Appendix A. RF Exposure Evaluation

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$\mathsf{E}(\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{}$$

Power Density:
$$Pd(W/m^2) = \frac{E^2}{377}$$

 $\mathbf{E} = \text{Electric field (V/m)}$

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$\mathbf{Pd} = \frac{30 \times P \times G}{1000}$$

$$\overline{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Antenna Type : Dish Antenna

Mobile

Max Conducted Power for IEEE 802.11b/g: 16.66 dBm

Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)		Power Density (mW/cm2)
20	5	3.162278	16.66	46.3447	0.0292

Max Conducted Power for IEEE 802.11n (20MHz) : 18.50 dBm

Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
20	5	3.162278	18.50	70.7946	0.0446

Max Conducted Power for IEEE 802.11n (40MHz) : 18.72 dBm

Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Conducted Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
20	5	3.162278	18.72	74.4732	0.0469