | 54.9                                     | 62.7                                     |
| Salt (NaCl)                  | 3.95                         | 1.45                         | 1.48                         | 0.36                          | 0.18                                     | 0.5                                      |
| Sugar                        | 56.32                        | 56.0                         | 56.5                         | 0.0                           | 0.0                                      | 0.0                                      |
| HEC                          | 0.98                         | 1.0                          | 1.0                          | 0.0                           | 0.0                                      | 0.0                                      |
| Bactericide                  | 0.19                         | 0.1                          | 0.1                          | 0.0                           | 0.0                                      | 0.0                                      |
| Triton X-100                 | 0.0                          | 0.0                          | 0.0                          | 0.0                           | 0.0                                      | 36.8                                     |
| DGBE                         | 0.0                          | 0.0                          | 0.0                          | 47.0                          | 44.92                                    | 0.0                                      |

Table 2: Head tissue dielectric properties

| Ingredients<br>(% of weight) | Frequency (MHz)              |                              |                              |                               |                                          |                                          |
|------------------------------|------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------------------|------------------------------------------|
| frequency band               | <input type="checkbox"/> 450 | <input type="checkbox"/> 835 | <input type="checkbox"/> 900 | <input type="checkbox"/> 1800 | <input checked="" type="checkbox"/> 1900 | <input checked="" type="checkbox"/> 2450 |
| Tissue Type                  | Body                         | Body                         | Body                         | Body                          | Body                                     | Body                                     |
| Water                        | 51.16                        | 52.4                         | 56.0                         | 69.91                         | 69.91                                    | 73.2                                     |
| Salt (NaCl)                  | 1.49                         | 1.40                         | 0.76                         | 0.13                          | 0.13                                     | 0.04                                     |
| Sugar                        | 46.78                        | 45.0                         | 41.76                        | 0.0                           | 0.0                                      | 0.0                                      |
| HEC                          | 0.52                         | 1.0                          | 1.21                         | 0.0                           | 0.0                                      | 0.0                                      |
| Bactericide                  | 0.05                         | 0.1                          | 0.27                         | 0.0                           | 0.0                                      | 0.0                                      |
| Triton X-100                 | 0.0                          | 0.0                          | 0.0                          | 0.0                           | 0.0                                      | 0.0                                      |
| DGBE                         | 0.0                          | 0.0                          | 0.0                          | 29.96                         | 29.96                                    | 26.7                                     |

Table 3: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride

Water: De-ionized, 16MΩ+ resistivity

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

Sugar: 98+% Pure Sucrose

HEC: Hydroxyethyl Cellulose

### 2.4.11 Tissue simulating liquids: parameters

| Used Target Frequency | Target Head Tissue |              | Measured Head Tissue |              | Measured Date |
|-----------------------|--------------------|--------------|----------------------|--------------|---------------|
|                       | [MHz]              | Permittivity | Conductivity [S/m]   | Permittivity |               |
| 1900                  | 40.0               | 1.40         | 39.8                 | 1.41         | 2007-10-29    |
| 2450                  | 39.0               | 1.84         | 38.4                 | 1.89         | 2007-11-06    |

Table 4: Parameter of the head tissue simulating liquid

| Used Target Frequency | Target Body Tissue |              | Measured Body Tissue |              | Measured Date |
|-----------------------|--------------------|--------------|----------------------|--------------|---------------|
|                       | [MHz]              | Permittivity | Conductivity [S/m]   | Permittivity |               |
| 1900                  | 53.3               | 1.52         | 52.4                 | 1.55         | 2007-10-25    |
| 2450                  | 52.7               | 1.95         | 51.7                 | 2.04         | 2007-11-06    |

Table 5: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 21°C.

## 2.4.12 Measurement uncertainty evaluation for SAR test

The overall combined measurement uncertainty of the measurement system is  $\pm 10.3\%$  ( $K=1$ ).

The expanded uncertainty ( $k=2$ ) is assessed to be  $\pm 20.6\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

| Error Sources                    | Uncertainty Value | Probability Distribution | Divi-<br>sor | $c_i$<br>1g | $c_i$<br>10g | Standard<br>Uncertainty<br>1g  | Standard<br>Uncertainty<br>10g | $v_i^2$ or<br>$v_{eff}$ |
|----------------------------------|-------------------|--------------------------|--------------|-------------|--------------|--------------------------------|--------------------------------|-------------------------|
| <b>Measurement System</b>        |                   |                          |              |             |              |                                |                                |                         |
| Probe calibration                | $\pm 4.8\%$       | Normal                   | 1            | 1           | 1            | $\pm 4.8\%$                    | $\pm 4.8\%$                    | $\infty$                |
| Axial isotropy                   | $\pm 4.7\%$       | Rectangular              | $\sqrt{3}$   | 0.7         | 0.7          | $\pm 1.9\%$                    | $\pm 1.9\%$                    | $\infty$                |
| Hemispherical isotropy           | $\pm 9.6\%$       | Rectangular              | $\sqrt{3}$   | 0.7         | 0.7          | $\pm 3.9\%$                    | $\pm 3.9\%$                    | $\infty$                |
| Spatial resolution               | $\pm 0.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 0.0\%$                    | $\pm 0.0\%$                    | $\infty$                |
| Boundary effects                 | $\pm 1.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 0.6\%$                    | $\pm 0.6\%$                    | $\infty$                |
| Probe linearity                  | $\pm 4.7\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 2.7\%$                    | $\pm 2.7\%$                    | $\infty$                |
| System detection limits          | $\pm 1.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 0.6\%$                    | $\pm 0.6\%$                    | $\infty$                |
| Readout electronics              | $\pm 1.0\%$       | Normal                   | 1            | 1           | 1            | $\pm 1.0\%$                    | $\pm 1.0\%$                    | $\infty$                |
| Response time                    | $\pm 0.8\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 0.5\%$                    | $\pm 0.5\%$                    | $\infty$                |
| Integration time                 | $\pm 2.6\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 1.5\%$                    | $\pm 1.5\%$                    | $\infty$                |
| RF ambient conditions            | $\pm 3.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 1.7\%$                    | $\pm 1.7\%$                    | $\infty$                |
| Probe positioner                 | $\pm 0.4\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 0.2\%$                    | $\pm 0.2\%$                    | $\infty$                |
| Probe positioning                | $\pm 2.9\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 1.7\%$                    | $\pm 1.7\%$                    | $\infty$                |
| Max. SAR evaluation              | $\pm 1.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 0.6\%$                    | $\pm 0.6\%$                    | $\infty$                |
| <b>Test Sample Related</b>       |                   |                          |              |             |              |                                |                                |                         |
| Device positioning               | $\pm 2.9\%$       | Normal                   | 1            | 1           | 1            | $\pm 2.9\%$                    | $\pm 2.9\%$                    | 145                     |
| Device holder uncertainty        | $\pm 3.6\%$       | Normal                   | 1            | 1           | 1            | $\pm 3.6\%$                    | $\pm 3.6\%$                    | 5                       |
| Power drift                      | $\pm 5.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 2.9\%$                    | $\pm 2.9\%$                    | $\infty$                |
| <b>Phantom and Set-up</b>        |                   |                          |              |             |              |                                |                                |                         |
| Phantom uncertainty              | $\pm 4.0\%$       | Rectangular              | $\sqrt{3}$   | 1           | 1            | $\pm 2.3\%$                    | $\pm 2.3\%$                    | $\infty$                |
| Liquid conductivity (target)     | $\pm 5.0\%$       | Rectangular              | $\sqrt{3}$   | 0.64        | 0.43         | $\pm 1.8\%$                    | $\pm 1.2\%$                    | $\infty$                |
| Liquid conductivity (meas.)      | $\pm 2.5\%$       | Normal                   | 1            | 0.64        | 0.43         | $\pm 1.6\%$                    | $\pm 1.1\%$                    | $\infty$                |
| Liquid permittivity (target)     | $\pm 5.0\%$       | Rectangular              | $\sqrt{3}$   | 0.6         | 0.49         | $\pm 1.7\%$                    | $\pm 1.4\%$                    | $\infty$                |
| Liquid permittivity (meas.)      | $\pm 2.5\%$       | Normal                   | 1            | 0.6         | 0.49         | $\pm 1.5\%$                    | $\pm 1.2\%$                    | $\infty$                |
| <b>Combined Uncertainty</b>      |                   |                          |              |             |              |                                |                                |                         |
| <b>Expanded Std. Uncertainty</b> |                   |                          |              |             |              | $\pm 10.3\%$                   | $\pm 10.0\%$                   | 330                     |
|                                  |                   |                          |              |             |              | <b><math>\pm 20.6\%</math></b> | <b><math>\pm 20.1\%</math></b> |                         |

Table 6: Measurement uncertainties

**2.4.13 Measurement uncertainty evaluation for system validation**

The overall combined measurement uncertainty of the measurement system is  $\pm 8.4\%$  ( $K=1$ ).

The expanded uncertainty ( $k=2$ ) is assessed to be  $\pm 16.8\%$

This measurement uncertainty budget is suggested by IEEE P1528 and determined by Schmid & Partner Engineering AG. The breakdown of the individual uncertainties is as follows:

| Error Sources                    | Uncertainty Value | Probability Distribution | Divisor    | $c_i$<br>1g | $c_i$<br>10g | Standard Uncertainty<br>1g     | Standard Uncertainty<br>10g    | $v_i^2$ or $v_{eff}$ |
|----------------------------------|-------------------|--------------------------|------------|-------------|--------------|--------------------------------|--------------------------------|----------------------|
| <b>Measurement System</b>        |                   |                          |            |             |              |                                |                                |                      |
| Probe calibration                | $\pm 4.8\%$       | Normal                   | 1          | 1           | 1            | $\pm 4.8\%$                    | $\pm 4.8\%$                    | $\infty$             |
| Axial isotropy                   | $\pm 4.7\%$       | Rectangular              | $\sqrt{3}$ | 0.7         | 0.7          | $\pm 1.9\%$                    | $\pm 1.9\%$                    | $\infty$             |
| Hemispherical isotropy           | $\pm 0.0\%$       | Rectangular              | $\sqrt{3}$ | 0.7         | 0.7          | $\pm 0.0\%$                    | $\pm 3.9\%$                    | $\infty$             |
| Boundary effects                 | $\pm 1.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 0.6\%$                    | $\pm 0.6\%$                    | $\infty$             |
| Probe linearity                  | $\pm 4.7\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 2.7\%$                    | $\pm 2.7\%$                    | $\infty$             |
| System detection limits          | $\pm 1.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 0.6\%$                    | $\pm 0.6\%$                    | $\infty$             |
| Readout electronics              | $\pm 1.0\%$       | Normal                   | 1          | 1           | 1            | $\pm 1.0\%$                    | $\pm 1.0\%$                    | $\infty$             |
| Response time                    | $\pm 0.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 0.0\%$                    | $\pm 0.0\%$                    | $\infty$             |
| Integration time                 | $\pm 0.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 0.0\%$                    | $\pm 0.0\%$                    | $\infty$             |
| RF ambient conditions            | $\pm 3.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 1.7\%$                    | $\pm 1.7\%$                    | $\infty$             |
| Probe positioner                 | $\pm 0.4\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 0.2\%$                    | $\pm 0.2\%$                    | $\infty$             |
| Probe positioning                | $\pm 2.9\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 1.7\%$                    | $\pm 1.7\%$                    | $\infty$             |
| Max. SAR evaluation              | $\pm 1.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 0.6\%$                    | $\pm 0.6\%$                    | $\infty$             |
| <b>Test Sample Related</b>       |                   |                          |            |             |              |                                |                                |                      |
| Dipole axis to liquid distance   | $\pm 2.0\%$       | Normal                   | 1          | 1           | 1            | $\pm 1.2\%$                    | $\pm 1.2\%$                    | $\infty$             |
| Power drift                      | $\pm 4.7\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 2.7\%$                    | $\pm 2.7\%$                    | $\infty$             |
| <b>Phantom and Set-up</b>        |                   |                          |            |             |              |                                |                                |                      |
| Phantom uncertainty              | $\pm 4.0\%$       | Rectangular              | $\sqrt{3}$ | 1           | 1            | $\pm 2.3\%$                    | $\pm 2.3\%$                    | $\infty$             |
| Liquid conductivity (target)     | $\pm 5.0\%$       | Rectangular              | $\sqrt{3}$ | 0.64        | 0.43         | $\pm 1.8\%$                    | $\pm 1.2\%$                    | $\infty$             |
| Liquid conductivity (meas.)      | $\pm 2.5\%$       | Normal                   | 1          | 0.64        | 0.43         | $\pm 1.6\%$                    | $\pm 1.1\%$                    | $\infty$             |
| Liquid permittivity (target)     | $\pm 5.0\%$       | Rectangular              | $\sqrt{3}$ | 0.6         | 0.49         | $\pm 1.7\%$                    | $\pm 1.4\%$                    | $\infty$             |
| Liquid permittivity (meas.)      | $\pm 2.5\%$       | Normal                   | 1          | 0.6         | 0.49         | $\pm 1.5\%$                    | $\pm 1.2\%$                    | $\infty$             |
| <b>Combined Uncertainty</b>      |                   |                          |            |             |              | <b><math>\pm 8.4\%</math></b>  | <b><math>\pm 8.1\%</math></b>  |                      |
| <b>Expanded Std. Uncertainty</b> |                   |                          |            |             |              | <b><math>\pm 16.8\%</math></b> | <b><math>\pm 16.2\%</math></b> |                      |

Table 7: Measurement uncertainties

#### 2.4.14 System validation

The system validation is performed for verifying the accuracy of the complete measurement system and performance of the software. The system validation is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows validation results for all frequency bands and tissue liquids used during the tests of the test item described in chapter 1.5. (graphic plot(s) see annex 1).

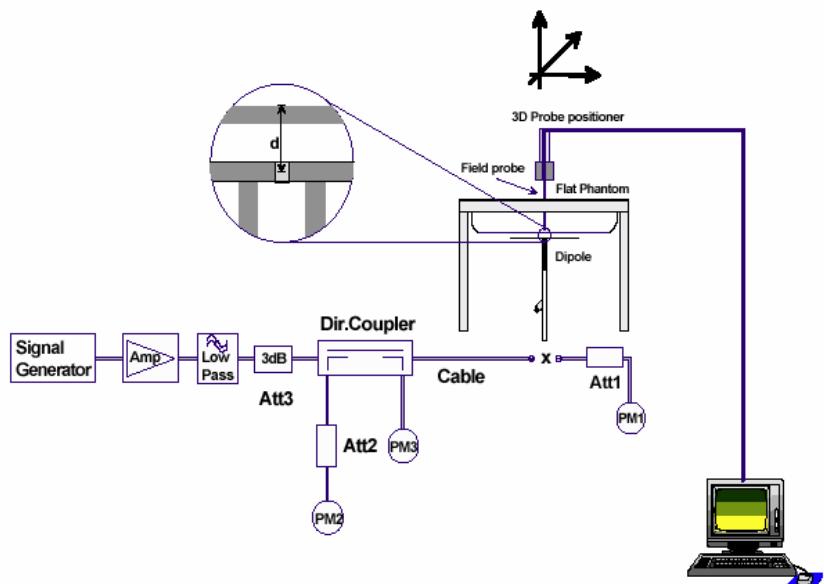

| Validation Kit               | Frequency               | Target Peak SAR (1000 mW)<br>(+/- 10%) | Target SAR <sub>1g</sub> (1000 mW)<br>(+/- 10%) | Measured Peak SAR | Measured SAR <sub>1g</sub> | Measured date     |
|------------------------------|-------------------------|----------------------------------------|-------------------------------------------------|-------------------|----------------------------|-------------------|
| <b>D1900V2</b><br>S/N: 5d009 | <b>1900 MHz</b><br>head | <b>64.0 mW/g</b>                       | <b>35.9 mW/g</b>                                | <b>62.7 mW/g</b>  | <b>37.2 mW/g</b>           | <b>2007-10-29</b> |
| <b>D1900V2</b><br>S/N: 5d009 | <b>1900 MHz</b><br>body | <b>63.2 mW/g</b>                       | <b>37.7 mW/g</b>                                | <b>68.3 mW/g</b>  | <b>39.6 mW/g</b>           | <b>2007-10-25</b> |
| <b>D2450V2</b><br>S/N: 710   | <b>2450 MHz</b><br>head | <b>111.6 mW/g</b>                      | <b>52.8 mW/g</b>                                | <b>122.5 mW/g</b> | <b>55.7 mW/g</b>           | <b>2007-11-06</b> |
| <b>D2450V2</b><br>S/N: 710   | <b>2450 MHz</b><br>body | <b>107.6 mW/g</b>                      | <b>52.4 mW/g</b>                                | <b>116.5 mW/g</b> | <b>56.3 mW/g</b>           | <b>2007-11-06</b> |

Table 8: Results system validation

### 2.4.15 Validation procedure

The validation is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the validation to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

Validation results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.



## 2.5 Test results (Head and Body SAR)

The table contains the measured SAR values averaged over a mass of 1 g

| Channel / frequency | Position   | Left hand position | Right hand position | Limit    | Liquid temperature |
|---------------------|------------|--------------------|---------------------|----------|--------------------|
| 661 / 1880.0 MHz    | cheek      | 0.546 W/kg         | 0.332 W/kg          | 1.6 W/kg | 20.9/21.1 °C       |
| 661 / 1880.0 MHz    | cheek + BT | <b>0.575 W/kg</b>  | not necessary       | 1.6 W/kg | 21.2 °C            |
| 661 / 1880.0 MHz    | tilted 15° | 0.088 W/kg         | 0.087 W/kg          | 1.6 W/kg | 21.0/21.2 °C       |
| 512 / 1850.2 MHz    | cheek      | not necessary      | not necessary       | 1.6 W/kg | ---- °C            |
| 810 / 1909.8 MHz    | cheek      | not necessary      | not necessary       | 1.6 W/kg | ---- °C            |

Table 9: Test results (Head SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

The table contains the measured SAR values averaged over a mass of 1 g

| Channel / frequency | Position  | Data service / Number of TS | Body worn         | Limit    | Liquid temperature |
|---------------------|-----------|-----------------------------|-------------------|----------|--------------------|
| 661 / 1880.0 MHz    | front     | GPRS / 2TS                  | 0.257 W/kg        | 1.6 W/kg | 21.4°C             |
| 661 / 1880.0 MHz    | rear      | GPRS / 2TS                  | 0.568 W/kg        | 1.6 W/kg | 21.4°C             |
| 661 / 1880.0 MHz    | rear + BT | GPRS / 2TS                  | <b>0.655 W/kg</b> | 1.6 W/kg | 21.4°C             |
| 661 / 1880.0 MHz    | rear + BT | EGPRS / 2TS                 | 0.262 W/kg        | 1.6 W/kg | 21.4°C             |
| 512 / 1850.2 MHz    | rear      | GPRS / 2TS                  | not necessary     | 1.6 W/kg | ----               |
| 810 / 1909.8 MHz    | rear      | GPRS / 2TS                  | not necessary     | 1.6 W/kg | ----               |

Table 10: Test results (Body SAR 1900 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

| The table contains the measured SAR values averaged over a mass of 1 g |            |                    |                     |          |                    |
|------------------------------------------------------------------------|------------|--------------------|---------------------|----------|--------------------|
| Channel / frequency                                                    | Position   | Left hand position | Right hand position | Limit    | Liquid temperature |
| 6 / 2437 MHz *                                                         | cheek      | 0.038 W/kg         | 0.028 W/kg          | 1.6 W/kg | 21.7/22.0 °C       |
| 6 / 2437 MHz *                                                         | tilted 15° | <b>0.041 W/kg</b>  | 0.033 W/kg          | 1.6 W/kg | 21.8/21.9 °C       |
| 6 / 2437 MHz **                                                        | tilted 15° | 0.023 W/kg         | not necessary       | 1.6 W/kg | 22.0 °C            |
| 1 / 2412 MHz                                                           | tilted 15° | not necessary      | not necessary       | 1.6 W/kg | ---- °C            |
| 11 / 2462 MHz                                                          | tilted 15° | not necessary      | not necessary       | 1.6 W/kg | ---- °C            |

Table 11: Test results (Head SAR 2450 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

| The table contains the measured SAR values averaged over a mass of 1 g |          |                   |          |                    |  |
|------------------------------------------------------------------------|----------|-------------------|----------|--------------------|--|
| Channel / frequency                                                    | Position | Body worn         | Limit    | Liquid temperature |  |
| 6 / 2437 MHz *                                                         | front    | 0.009 W/kg        | 1.6 W/kg | 21.7°C             |  |
| 6 / 2437 MHz *                                                         | rear     | <b>0.026 W/kg</b> | 1.6 W/kg | 21.8°C             |  |
| 1 / 2412 MHz                                                           | rear     | not necessary     | 1.6 W/kg | ----               |  |
| 11 / 2462 MHz                                                          | rear     | not necessary     | 1.6 W/kg | ----               |  |

Table 12: Test results (Body SAR 2450 MHz)

Note: The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.

Tests in body position were performed with 15 mm air gap between DUT and SAM to simulate the use of a non-metallic belt-clip or holster.

\* - WLAN IEEE 802.11b Modulation: DSSS; Speed: 1 Mbit/s

\*\* - WLAN IEEE 802.11g Modulation: OFDM; Speed: 54 Mbit/s

## 2.5.1 General description of test procedures

The DUT is tested using a CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.

Test positions as described in the tables above are in accordance with the specified test standard.

The tests WLAN IEEE 802.11 b/g were performed with a continuous transmit mode with maximum output power by using a controller software installed on the DUT.

Tests in body position are performed with the maximum number of timeslots in uplink.

Tests in head position are performed in voice mode with 1 timeslot unless GPRS/EGPRS function allows parallel voice and data traffic on 2 or more timeslots (see chapter 1.5 for details).

Conducted output power was measured using an integrated RF connector and attached RF cable.

## 2.6 Test results (conducted power measurement)

For the measurements a Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was measured before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below. In WLAN mode a Rohde & Schwarz FSU was used (see part 15.247 test report).

| PCS 1900                  |                            |                           |
|---------------------------|----------------------------|---------------------------|
| Channel / frequency       | peak power                 | average power             |
| 661 / 1880.0 MHz GSM/GPRS | 30.3 dBm                   | 30.1 dBm                  |
| 661 / 1880.0 MHz E-GPRS   | 30.6 dBm                   | 27.5 dBm                  |
| WLAN 2450                 |                            |                           |
| Channel / frequency       | peak power<br>IEEE 802.11b | RMS power<br>IEEE 802.11b |
| 6 / 2437 MHz              | 17.8 dBm                   | 16.0 dBm                  |
| Channel / frequency       | peak power<br>IEEE 802.11g | RMS power<br>IEEE 802.11g |
| 6 / 2437 MHz              | 22.4 dBm                   | 13.9 dBm                  |

Table 13: Test results conducted peak power measurement

## Annex 1 System performance verification

Date/Time: 2007-10-29 14:41:13 Date/Time: 2007-10-29 14:45:21

### SystemPerformanceCheck-D1900 head 2007-10-29

**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 Medium parameters used (interpolated):  $f = 1900$  MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

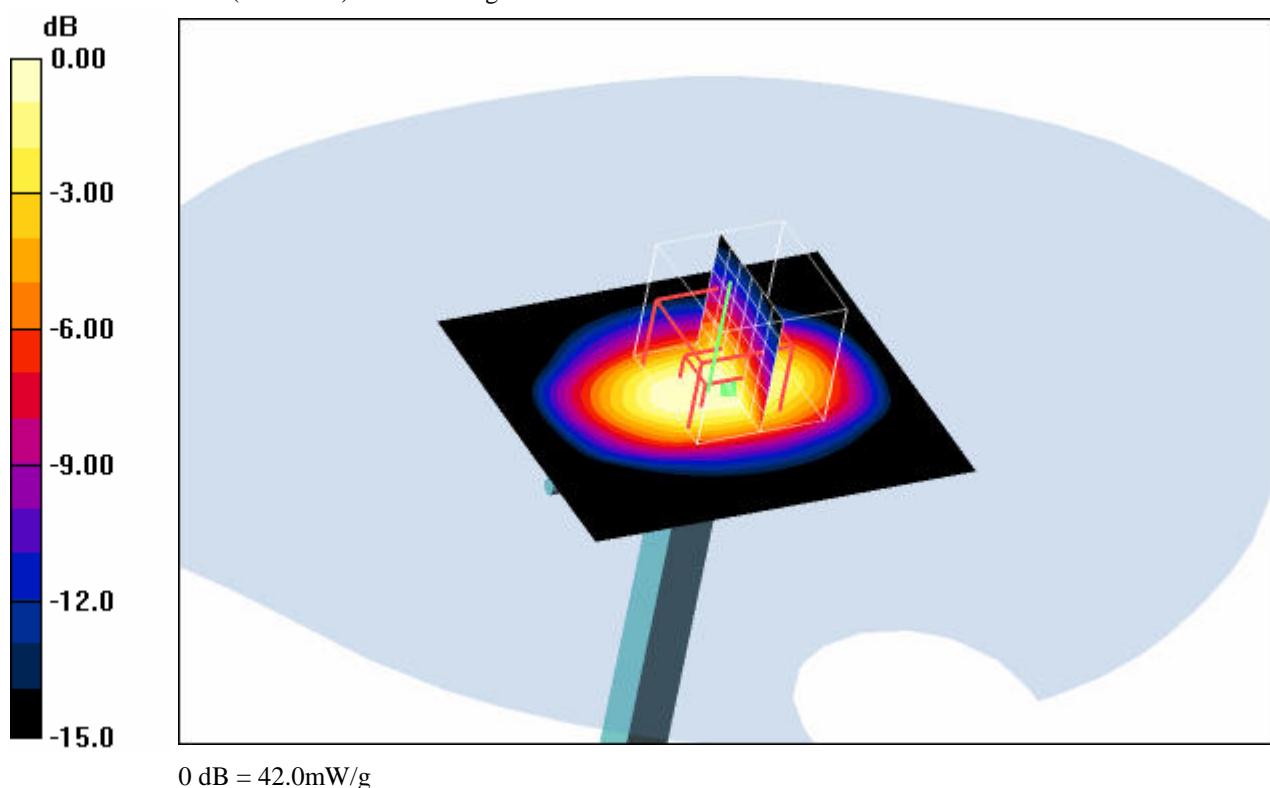
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**d=10mm, Pin=1000mW/Area Scan (51x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 48.2 mW/g


**d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 186.9 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 62.7 W/kg

**SAR(1 g) = 37.2 mW/g; SAR(10 g) = 19.7 mW/g**

Maximum value of SAR (measured) = 42.0 mW/g



#### Additional information:

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.9°C; liquid temperature: 20.9°C

Date/Time: 2007-10-25 08:43:35 Date/Time: 2007-10-25 08:47:48

**SystemPerformanceCheck-D1900 body 2007-10-25****DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: M1900 Medium parameters used (interpolated):  $f = 1900$  MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

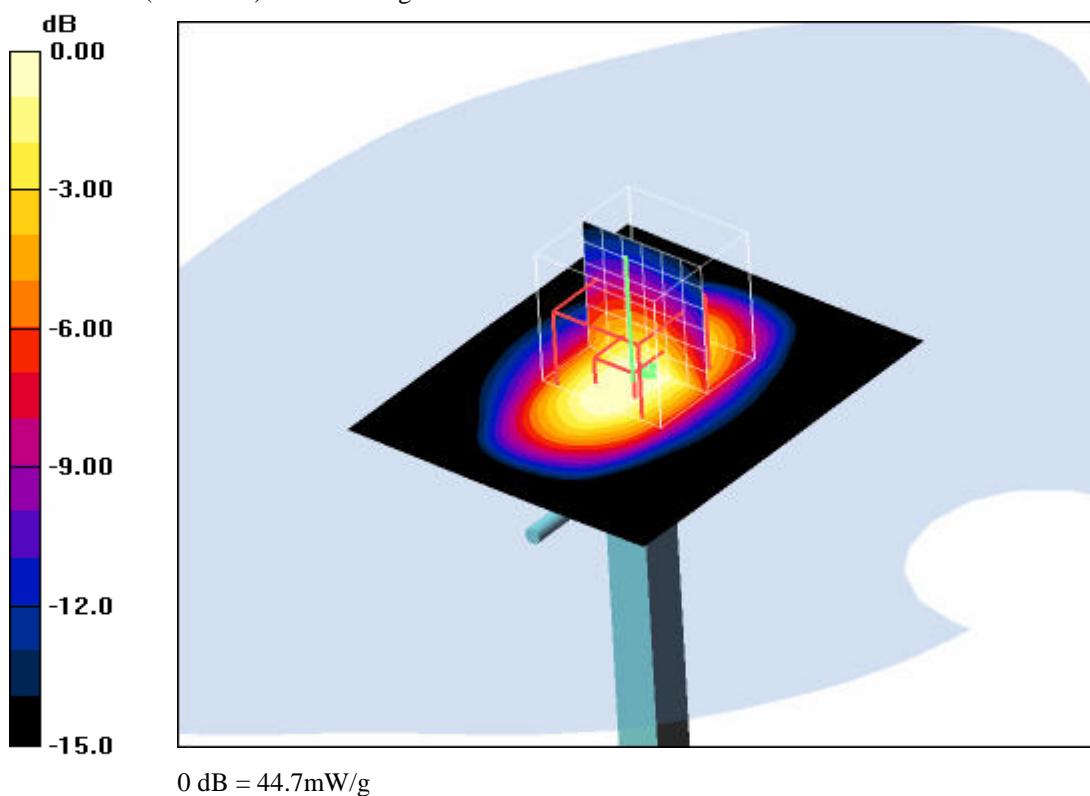
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**d=10mm, Pin=1000mW/Area Scan (51x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 52.3 mW/g

**d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 178.9 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 68.3 W/kg

**SAR(1 g) = 39.6 mW/g; SAR(10 g) = 21 mW/g**

Maximum value of SAR (measured) = 44.7 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 21.5°C; liquid temperature: 21.3°C

Date/Time: 2007-11-06 09:20:29 Date/Time: 2007-11-06 09:24:42

**SystemPerformanceCheck-D2450 head 2007-11-06****DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450 Medium parameters used:  $f = 2450$  MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

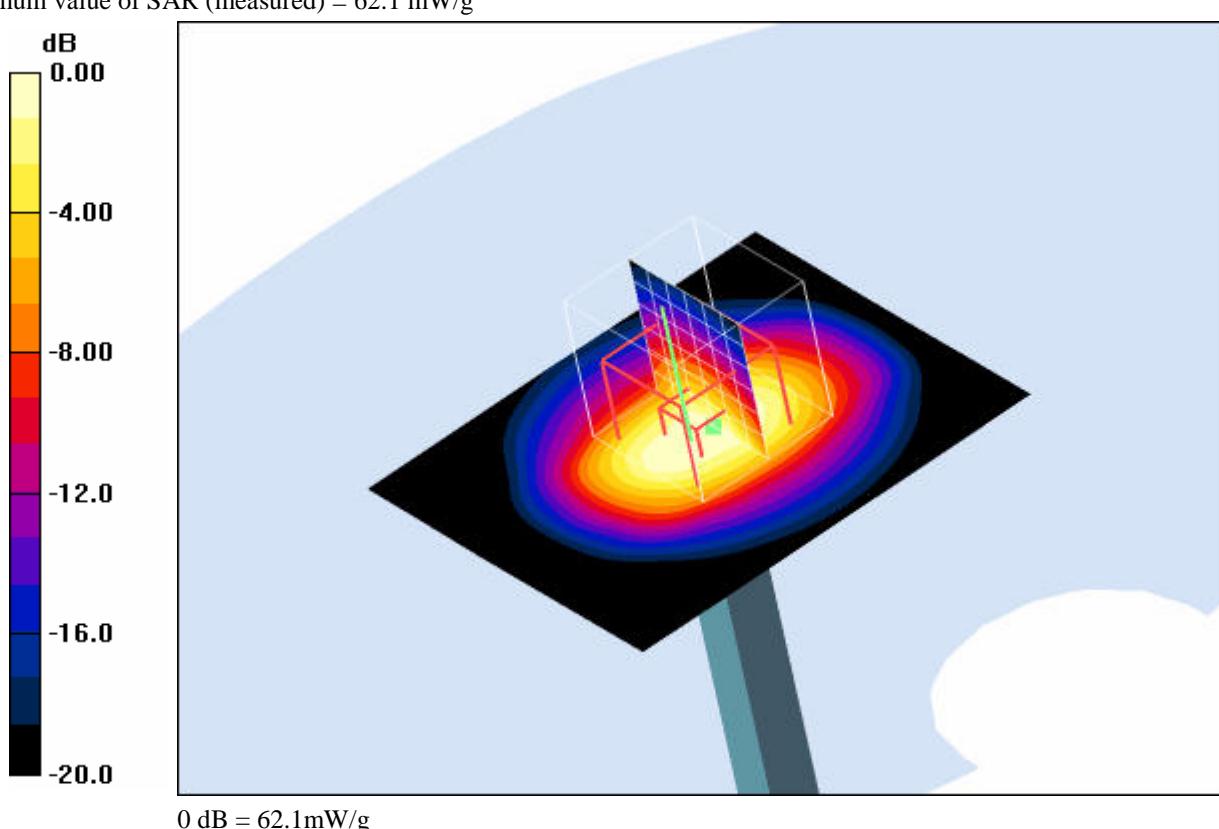
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.47, 4.47, 4.47); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**d=10mm, Pin=1000mW/Area Scan (51x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 75.1 mW/g


**d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 186.4 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 122.5 W/kg

**SAR(1 g) = 55.7 mW/g; SAR(10 g) = 25.9 mW/g**

Maximum value of SAR (measured) = 62.1 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 21.7°C

Date/Time: 2007-11-06 14:18:07 Date/Time: 2007-11-06 14:22:19

**SystemPerformanceCheck-D2450 body 2007-11-06****DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 Medium parameters used:  $f = 2450$  MHz;  $\sigma = 2.04$  mho/m;  $\epsilon_r = 51.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

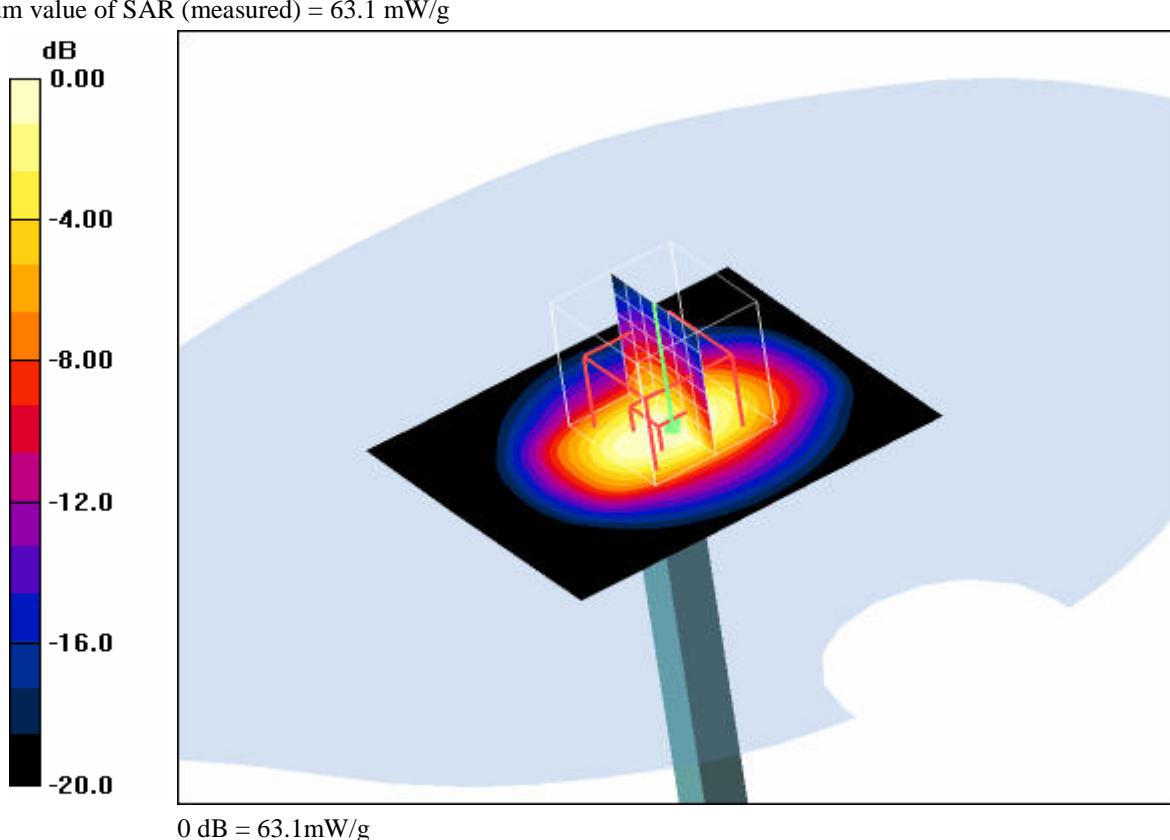
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.92, 3.92, 3.92); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**d=10mm, Pin=1000mW/Area Scan (51x61x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 76.9 mW/g


**d=10mm, Pin=1000mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 182.7 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 116.5 W/kg

**SAR(1 g) = 56.3 mW/g; SAR(10 g) = 25.8 mW/g**

Maximum value of SAR (measured) = 63.1 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.4°C; liquid temperature: 21.7°C

**Annex 2 Measurement results (printout from DASY TM)****Remark: results of conducted power measurements: see chapter 2.5/2.6 (if applicable)****Annex 2.1 GSM 1900 MHz head**

Date/Time: 2007-10-29 15:10:48 Date/Time: 2007-10-29 15:20:52

**P1528\_OET65-LeftHandSide-GSM1900****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

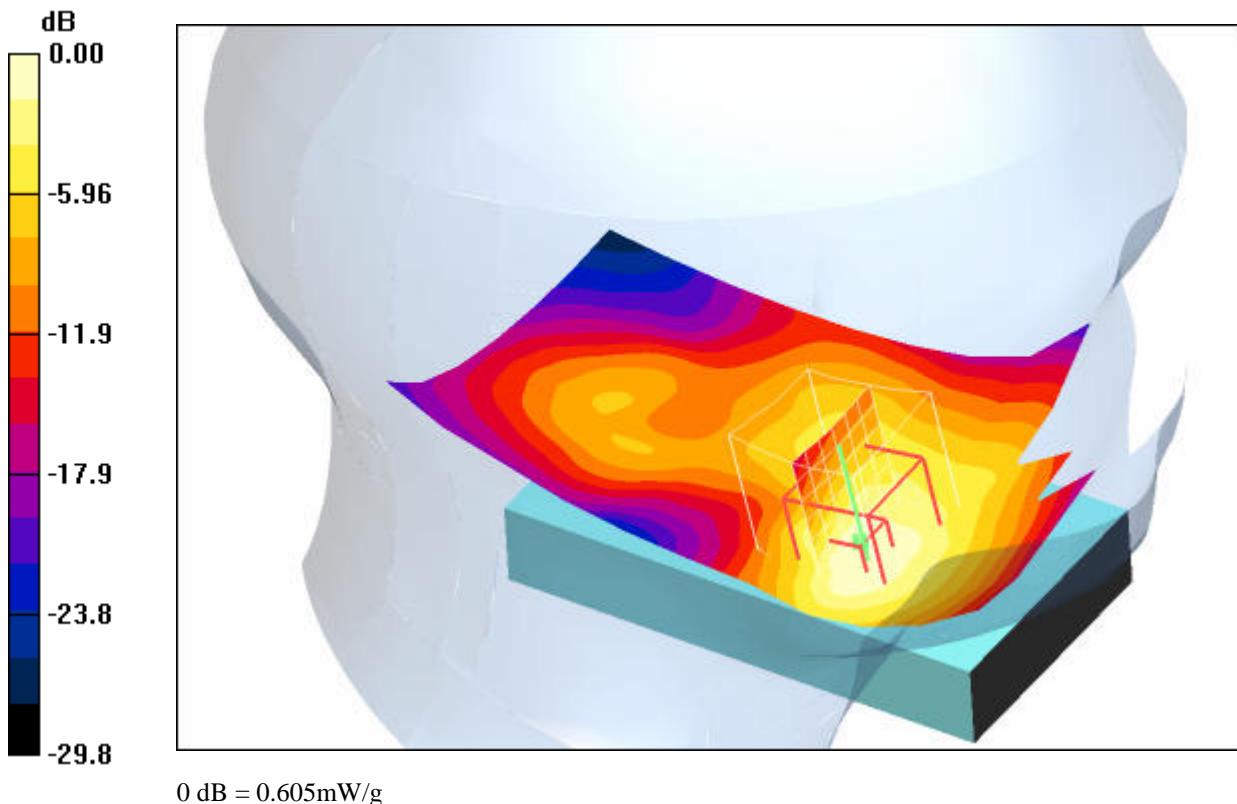
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Touch position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.617 mW/g


**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.8 V/m; Power Drift = -0.158 dB

Peak SAR (extrapolated) = 0.811 W/kg

**SAR(1 g) = 0.546 mW/g; SAR(10 g) = 0.313 mW/g**

Maximum value of SAR (measured) = 0.605 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.9°C; liquid temperature: 20.9°C

Date/Time: 2007-10-29 15:36:04 Date/Time: 2007-10-29 16:02:47 Date/Time: 2007-10-29 16:14:34 Date/Time: 2007-10-29 16:27:15 Date/Time: 2007-10-29 16:39:10 Date/Time: 2007-10-29 16:51:08

**P1528\_OET65-LeftHandSide-GSM1900**

**DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Tilt position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.092 mW/g

**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.150 W/kg

**SAR(1 g) = 0.088 mW/g; SAR(10 g) = 0.048 mW/g**

Maximum value of SAR (measured) = 0.098 mW/g

**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.091 W/kg

**SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.045 mW/g**

Maximum value of SAR (measured) = 0.072 mW/g

**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 2:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.091 W/kg

**SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.047 mW/g**

Maximum value of SAR (measured) = 0.074 mW/g

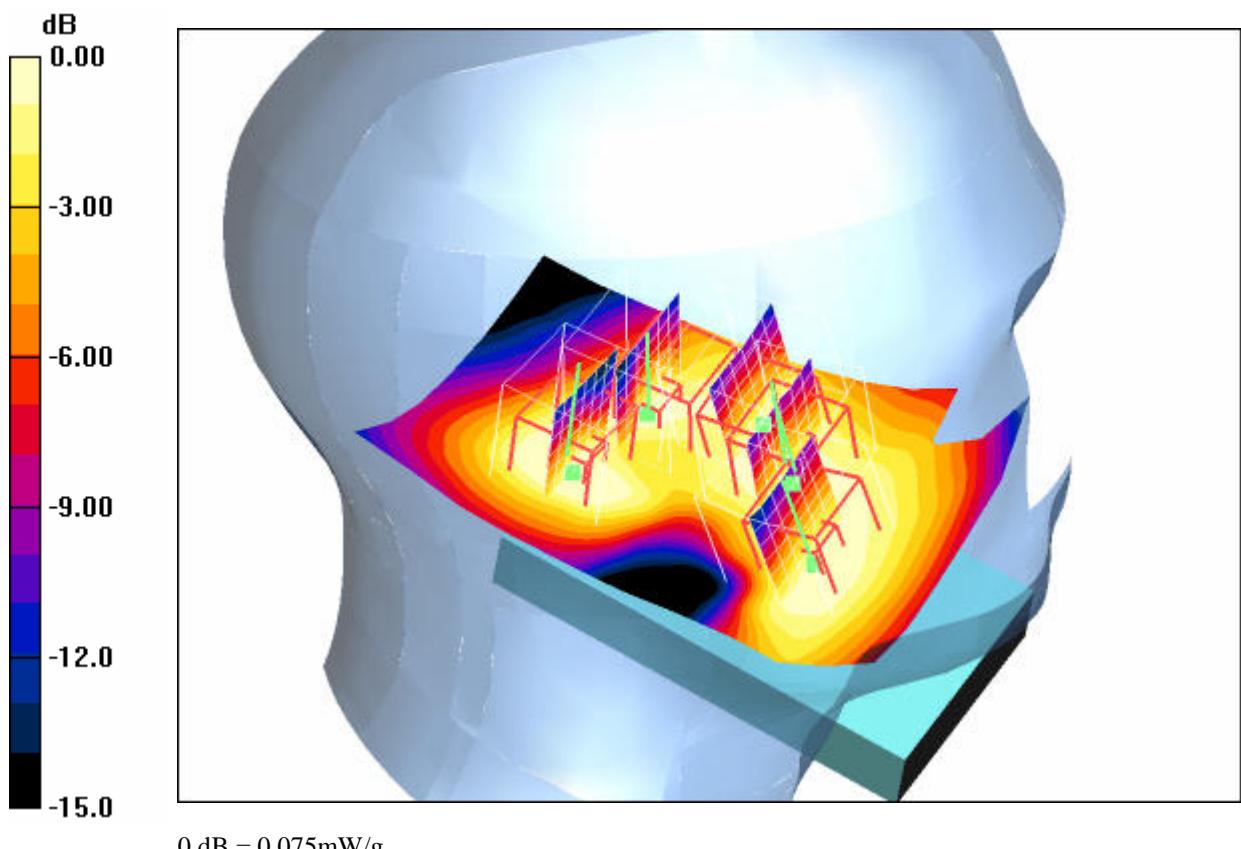
**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 3:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.108 W/kg

**SAR(1 g) = 0.066 mW/g; SAR(10 g) = 0.039 mW/g**

Maximum value of SAR (measured) = 0.077 mW/g


**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 4:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.44 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 0.092 W/kg

**SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.044 mW/g**

Maximum value of SAR (measured) = 0.075 mW/g



**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :  
ambient temperature: 23.0°C; liquid temperature: 21.0°C

Date/Time: 2007-10-29 18:13:38 Date/Time: 2007-10-29 18:22:15

**P1528\_OET65-LeftHandSide-GSM1900****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section

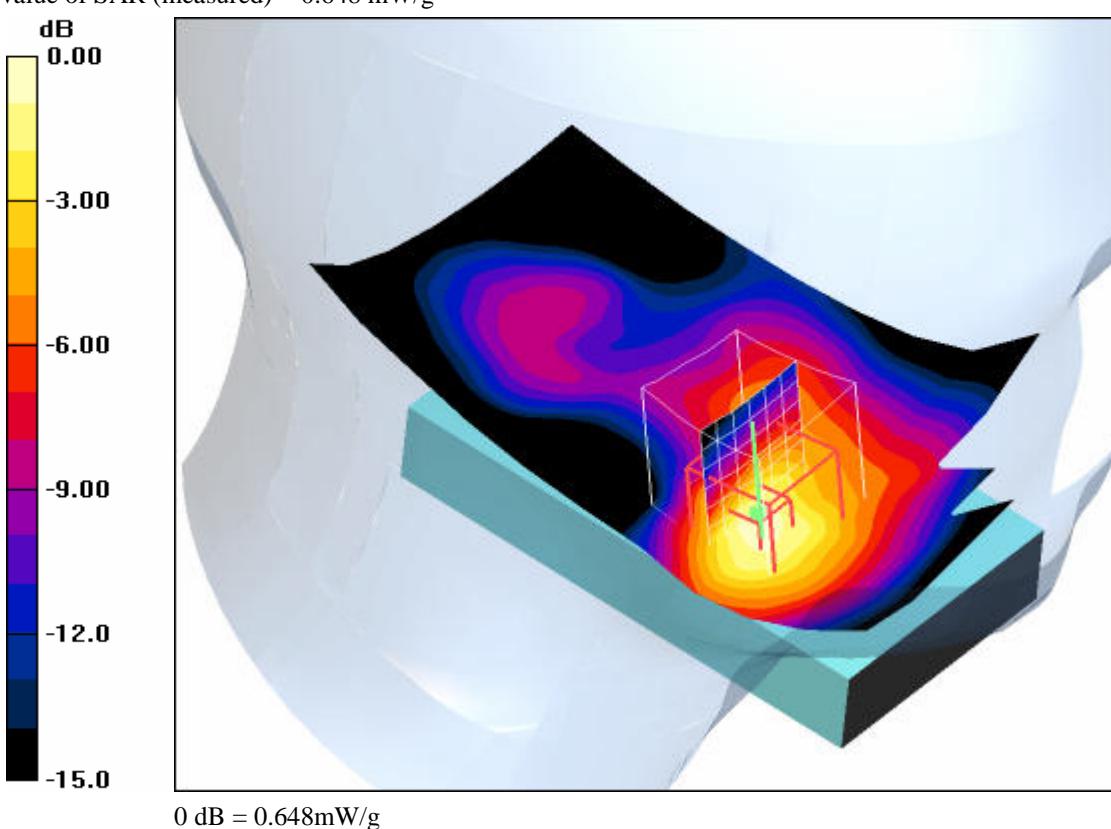
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Touch position - Middle + BT/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.594 mW/g

**Touch position - Middle + BT/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = 0.196 dB

Peak SAR (extrapolated) = 0.844 W/kg

**SAR(1 g) = 0.575 mW/g; SAR(10 g) = 0.322 mW/g**

Maximum value of SAR (measured) = 0.648 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 21.2°C

Date/Time: 2007-10-29 17:03:36 Date/Time: 2007-10-29 17:11:43 Date/Time: 2007-10-29 17:24:05

**P1528\_OET65-RightHandSide-GSM1900****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Touch position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.369 mW/g

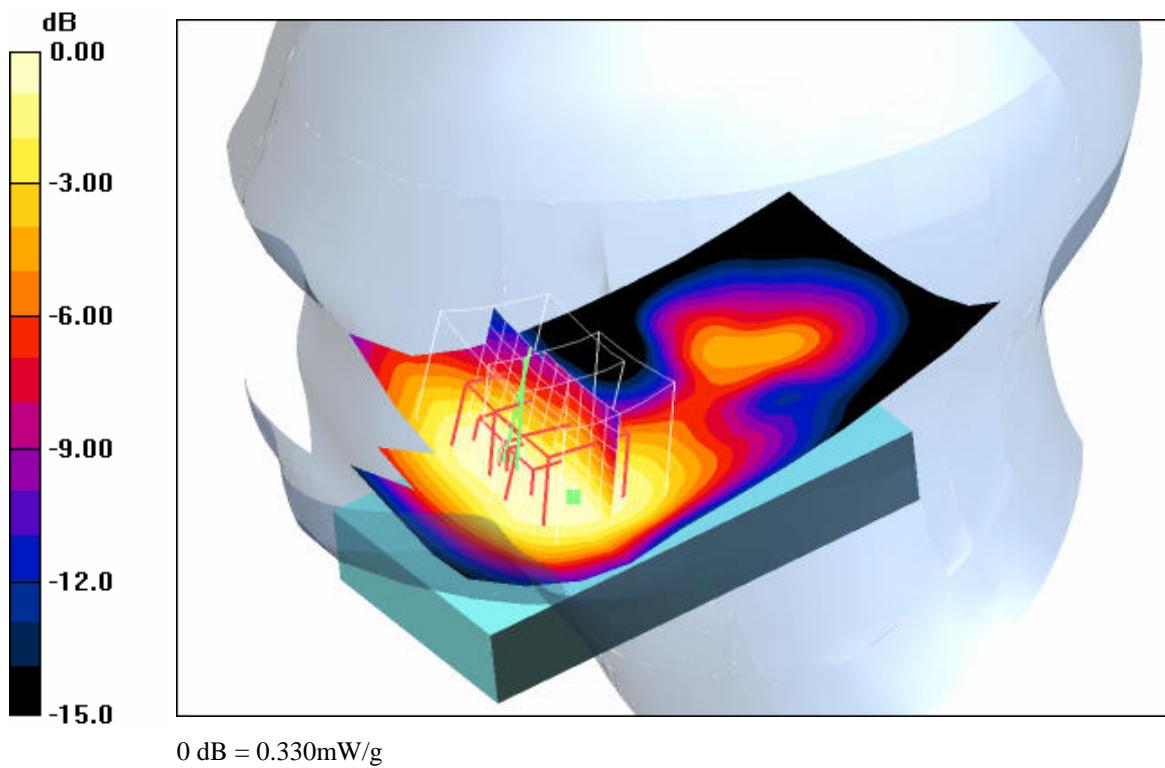
**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.7 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.470 W/kg

**SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.217 mW/g**

Maximum value of SAR (measured) = 0.357 mW/g


**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.7 V/m; Power Drift = -0.066 dB

Peak SAR (extrapolated) = 0.381 W/kg

**SAR(1 g) = 0.304 mW/g; SAR(10 g) = 0.215 mW/g**

Maximum value of SAR (measured) = 0.330 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.9°C; liquid temperature: 21.1°C

Date/Time: 2007-10-29 17:40:33 Date/Time: 2007-10-29 17:48:32 Date/Time: 2007-10-29 18:00:06

**P1528\_OET65-RightHandSide-GSM1900****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8

Medium: HSL1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.41$  mho/m;  $\epsilon_r = 39.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.9, 4.9, 4.9); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Tilt position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.090 mW/g

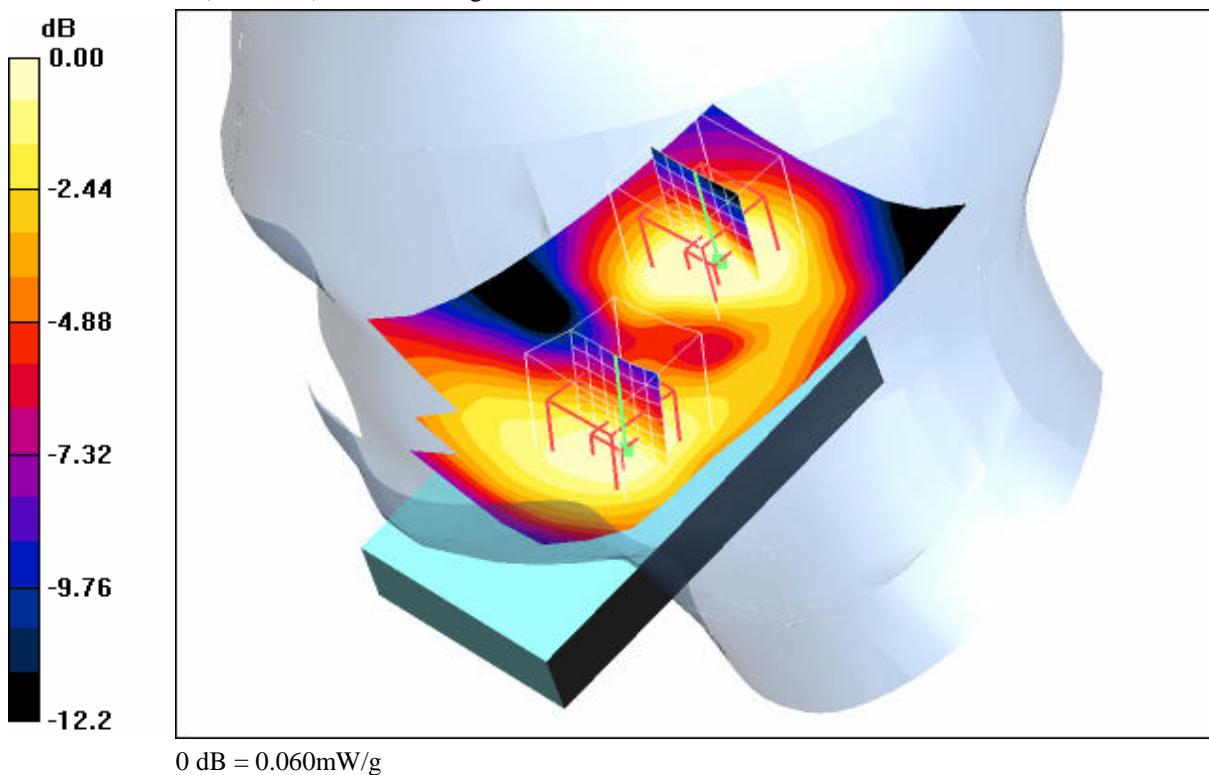
**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.86 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.138 W/kg

**SAR(1 g) = 0.087 mW/g; SAR(10 g) = 0.047 mW/g**

Maximum value of SAR (measured) = 0.097 mW/g


**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.86 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.073 W/kg

**SAR(1 g) = 0.056 mW/g; SAR(10 g) = 0.038 mW/g**

Maximum value of SAR (measured) = 0.060 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 21.2°C

**Annex 2.2 GSM 1900 MHz body**

Date/Time: 2007-10-25 15:07:30 Date/Time: 2007-10-25 15:15:29

**P1528\_OET65-Body-GSM1900 GPRS class 10****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

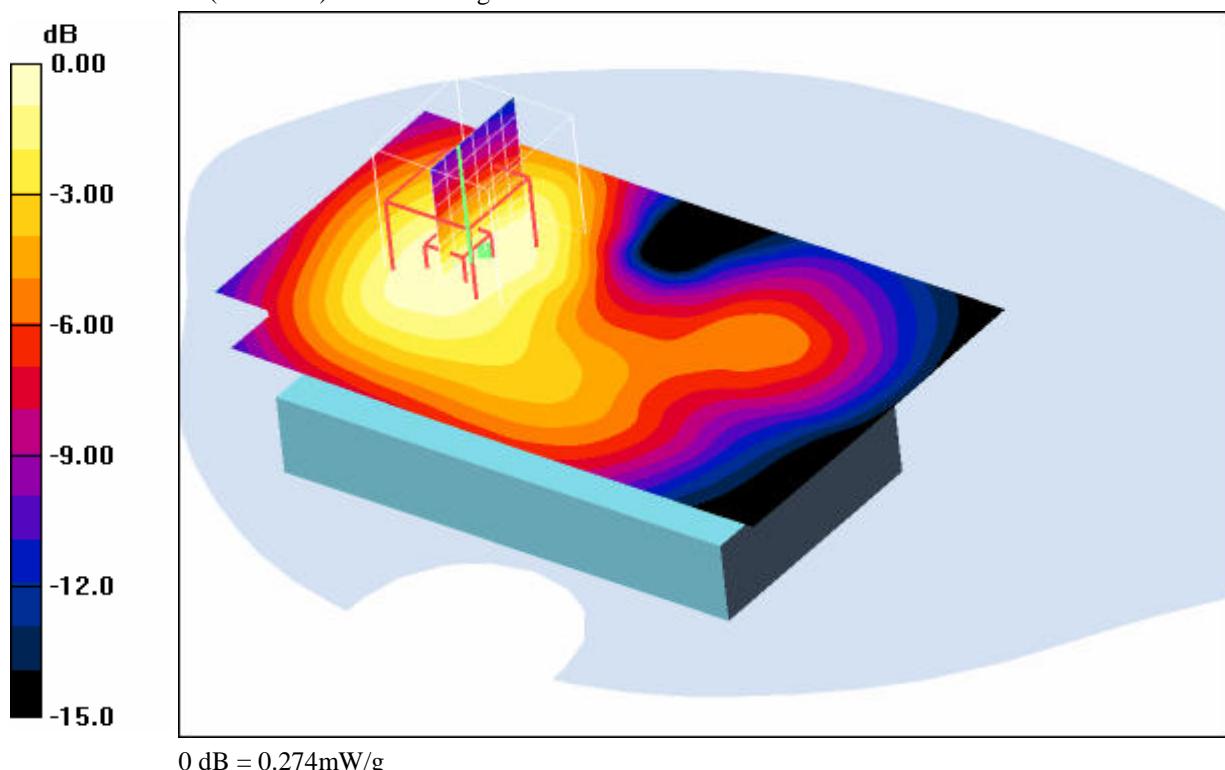
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Front position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.285 mW/g


**Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.7 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 0.382 W/kg

**SAR(1 g) = 0.257 mW/g; SAR(10 g) = 0.168 mW/g**

Maximum value of SAR (measured) = 0.274 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.4°C; liquid temperature: 21.4°C

Date/Time: 2007-10-25 15:32:56 Date/Time: 2007-10-25 15:41:10

**P1528\_OET65-Body-GSM1900 GPRS class 10****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

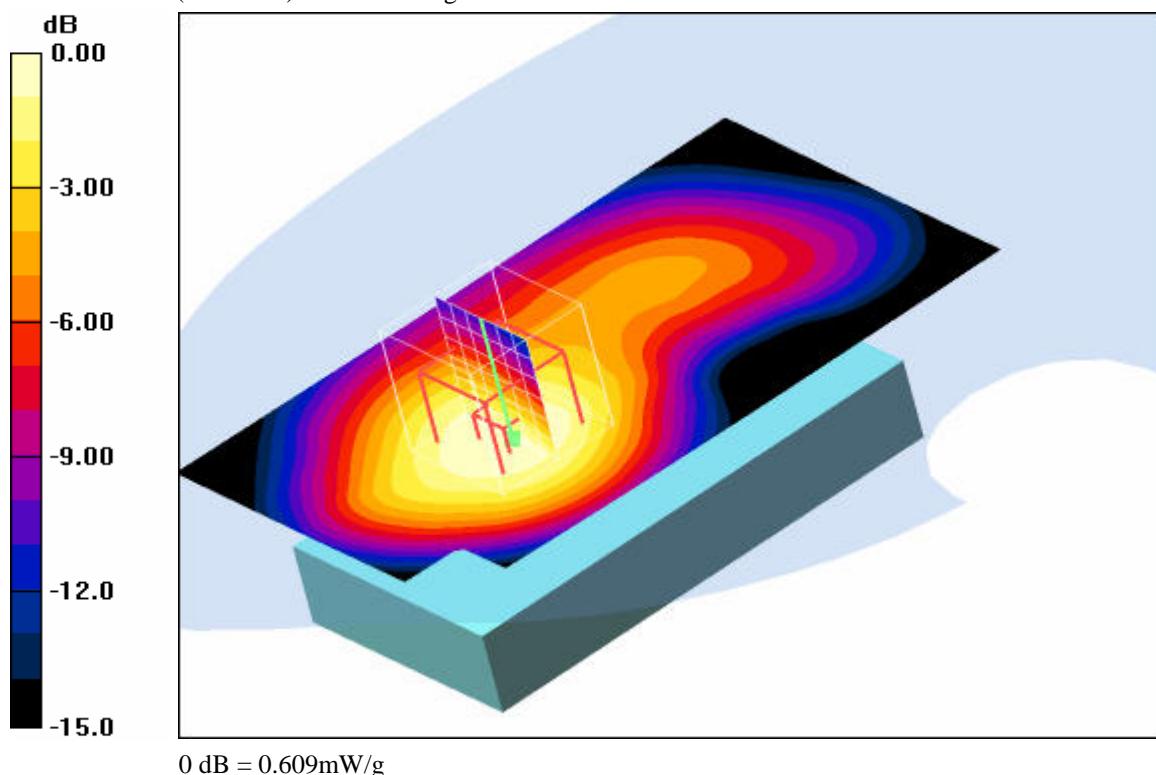
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Rear position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.608 mW/g

**Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 20.7 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.834 W/kg

**SAR(1 g) = 0.568 mW/g; SAR(10 g) = 0.367 mW/g**

Maximum value of SAR (measured) = 0.609 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.5°C; liquid temperature: 21.4°C

Date/Time: 2007-10-25 15:59:57 Date/Time: 2007-10-25 16:08:25

**P1528\_OET65-Body-GSM1900 GPRS class 10****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900 GPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

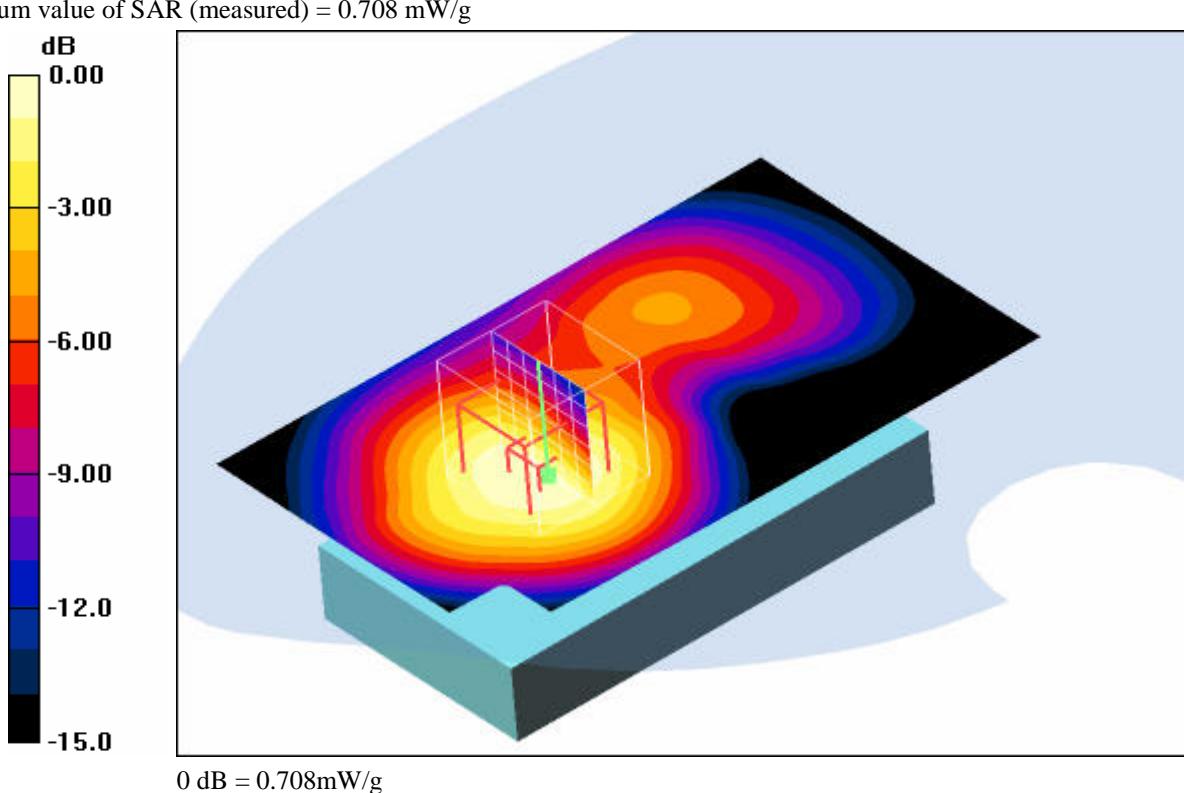
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Rear position - Middle + BT/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.710 mW/g


**Rear position - Middle + BT/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.4 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.977 W/kg

**SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.419 mW/g**

Maximum value of SAR (measured) = 0.708 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.5°C; liquid temperature: 21.4°C

Date/Time: 2007-10-25 17:23:59 Date/Time: 2007-10-25 17:31:55

**P1528\_OET65-Body-GSM1900 EGPRS class 10****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: PCS 1900 EGPRS class 10; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: M1900 Medium parameters used:  $f = 1880$  MHz;  $\sigma = 1.55$  mho/m;  $\epsilon_r = 52.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

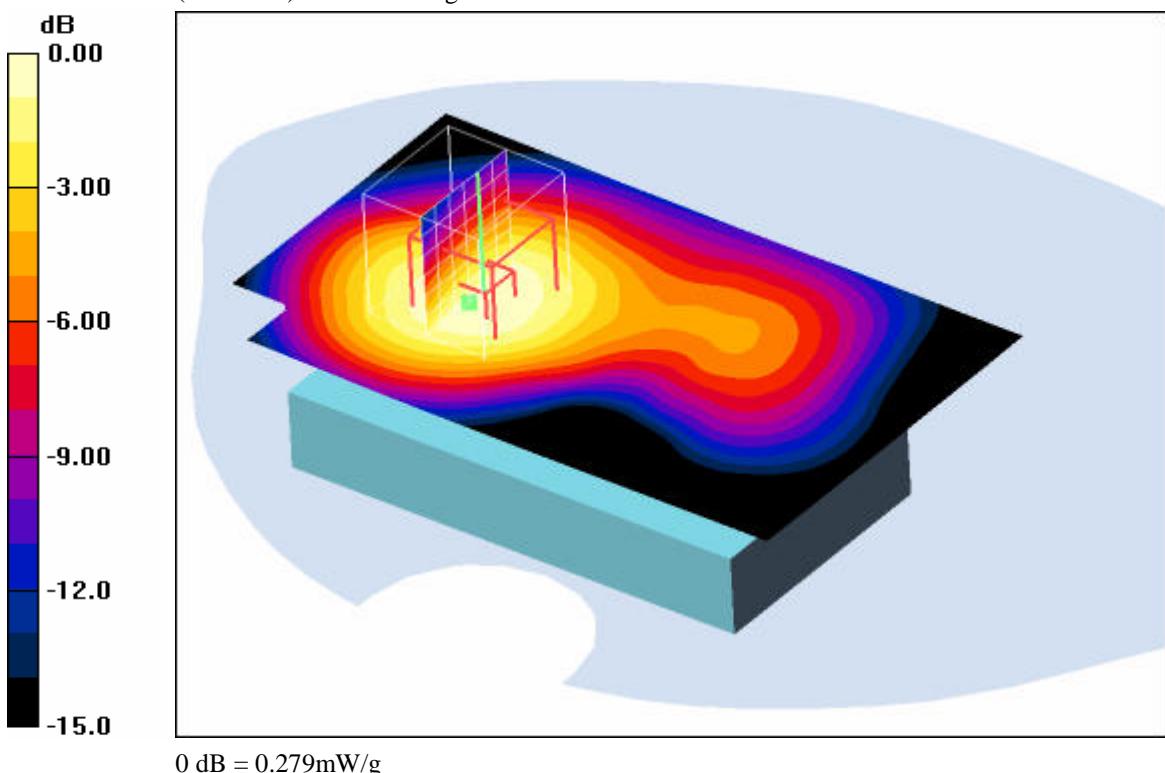
DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.46, 4.46, 4.46); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Rear position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.289 mW/g

**Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.063 dB

Peak SAR (extrapolated) = 0.377 W/kg

**SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.170 mW/g**

Maximum value of SAR (measured) = 0.279 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 22.6°C; liquid temperature: 21.4°C

## Annex 2.3 WLAN 2450 MHz head

Date/Time: 2007-11-06 09:48:07 Date/Time: 2007-11-06 09:56:38

**P1528\_OET65\_EN50361-LeftHandSide-WLAN IEEE 802.11b****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: DSSS; Speed: 1 Mbit/s

Medium: HSL2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

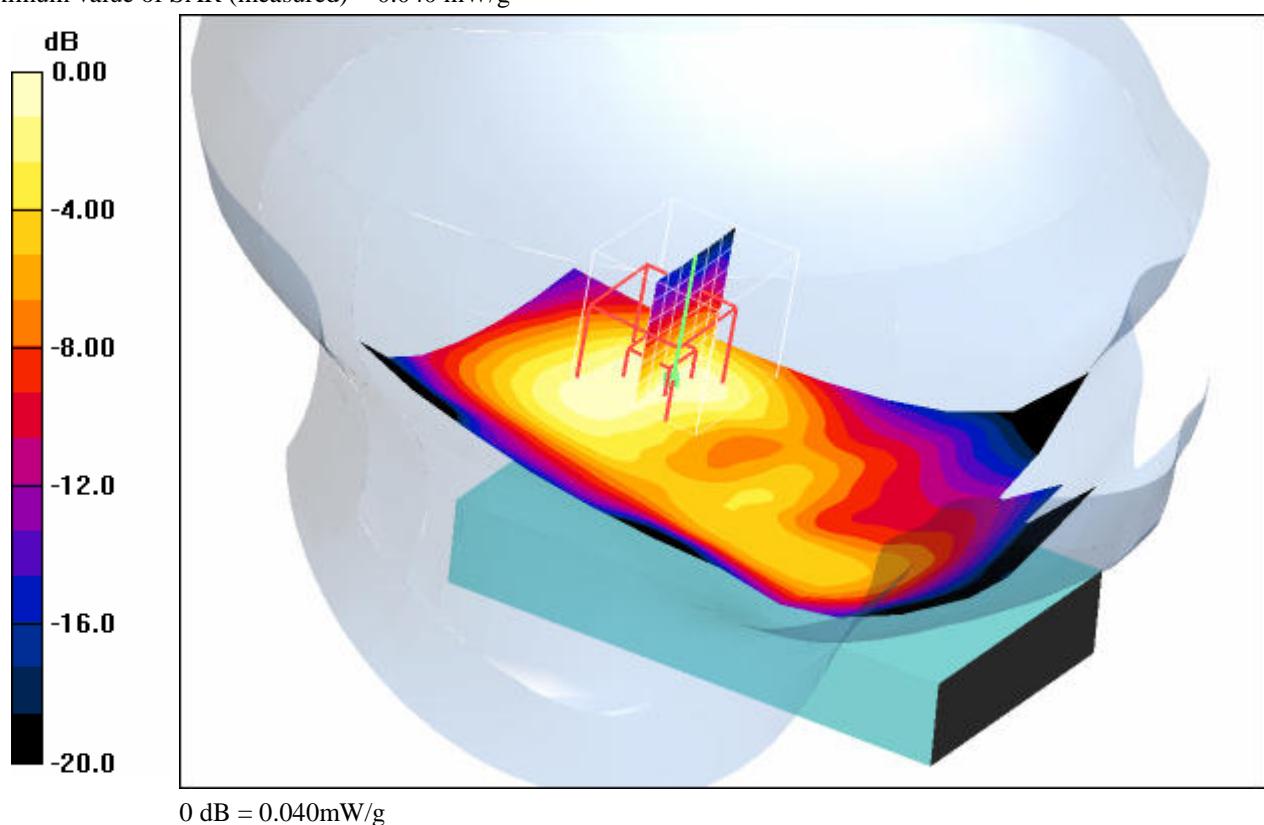
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.47, 4.47, 4.47); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Touch position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.042 mW/g


**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.40 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.087 W/kg

**SAR(1 g) = 0.038 mW/g; SAR(10 g) = 0.020 mW/g**

Maximum value of SAR (measured) = 0.040 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 21.7°C

Date/Time: 2007-11-06 10:13:35 Date/Time: 2007-11-06 10:21:50

**P1528\_OET65\_EN50361-LeftHandSide-WLAN IEEE 802.11b****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: DSSS; Speed: 1 Mbit/s.

Medium: HSL2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

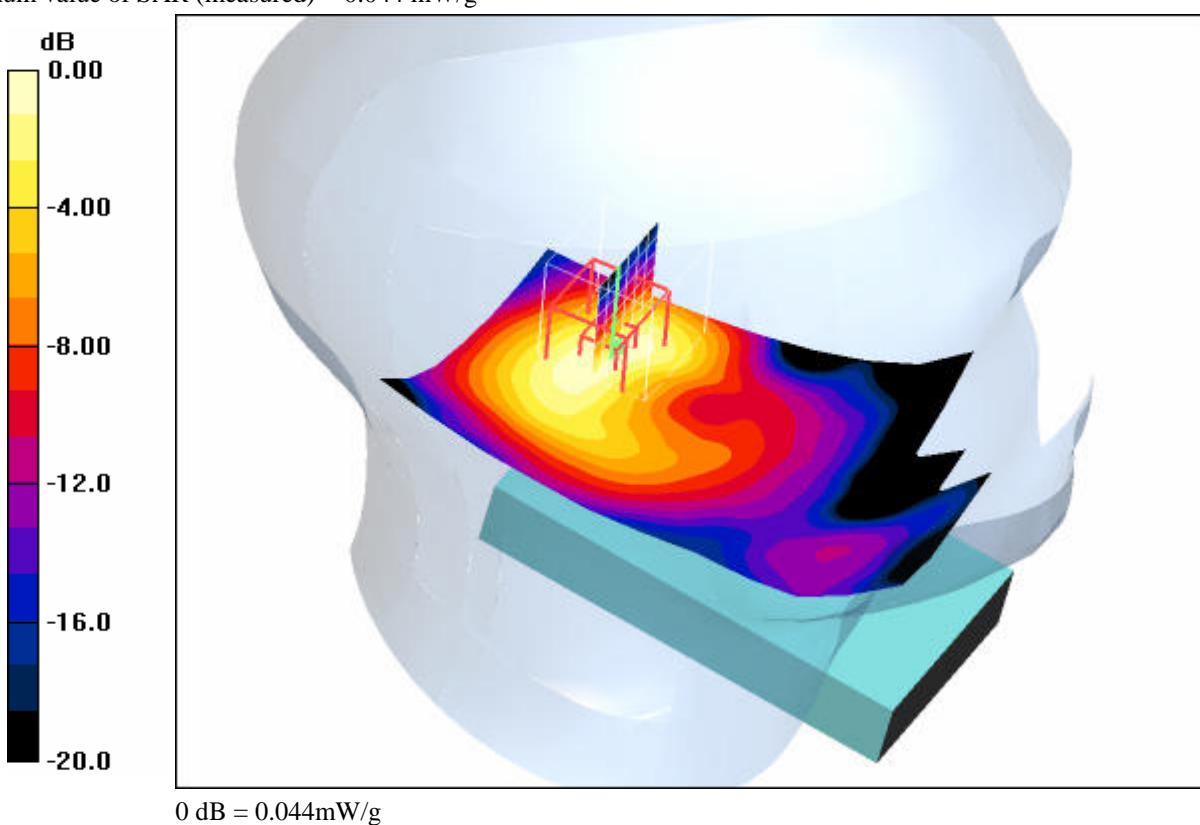
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.47, 4.47, 4.47); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Tilt position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.042 mW/g


**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.82 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.099 W/kg

**SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.020 mW/g**

Maximum value of SAR (measured) = 0.044 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.9°C; liquid temperature: 21.8°C

Date/Time: 2007-11-06 11:00:29 Date/Time: 2007-11-06 11:08:43

**P1528\_OET65\_EN50361-RightHandSide-WLAN IEEE 802.11b****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: DSSS; Speed: 1 Mbit/s.

Medium: HSL2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

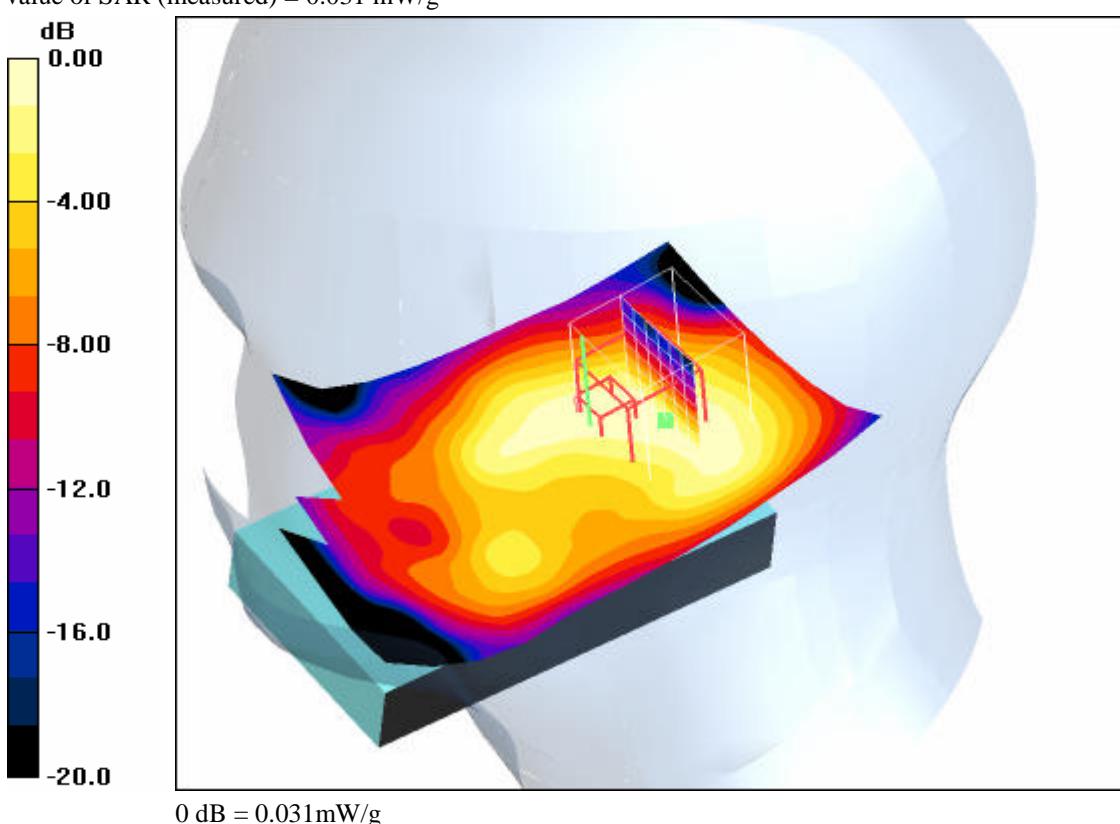
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.47, 4.47, 4.47); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Touch position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.031 mW/g


**Touch position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.14 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.057 W/kg

**SAR(1 g) = 0.028 mW/g; SAR(10 g) = 0.016 mW/g**

Maximum value of SAR (measured) = 0.031 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.1°C; liquid temperature: 22.0°C

Date/Time: 2007-11-06 10:37:52 Date/Time: 2007-11-06 10:46:02

**P1528\_OET65\_EN50361-RightHandSide-WLAN IEEE 802.11b****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: DSSS; Speed: 1 Mbit/s.

Medium: HSL2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

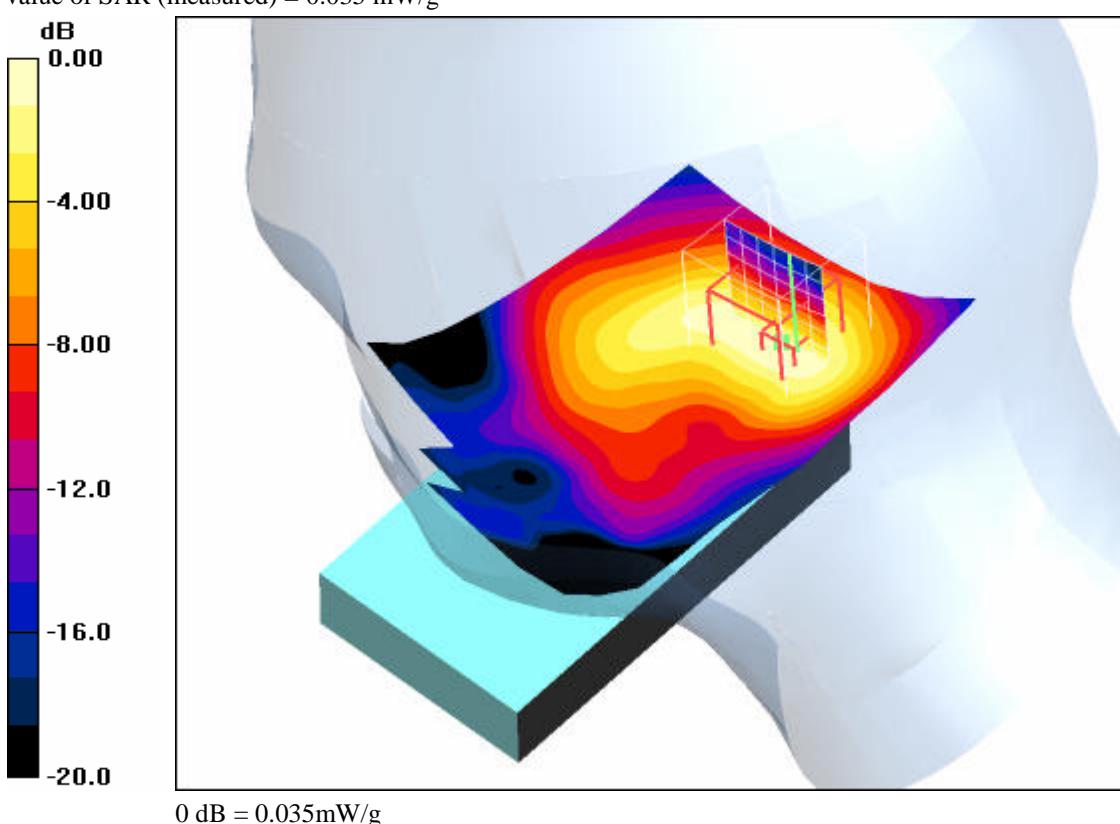
Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.47, 4.47, 4.47); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Tilt position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.038 mW/g


**Tilt position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.48 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.074 W/kg

**SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.017 mW/g**

Maximum value of SAR (measured) = 0.035 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 23.0°C; liquid temperature: 21.9°C

Date/Time: 2007-11-06 13:45:53 Date/Time: 2007-11-06 13:54:16

**P1528\_OET65\_EN50361-LeftHandSide-WLAN IEEE 802.11g****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: OFDM; Speed: 6 Mbit/s

Medium: HSL2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 1.89$  mho/m;  $\epsilon_r = 38.4$ ;  $\rho = 1000$  kg/m<sup>3</sup>

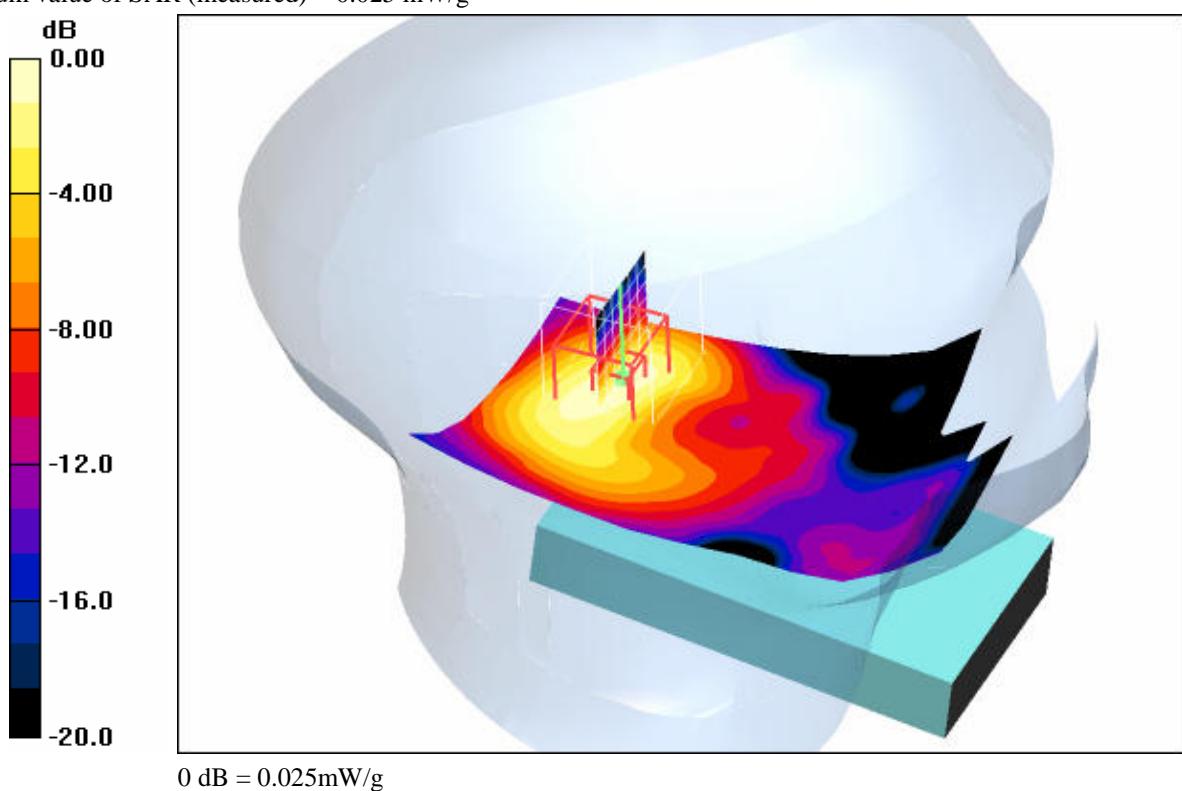
Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(4.47, 4.47, 4.47); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Tilt position - Middle OFDM/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.023 mW/g


**Tilt position - Middle OFDM/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.44 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.054 W/kg

**SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.011 mW/g**

Maximum value of SAR (measured) = 0.025 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) :

ambient temperature: 22.8°C; liquid temperature: 22.0°C

**Annex 2.4 WLAN 2450 MHz body**

Date/Time: 2007-11-06 14:46:16 Date/Time: 2007-11-06 14:54:21  
Date/Time: 2007-11-06 15:06:40 Date/Time: 2007-11-06 15:18:23

**P1528\_OET65\_EN50385-Body-WLAN2450 IEEE 802.11b**

**DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: DSSS; Speed: 1 Mbit/s.

Medium: M2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 2.04$  mho/m;  $\epsilon_r = 51.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.92, 3.92, 3.92); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Front position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.010 mW/g

**Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.26 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 0.016 W/kg

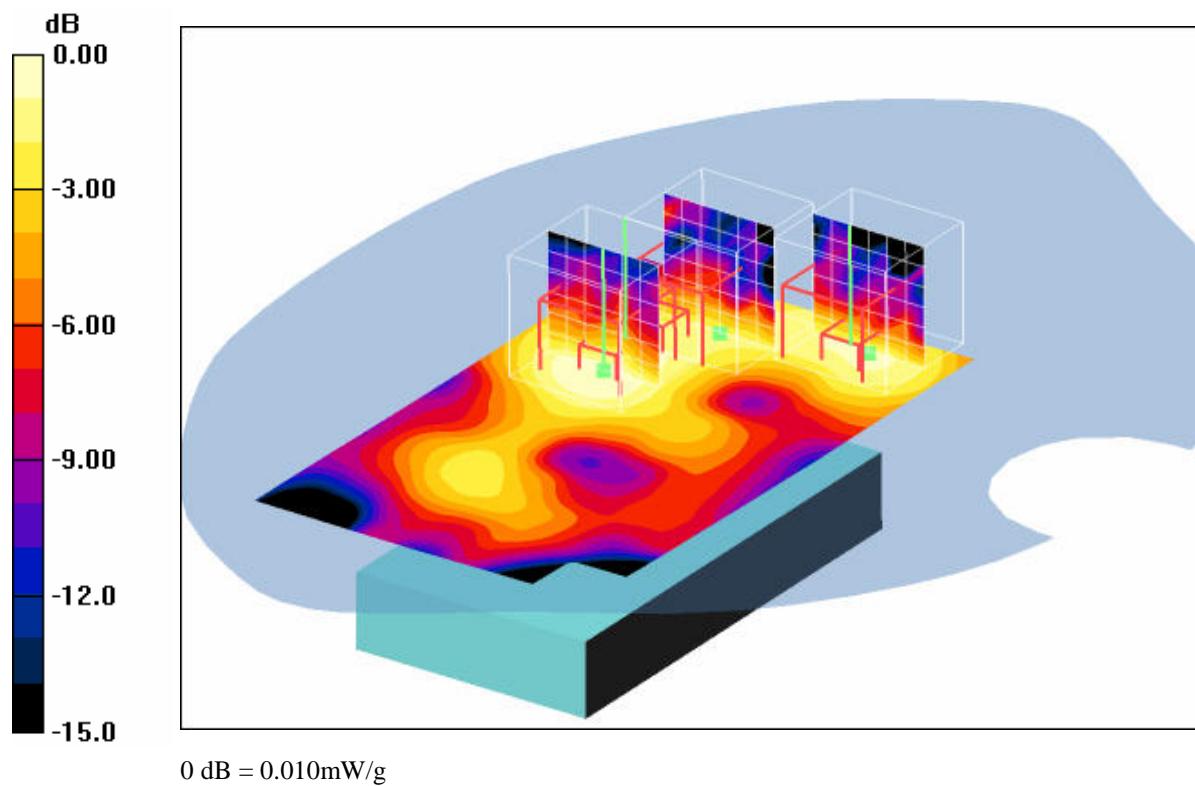
**SAR(1 g) = 0.00913 mW/g; SAR(10 g) = 0.00528 mW/g**

Maximum value of SAR (measured) = 0.01 mW/g

**Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.26 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 0.015 W/kg


**SAR(1 g) = 0.00733 mW/g; SAR(10 g) = 0.00383 mW/g**

**Front position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 2:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.26 V/m; Power Drift = -0.196 dB

Peak SAR (extrapolated) = 0.025 W/kg

**SAR(1 g) = 0.00699 mW/g; SAR(10 g) = 0.00343 mW/g**



**Additional information:**

position or distance of DUT to SAM (if not standard head positions) : 15 mm  
ambient temperature: 23.4°C; liquid temperature: 21.7°C

Date/Time: 2007-11-06 15:54:18 Date/Time: 2007-11-06 16:02:36 Date/Time: 2007-11-06 16:14:15

**P1528\_OET65\_EN50385-Body-WLAN2450 IEEE 802.11b****DUT: Toshiba; Type: CH5-E02; Serial: 004401120412511**

Communication System: WLAN 2450 US; Frequency: 2437 MHz; Duty Cycle: 1:1

Modulation: DSSS; Speed: 1 Mbit/s.

Medium: M2450 Medium parameters used (interpolated):  $f = 2437$  MHz;  $\sigma = 2.04$  mho/m;  $\epsilon_r = 51.7$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 - SN1558; ConvF(3.92, 3.92, 3.92); Calibrated: 2007-08-23
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn413; Calibrated: 2007-01-18
- Phantom: SAM 12; Type: SAM; Serial: 1043
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

**Rear position - Middle/Area Scan (61x101x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.027 mW/g

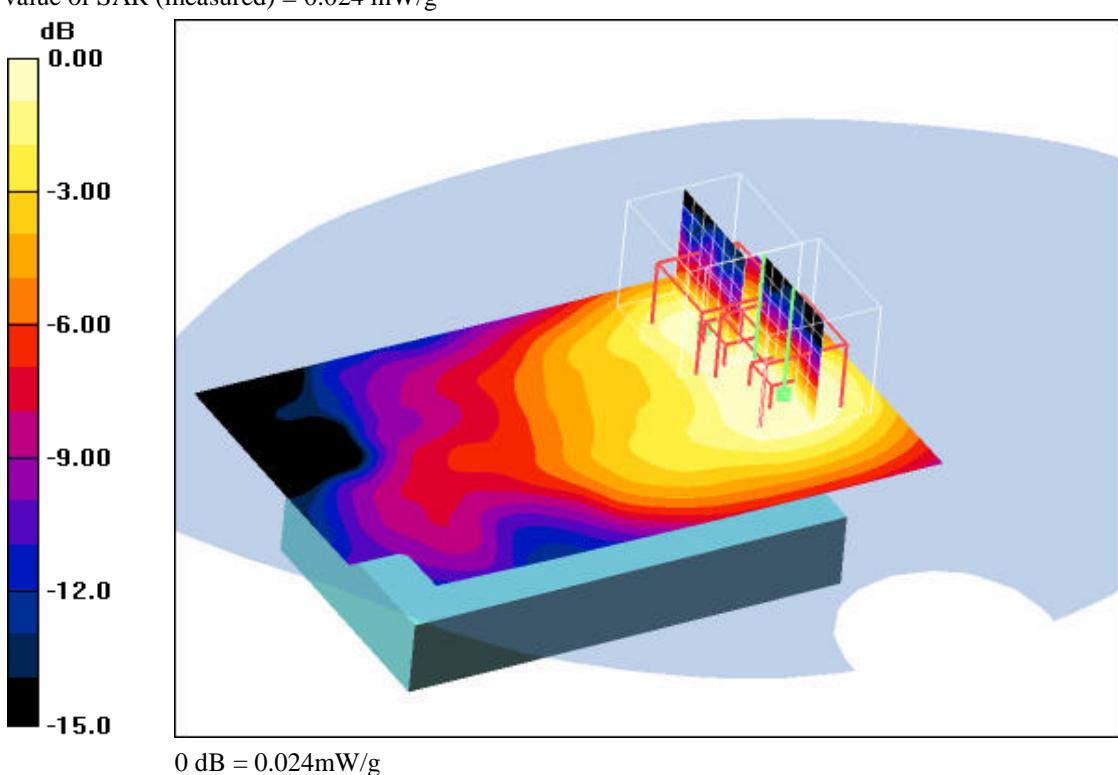
**Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.68 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 0.053 W/kg

**SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.015 mW/g**

Maximum value of SAR (measured) = 0.027 mW/g


**Rear position - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.68 V/m; Power Drift = -0.027 dB

Peak SAR (extrapolated) = 0.049 W/kg

**SAR(1 g) = 0.022 mW/g; SAR(10 g) = 0.012 mW/g**

Maximum value of SAR (measured) = 0.024 mW/g

**Additional information:**

position or distance of DUT to SAM (if not standard head positions) : 15 mm

ambient temperature: 23.5°C; liquid temperature: 21.8°C

### Annex 3 Photo documentation

Photo 1: Measurement System DASY 4



Photo 2: DUT - front view

Acoustic interface



Photo 3: DUT - front view opened



Photo 4: DUT - rear view




Photo 5: DUT - rear view opened



Photo 6: DUT - rear view (open)



Photo 7: DUT - rear view (open) without battery



Photo 8: The battery



Photo 9: Test position left hand touched

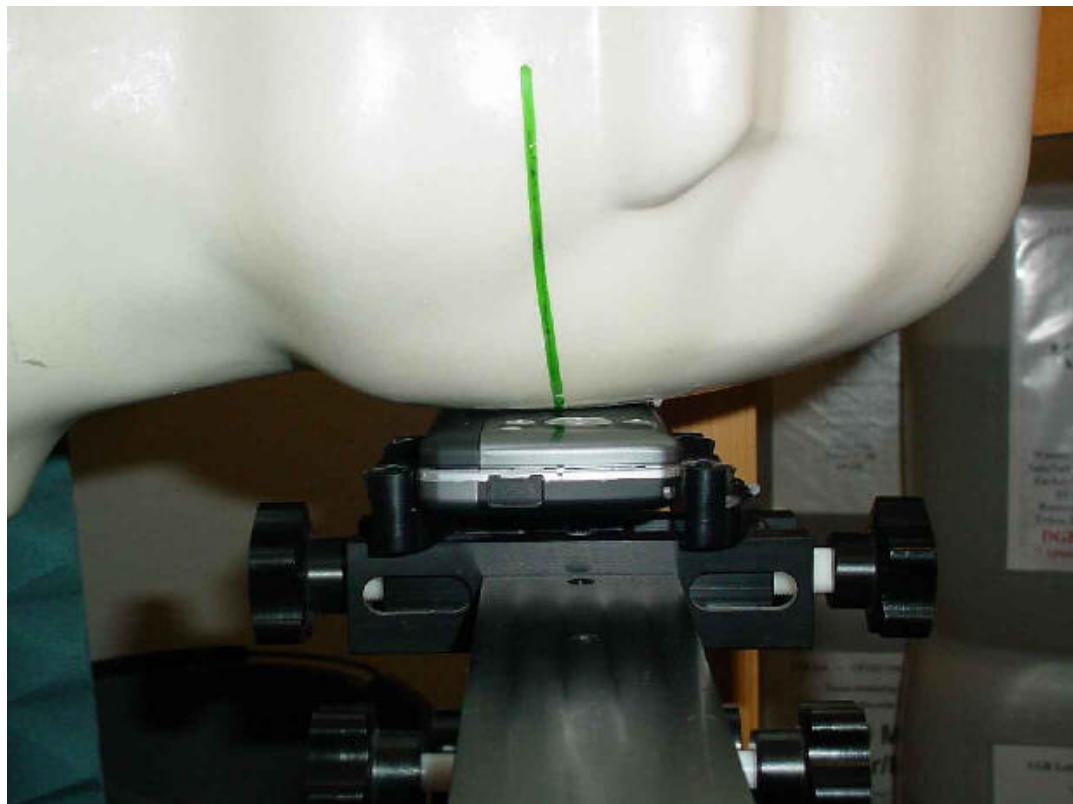



Photo 10: Test position left hand touched



Photo 11: Test position left hand touched



Photo 12: Test position left hand tilted 15°

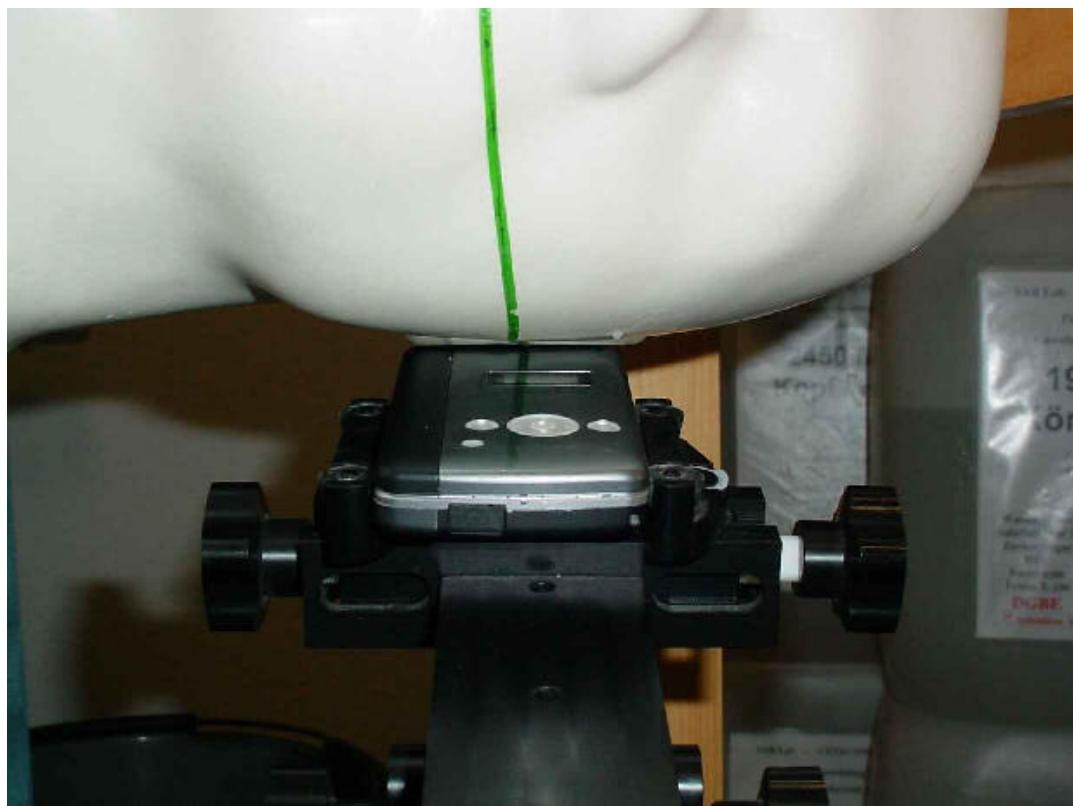



Photo 13: Test position left hand tilted 15°



Photo 14: Test position right hand touched

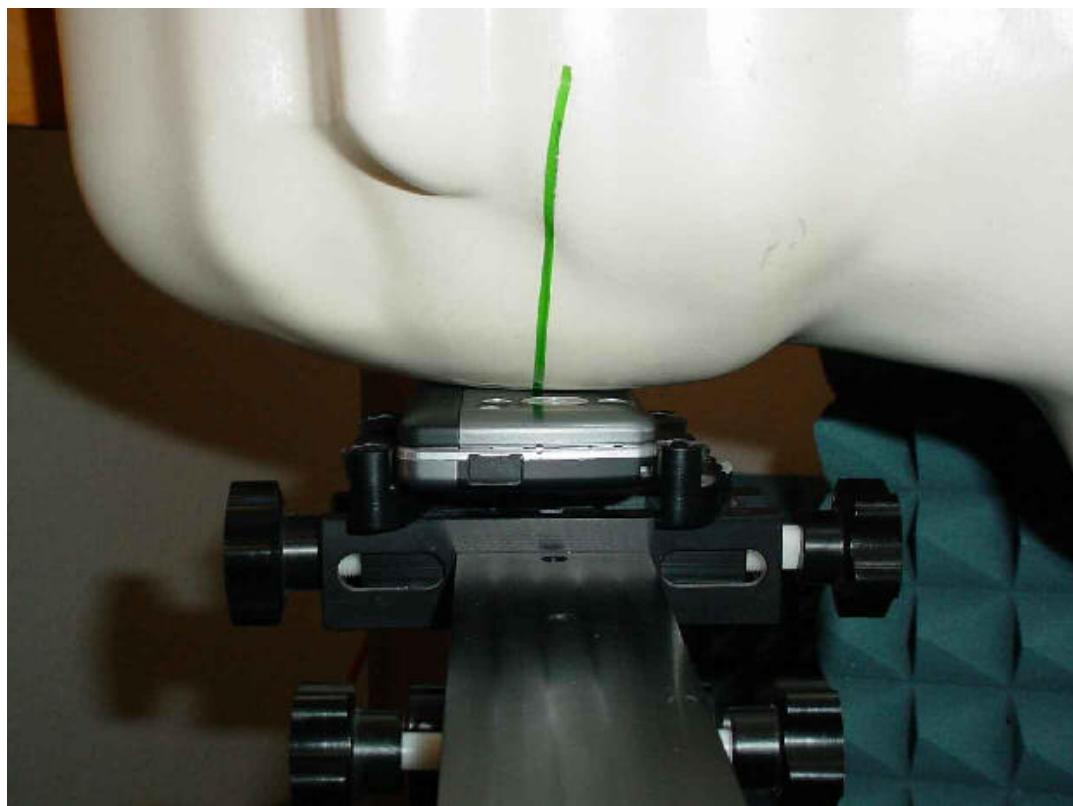



Photo 15: Test position right hand touched



Photo 16: Test position right hand touched



Photo 17: Test position right hand tilted 15°

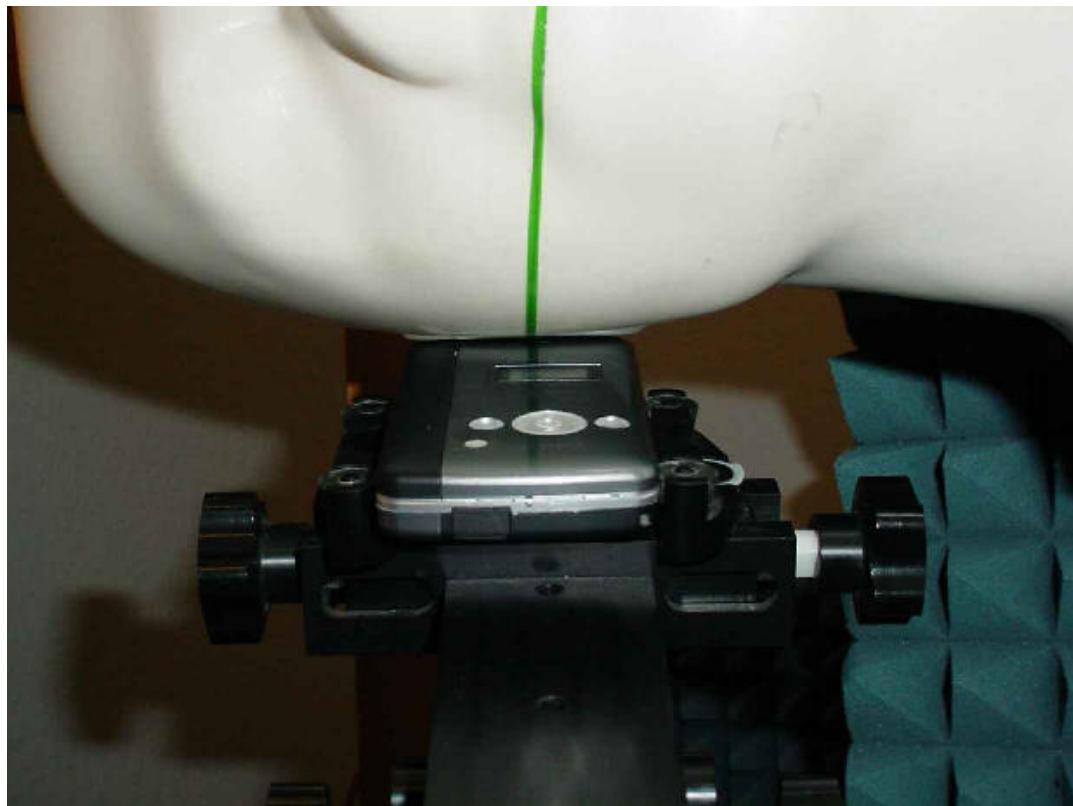



Photo 18: Test position right hand tilted 15°



Photo 19: Test position body worn front side (15 mm distance)

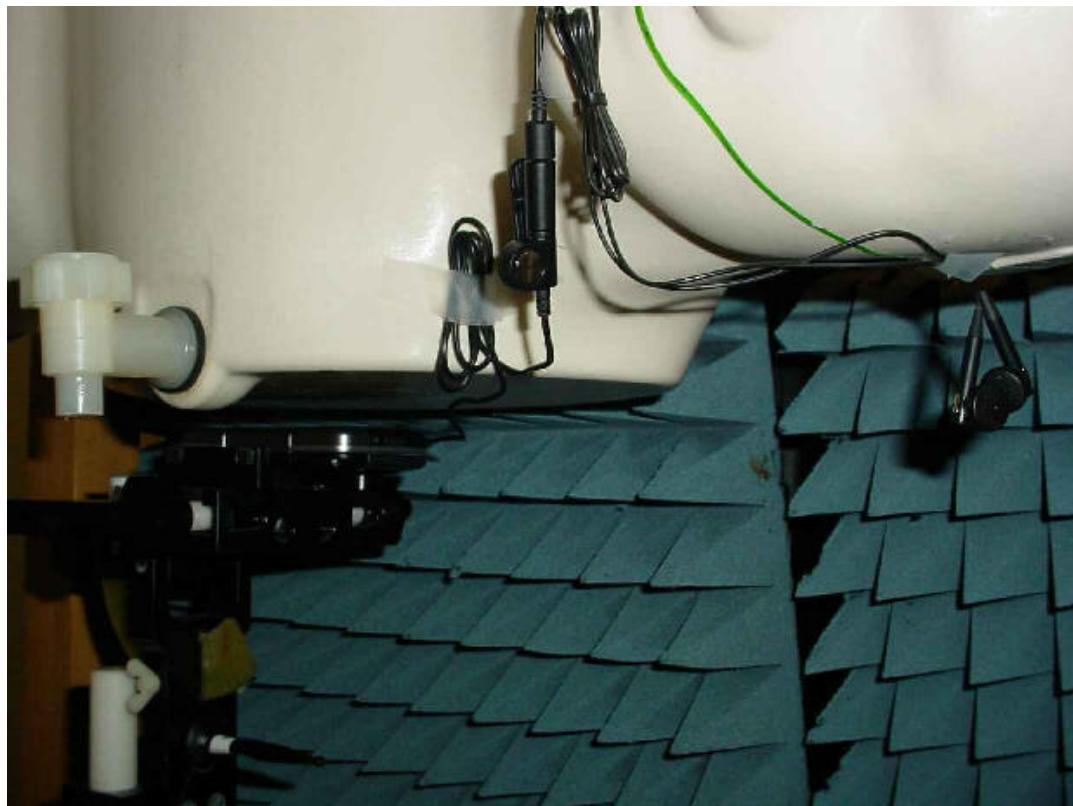



Photo 20: Test position body worn front side (15 mm distance)



Photo 21: Test position body worn rear side (15 mm distance)



Photo 22: Test position body worn rear side (15 mm distance)



### Annex 3.1    Liquid depth

Photo 23: Liquid depth 1900 MHz head simulating liquid



Photo 24: Liquid depth 1900 MHz body simulating liquid



Photo 25: Liquid depth 2450 MHz head simulating liquid

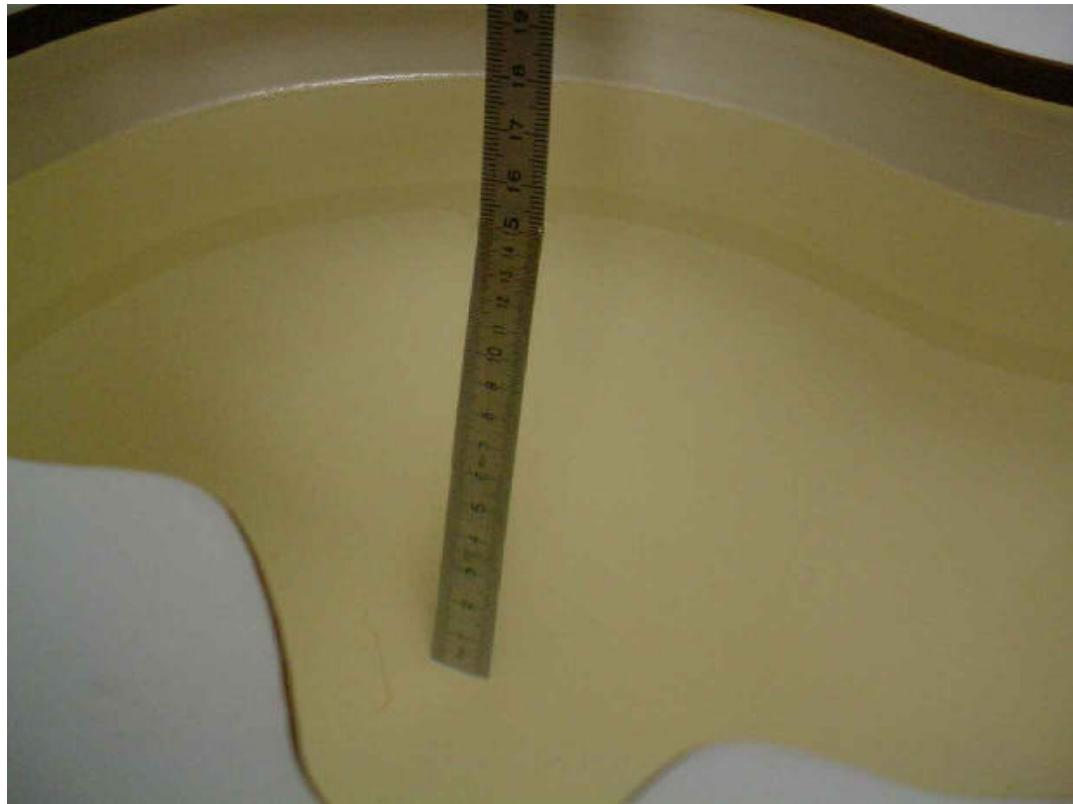
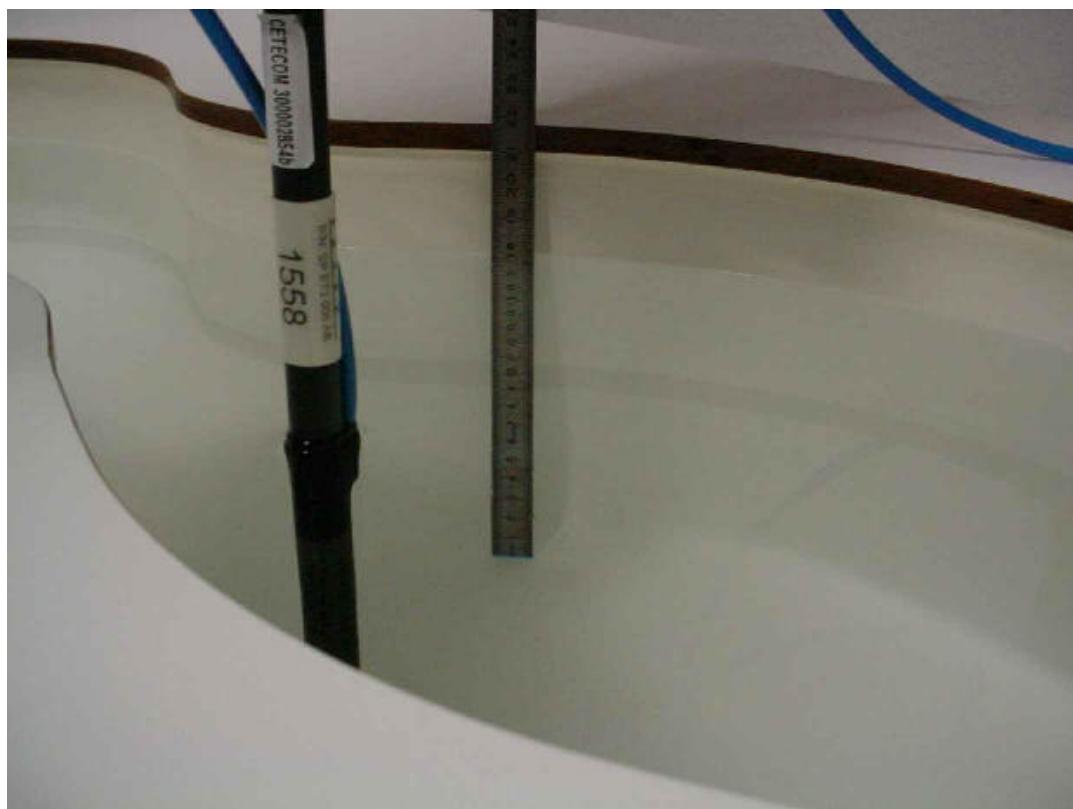




Photo 26: Liquid depth 2450 MHz body simulating liquid



**Annex 3.2 Z-axis scans**

Photo 27: Z-axis scans 1900 MHz head

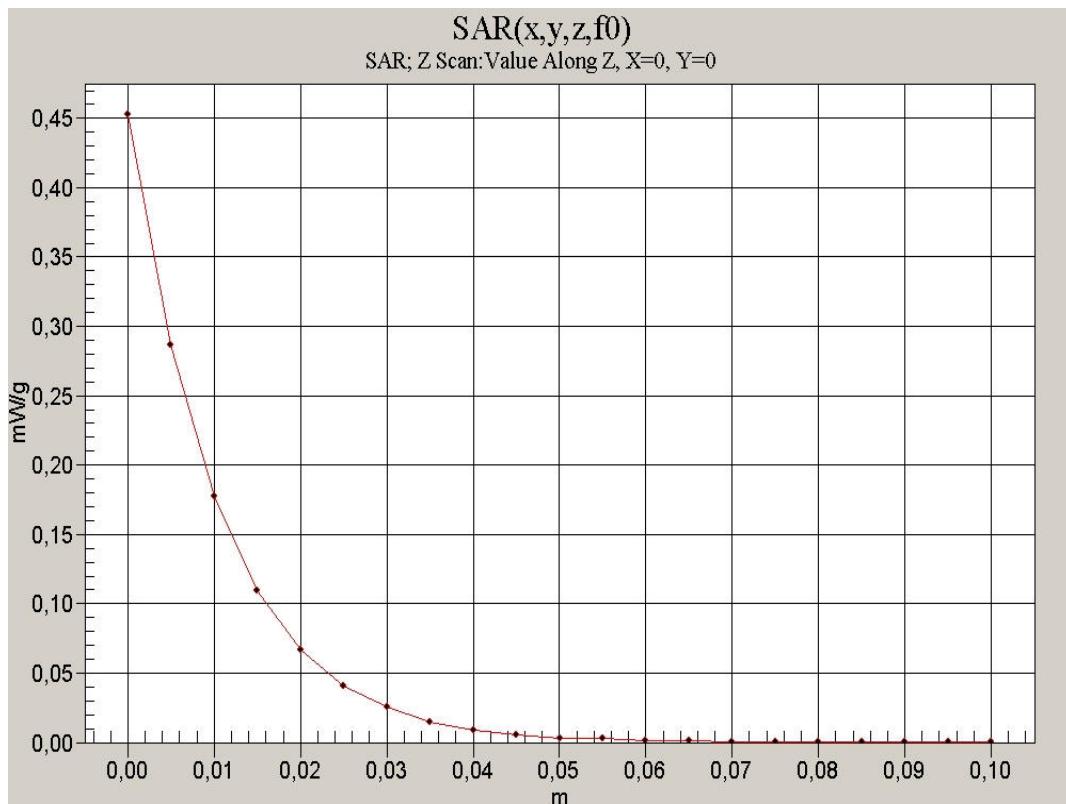



Photo 28: Z-axis scans 1900 MHz body

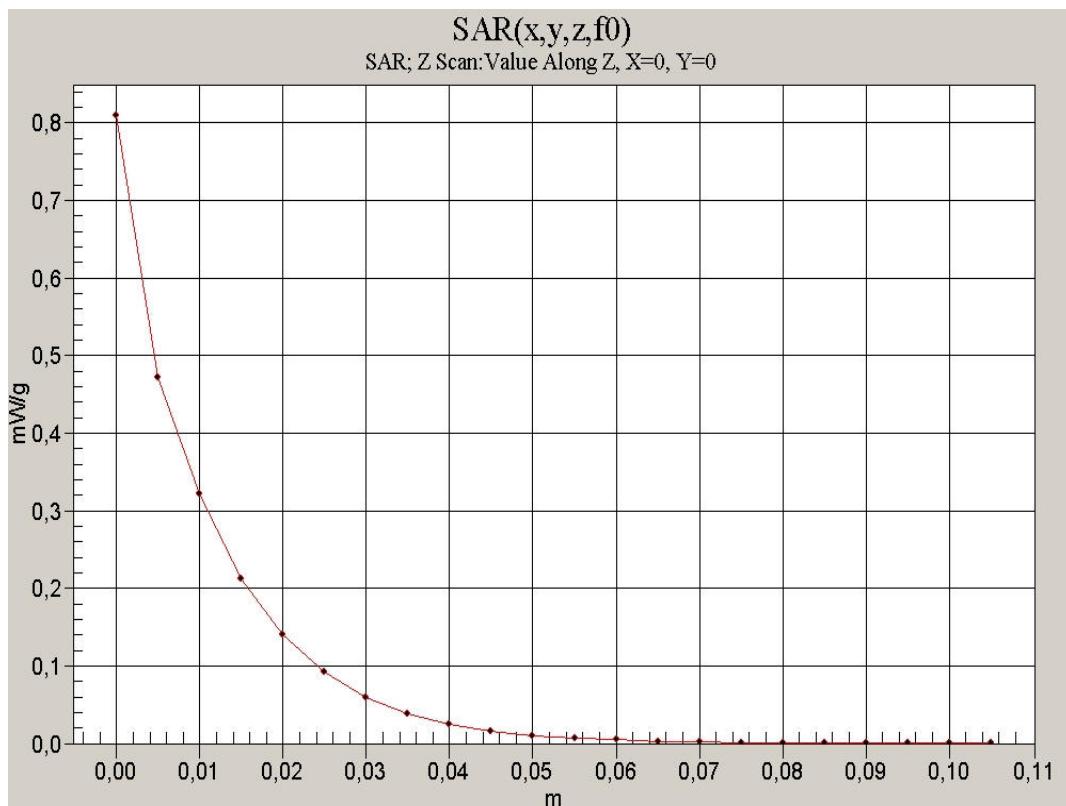



Photo 29: Z-axis scans 2450 MHz head

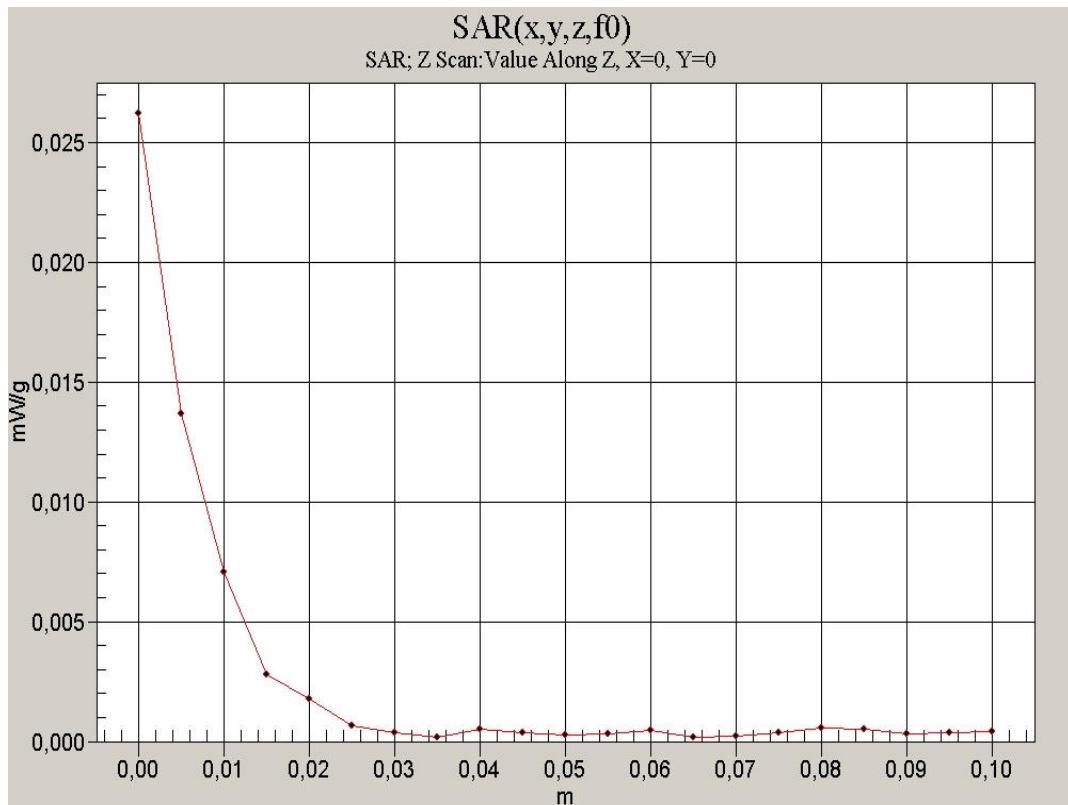
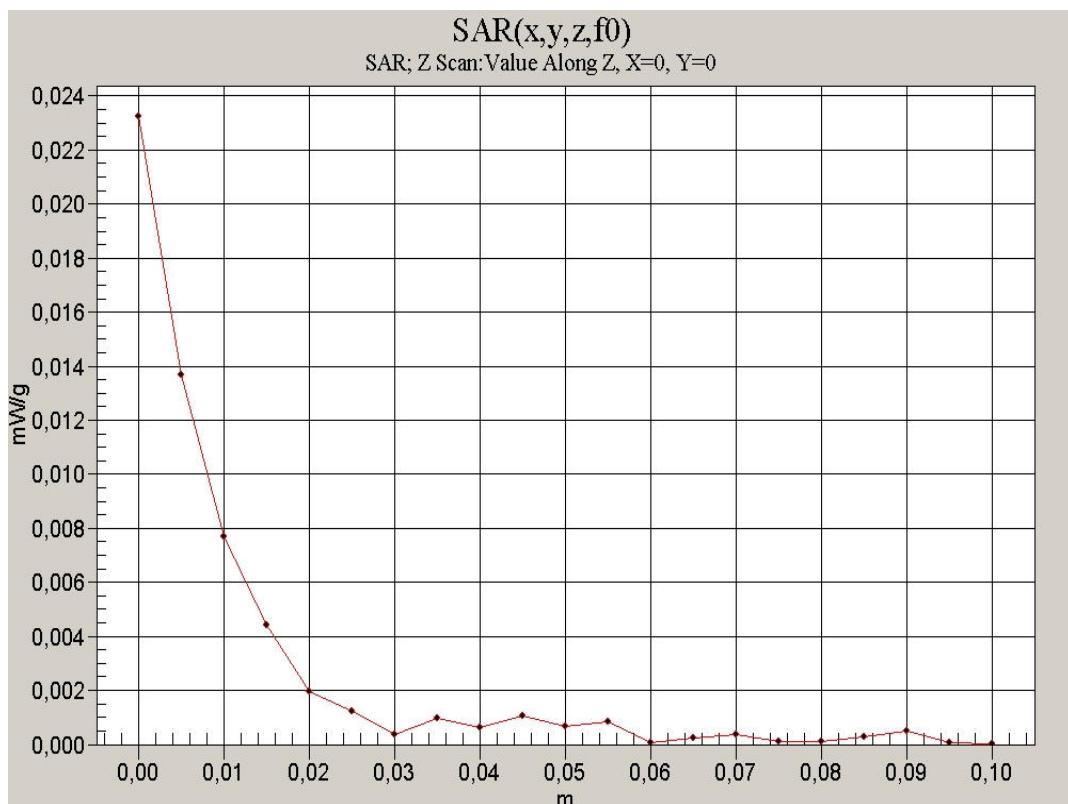




Photo 30: Z-axis scans 2450 MHz body



## Annex 4 Calibration parameters

**Calibration parameters are described in the additional document :**

**Appendix to test report no. 2-4728-01-05/07‘**

**Calibration data, Phantom certificate  
and detail information of the DASY4 System**